
Journal of Engineering Science and Technology Review 16 (2) (2023) 100 - 106 
 

Research Article 
 
 

Non-subsampled Shearlet Domain-based De-speckling Framework for Optical 
Coherence Tomography Images  

 
Pradeep Kr. Gupta1,*, Amit kr. Chanchal2, Shyam Lal3 and Vivek Gupta4 

 
1Pranveer Singh Institute of Technology, Kanpur-209305, Uttar Pradesh, India  

2Kolhapur Institute of Technology’s College of Engineering(Autonomous),Kolhapur,Maharashtra, India 
3National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India  

4G L Bajaj Institute of Technology &Management Greater Noida, U.P., India 
 

Received 28 September 2022; Accepted 28 March 2023 
___________________________________________________________________________________________ 
 
Abstract 
 

An effective instrument for obtaining an image of the retina is an optical coherence tomography (OCT) imaging device. 
OCT images of the retina are useful for diagnosing and tracking eye diseases. However, different physical configurations 
in the imaging apparatus are to blame for the speckle noise in retinal OCT images. The OCT image quality and 
assessment reliability are reduced due to aforementioned noise. This paper offered a paradigm for reducing speckle noise 
that was motivated by the mathematical formulation of speckle noise. Two distinct noise components make up speckle 
noise, one of which is additive and the other of which is multiplicative in nature. For each sort of noise, the suggested 
structure employs a different filter. To reduce the additive component of speckle noise, Weiner filtering is used. To 
minimize the multiplicative component of noise, a particular arrangement based on non-subsampled shearlet transform 
(NSST) is used. It is now widely acknowledge that NSST overcome the limitations of traditional wavelet transform 
therefore it very useful in dealing of distributed discontinuities therefore it is prefer in this research work .Real retinal 
OCT pictures are used to assess the proposed framework's quantitative and qualitative performance. The PSNR, MSE, 
SSIM, and CNR metrics are used to compare the suggested framework. In comparison to existing cutting-edge filters, the 
proposed framework performs better in terms of noise suppression capability with structure preservation capabilities. The 
proposed technique gives highest PSNR, SSIM and CNR value that indicate the effectiveness of proposed work in 
addition to this proposed work give lowest MSE value. The proposed work give better enhance images in comparison to 
other existing filter therefore it may be helpful to find out any abnormality in OCT image and improve the diagnose of 
OCT retinal image.  
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1. Introduction 
 
OCT is an extremely useful tool for obtaining microscopic-
resolution pictures of the retina. OCT imaging is a potent 
imaging technique for the identification of numerous 
illnesses, including glaucoma [1, 2] and age-related macular 
degeneration (AMD) [3-6]. This is due to the non-invasive 
nature of OCT imaging. A helpful biomarker for identifying 
and diagnosing disorders associated with the retina is the 
measurement of OCT image layer thickness. However, the 
speckle noise in OCT images degrades the image quality and 
makes it challenging to conduct an accurate evaluation of 
OCT images. As a result, the most crucial stage in the 
examination of OCT pictures is image enhancement. In OCT 
images, speckle noise appears as a grainy pattern. The 
imaging system's wavelength is the only factor that 
influences this kind of noise. The textural properties and 
clinical features necessary for image analysis are also 
contained in the speckle noise. As a result, a crucial stage in 
the OCT enhanced imaging system is the separation of the 
noise component from the information component. 
 
1.1. OCT Images 

Like Ultrasound imaging, Optical Coherence Tomography 
(OCT) is also animportant imaging technique used for 
ophthalmology and retinal imaging. Currently, OCT has 
been a powerful tool for the diagnosis of retinal-related 
disease. It provides a high-resolution cross-sectional view of 
the retina. Measurement of retinal layer thickness from OCT 
image helps in the clinical diagnosis of various retinal 
diseases.  For identification and assessment of retina 
abnormalities ,Optical Coherence Tomography (OCT) is the 
most valuable  diagnostic imaging. OCT is a non-invasive 
imaging technique relying on low coherence interferometry 
to generate in vivo, cross-sectional imagery of ocular 
tissues. Cross-sectional visualization is an extremely 
powerful tool to find out abnormality in retinal images. 
Optical Coherence Tomography generates cross sectional 
images by analyzing the time delay and magnitude change of 
low coherence light as it is backscattered by ocular tissues. 
An infrared scanning beam is split into a sample arm 
(directed toward the subject) and a reference arm (directed 
toward a mirror). As the sample beam returns to the 
instrument it is correlated with the reference arm in order to 
determine distance and signal change via photodetector 
measurement. 
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2. Literature Review 
 
Numerous de-speckling filters have been developed in the 
literature to reduce the speckle noise in OCT pictures. OCT 
images can also benefit from some de-speckling filters that 
are utilized for SAR images [7-9]. Adaptive filtering 
performs better than other filtering methods for OCT 
pictures. This filtering method alters pixel intensity by 
gathering data from the area surrounding the pixel under 
consideration. The concept of adaptive filtering technique is 
employed with the hybrid median filter [10], homomorphic 
Wiener filter [11], enhanced Lee filter [12], symmetric 
nearest neighbour filter [13], and kuwahara filter [14]. In 
OCT pictures, wavelet-based filters perform better after the 
concept of adaptive filtering. According to a literature 
review, wavelet denoising with multiscale resolutions is 
more effective for enhancing OCT images. Shift-invariant 
wavelets are used by Ozcan et al. [15] to reduce speckle 
noise. Speckle noise in OCT pictures is also removed using a 
spatially adaptive wavelet filter. The system mentioned 
above computes a variety of coefficients to determine 
threshold values [16]. A wavelet method was also used by 
Mayer et al. [17] to reduce the impact of speckle-noise in 
OCT pictures. In the method described above, coefficients 
are calculated by gathering data on the noise pictures' 
structure.  

Some Researchers used the diffusion technique to 
improve OCT images once the adaptive filter was created. 
With the preservation of the fine structure of the 
photographs, these techniques can smooth the images. 
Ordinarily, diffusion procedures are developed for partial 
differential equations (PDEs). Salinas et al. [18] offered a 
comparison of the Perona-Malik isotropic diffusion filter and 
the nonlinear complex diffusion filter for OCT image 
denoising. Jinming Duan et al. [19] also suggest a second-
order total generalized variation (TGV) decomposition 
approach to minimize speckle noise in OCT pictures. The 
OCT pictures are denoised using the aforementioned 
approach, which uses TGV regularization. The staircase side 
effects do not appear in the output photographs. 

Two adaptive spatio-temporal approaches have been put 
forth by Katsaggelos et al. [20] to reduce the noise in the 
image. Images are filtered using three cascading 1-D 
estimators. With regard to discontinuities, the estimator 
response is adaptive. A signal is divided into a stationary and 
a non-stationary portion based on the most recent statistics. 
visual outcomes Show that this filter produces better results 
for images with high SNR values; nevertheless, the recursive 
version produces comparably better results for images with 
low SNR values. By gathering data on the local coherence of 
the retinal structure, Fernández et alalgorithm .'s [21] 
automatically determined the thickness of the retinal layer. 
The method mentioned can help photos become noise-free. 
With this method, we can quickly determine the RNFL layer 
thickness for illness identification. An image enhancement 
algorithm was created by Anantrasirichai et al. (2014) [22] 
for the detection of RNFL thickness in the OCT input 
pictures. The suggested method smooths the output image by 
applying wavelet thresholding, bilateral adaptive-weighted 
filtering, and intensity modification. The adaptive weights 
are calculated using local entropy. We achieve improved 
glaucoma detection precision and picture quality. 

The bilateral filter with adaptive iteration has been used 
by Sudeep et al. (2016)[23] to minimise the speckle noise in 
OCT images. The OCT image's visual quality is enhanced 
by the employment of a bilateral filter. After averaging the 

filtered data, a denoised OCT image is produced. 
Experimental findings indicate that the suggested technique 
performs better. A two-dimensional filter for noise reduction 
in OCT pictures has been presented by Mirzapour (2016) 
[24]. The method described above can be used to extract 
spectral and spatial-temporal properties from images. A 
wave atom transform-based Shrinkage Filter was proposed 
by Yongzhao Du et al. [25]. In this method, the OCT 
pictures were despeckled using cycle spinning technique. All 
of the image's features are preserved by the suggested filter. 
The technique is more complicated, but the noise strength is 
controlled by a single variable parameter. 

The K-SVD dictionary learning strategy is used by 
Raheleh Kafieh et al. [26] to enhance the effectiveness of the 
de-speckling technique. The Dual Tree Complex Wavelet 
Transform performs better when using this learning strategy. 
The aforementioned method offers flexibility in vocabulary 
learning for noise reduction but requires a lot of time. Total 
Generalized Variation (TGV) for OCT images is described 
by Jinming Duan et al. in their study [27]. The OCT pictures 
are despeckled using the Bregman algorithm approach. The 
staircase side effect is eliminated from the final image by 
this procedure. 

By using variational image decomposition, Hongwei Ren 
et al. [28] are able to distinguish the cartoon texture from the 
noise portion of the original OCT image. Curvelet space 
describes the noise in the image, while Hilbert space 
represents the texture. The suggested approach can conduct 
edge detection, image segmentation, and layer thickness 
computation. The OCT pictures are de-speckled using a 
variety of ICA algorithms, including RUNICA, JADE, Fast 
ICA, and SOBI, according to Ahmadreza Baghaie et al. [29]. 
SOBI performs better due to different techniques. A 
nonlinear transform-based strategy using the Gaussian 
distribution as the probability distribution function was 
proposed by Zahra Amini and Hossein Rabbani [30]. The 
calculation of an image's histogram in this method uses a 
Normal-Laplace mixing distribution. The Gaussian 
assumption produces more accurate findings, according to 
experiments. The intraretinal layer's precision is enhanced 
by this method. To locate a similar area in OCT images, 
Leyuan Fang et al. [31] use the Sparse reconstruction 
method for layer segmentation. The rectangular patch is used 
in the suggested method to provide a better approximation of 
the image. 

The following describes the other sections of the paper: 
In Section 3, the suggested framework is explained. The 
material and methodology utilized in the proposed 
framework are explained in Section 4; the results of the 
proposed framework are compared with those of other 
compared filters in Section 5. The conclusion and future 
application of the suggested framework are provided in 
section 6. 
 
 
3. Proposed Framework 
 
The analysis of the literature confirms that there are two 
types of speckle noise in the OCT image. One of two 
elements has an impact on the image that is additive, 
whereas the other has an impact that is multiplicative. The 
suggested methodology treats each of these elements 
separately. In this approach additive part of speckle noise is 
remove by Weiner filtering, and non-subsampled shearlet 
transform (NSST) is used to reduce the multiplicative factor 
of speckle noise.In this algorithm, first, Wiener filtering is 
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applied on the noisy image; after that NSST transform 
decomposes the filtered image in low frequency and high-
frequency components. A diffusion process is used for low-
frequency components and thresholding is applied to high-
frequency components. In the last by the inverse operation, 
we get the denoised image.The suggested framework's 
process flow is depicted in Fig. 1. 
 

 
Fig. 1. Process Flow of proposed Framework. 
 
 
3.1. Speckle Noise Modelling  
Many studies suggest that the noise shown in retinal OCT 
pictures has two components. Although the second 
component of noise has a multiplicative influence on the 
original image, the first part of noise is additive in nature. 
Equation can be used to depict a noisy OCT image (1) [32] 
 
𝐼!(𝑥, 𝑦) = 𝐼"(𝑥, 𝑦). 𝑁#(𝑥, 𝑦) + 𝑁$(𝑥, 𝑦)             (1) 
 
here, 𝐼!(𝑥, 𝑦) is represents degraded image by speckle noise, 
𝐼"(𝑥, 𝑦) is the noise-free image. 𝑁#(𝑥, 𝑦) is the 
multiplicative part of the noise and 𝑁$(𝑥, 𝑦) is the additive 
part of the noise. The proposed framework is based on the 
concept of different noise requiring different filters to reduce 
this type of noise. 
 
3.2. Wiener Filtering 
Consider a image corrupted by speckle noise define in 
eq.(2): 
 
𝐼!(𝑥, 𝑦) = 𝐼"(𝑥, 𝑦). 𝑁#(𝑥, 𝑦) + 𝑁$(𝑥, 𝑦)             (2) 
 

Now the goal of the Wiener filter is to reduce the 
additive part𝑁$(𝑥, 𝑦) of speckle noise. Wiener filter reduces 
the additive component of the noise by estimating the mean 
square error between estimation value and original value 
defined as in eq. (3): 
  

𝑀𝑆𝐸(𝐼") =
%
&
∑ (𝐼

^

"
&
(,*+% (𝑥, 𝑦) − 𝐼"(𝑥, 𝑦)),            (3) 

 
where N is the number of elements in the input image. In 
this proposed work 𝑁$(𝑥, 𝑦) and 𝐼"(𝑥, 𝑦) are the Gaussian 
process, therefore estimation by wiener filter have a 
straightforward scalar form as in eq. (4) 
 
𝐼""(𝑥, 𝑦) =

-!"((,*)
-!"((,*)0-#"((,*)

[𝐼!(𝑥, 𝑦) − 𝜇1(𝑥, 𝑦)] + 𝜇1(𝑥, 𝑦)      (4) 
 
Where 𝜎, and 𝜇 are the variance and means of the image, 
respectively. To use the above equation, we need to 
determine 𝜎2,(𝑥, 𝑦) the estimation of noise-free image. 
 
3.3. Non-Sub Sampled Shearlet Transform (NSST) 
The non-sub sampling shearlet transform is used in the 
proposed work to minimize the multiplicative noise 
component of speckle noise. Wavelet - based transform is a 

milestone in multiscale transform, and non-sub sampled 
shearlet transform is a subcategory of multiscale transform 
[33].   Wavelet transform can be used to quickly resolve the 
high-dimensional signal singularity problem [34]. It is not, 
however, appropriate for images. Curvelet and contourlet 
transforms have recently been used to resolve these issues 
[35]. The decomposition of an image in several directions is 
the fundamental tenet of these transforms. The Gibbs 
phenomenon [36] is a result of the breakdown process in the 
enlarged image. This flaw is eliminated via the shearlet 
transform (ST). The multidimensional and multidirectional 
extension of an average signal is provided by the shearlet 
transform. The shearlet wave is mathematically described as 
follows in the 2D-affine system: 
 
𝐴𝑆,3 = 3𝜓4,5,#(𝑥) = 5𝑑𝑒𝑡 𝐴4/,5𝜓(𝑠𝑙𝐴4𝑥 −𝑚): 𝑘, 𝑙 ∈
, 𝑍,𝑚 ∈ 𝑍,@                    (5) 
 
where A-is a multiscale decomposition matrix, S-is a 
multidirectional shear matrix, k- is the decomposition scale, 
l- is the direction parameter, m- is the translation parameter. 

In 𝐿,(𝑅,) the domain, the basis function 𝜓4,5,#(𝑥) is 
calculated by a single-window function with good local 
characteristics. Shear matrix S is a responsive for the 
selection of shearlets. 
 

 
 
Fig. 2. Decomposition of the source image for D=3 by NSST. 
 
 

The image decomposition is carried out by Cunha and 
Do[37] using the non-subsampled laplacian pyramid (NSLP) 
filter. For the multiscale and multidirectional decomposition, 
NSST uses NSLP and Shf. An input image is divided into a 
high-frequency and a low-frequency subimage during the 
NSLP decomposition process. The low-frequency subimage 
is then iteratively dissected after that. An picture is divided 
into D+1 subbands at any random decomposition level D. 
These decomposed photos and the source images are both 
the same size. One of these sub-images has a low frequency, 
while the other D sub-images have high frequencies. In 
order to decompose the high-frequency sub-images without 
subsampling, ShF is also using NSST decomposition. At 
each level of decomposition, NSLP generates the high-
frequency subband images for a given level L, and 2K 
directional subband image coefficients are produced. The 
NSLP and its accompanying directional decompositions are 
depicted in Fig. 1 together with a three-level NSST 
decomposition. In this work, three layers of image 
decomposition are used to shear an image in the following 
numbers: 8, 8, and 4 from finer to coarser scale. 

 
3.4. NSST Thresholding  
Different authors proposed various thresholding method for 
image denoising. Out of these various thresholding methods, 
the proposed method applies hard thresholding with NSST. 
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The following step explains the flow process of the proposed 
algorithm:  
 
Step 1. Wiener filtering is used to reduce the additive noise 
part from the denoised image. 
Step 2. Apply the NSST decomposition on Output of  step 1. 
Step 3. NLM filtering and diffusion process are applied on 
low-frequency sub-image. 
Step 4. NSST thresholding is applied to high-frequency 
components. 
Step 5. NSST Denoised component are obtained. 
Step 6. Inverse NSST applies to obtain the denoised image. 
 
3.5. Image Database 
For the conduction of the experiment, the OCT images are 
chosen from the Mendeley database 
(https://data.mendeley.com/datasets/rscbjbr9sj/2) 
 
3.6. Quality Metrics 
In this proposed de-speckling framework PSNR, MSE, 
SSIM and CNR quality metrics are used for performance 
analysis. PSNR is a measure of the image enhancement 
capability of any de-speckling technique. PSNR is defined as  
  
𝑃𝑆𝑁𝑅(𝑑𝐵) = 10 𝑙𝑜𝑔%7 I

2!"#$

89:
J           (6) 

 
Where 𝐼#$(		is the input signal maximum power.  High 
PSNR value is desirable for a better method.  

Mean square error (MSE) is an indication of noise in the 
output image after the denoising process. MSE is defined as:  
 
𝑀𝑆𝐸 = %

;<
∑ ∑ L𝑃!(𝑟%, 𝑟,) − 𝑃=(𝑟%, 𝑟,)N<>%

?$+7
;>%
?%+7

,        (7) 
 
𝑃!(𝑟%, 𝑟,) and 𝑃=(𝑟%, 𝑟,) are the output and input values for 
an image of order 𝐴 × 𝐵. The lower value of MSE is 
desirable for a better de-speckling method.  

Structural Similarity Index (SSIM) measured the 
structural similarity between the noisy image and the 
denoised image. SSIM is defined as  [27]. 
 
𝑆𝑆𝐼𝑀(𝐼, 𝑂) = (,@&@'0A%)B,-&,'0A$C

B@&
$0@'

$0A%CB-&
$0-'

$0A$C
               

(8) 
 
I and O indicate the input and output image, 𝜇2 , 𝜎2,,𝜇D, 𝜎D, 
and 𝜎2,D are mean, variance, covariance values for noisy and 
denoised images, respectively. (c1,c2) are constants for 
equation stabilization factors.  

For the de-speckling framework, contrast to noise ratio 
(CNR)[39] is another good indication of quality. This setting 
computes the contrast between the ROI that was chosen and 
the image's noisy backdrop. It's described as: 
 

𝐶𝑁𝑅 = %
&
R∑ @)>@*

EB-)$0-*
$C

&
=+% S               (9) 

 
where 𝜇F,𝜎F2 are the mean and variance value of  background 
and 𝜇=,𝜎=2 are mean and variance of  discussed  nth ROI of 
the image. 
 
 
4. Experimental Results and Discussion 
 
The suggested method's denoising capabilities are compared 
with those of the following noise filters in this part using the 

quantitative and qualitative results: The M1-Hybrid Median 
Filter (HMF) [15], the M2-Nonlinear Complex Diffusion 
Filter (NCDF) [25], the M3-Dual Tree Complex Wavelet 
(DTCWT) using soft thresholding [16], the M4-AWBF, the 
M5-Anisotropic Coherent Enhancing Diffusion (ACED) 
[20], the M6-Second-Order Total Generalized Variation 
Decomposition Filter The values for PSNR, MSE, SSIM, 
and CNR are used to compare the findings. 
 
Table 1. Quantitative Comparison of Different Filters for 
Image1. 
 PSNR MSE SSIM CNR 
M1-HMF 31.7532 43.4272 0.77976 19.1098 
M2-NCDF 32.4918 36.6346 0.84563 15.1516 
M3-DCTWT 27.2325 122.9784 0.75430 24.9844 
M4-AWBF 31.7582 43.3771 0.73565 19.6171 
M5-ACED 32.8410 33.8052 0.78402 21.1413 
M6-TGVD 26.7554 137.2593 0.74882 14.3477 
M7-Proposed 33.6096 29.6549 0.95922 25.6324 

 

 
Fig. 1. Ouput denoised images of different filters for OCT Image1. 

  
Table 2. Quantitative Comparison of Different filters for 
Image2. 
 PSNR MSE SSIM CNR 
M1-HMF 30.8678 53.2476 0.7619 20.5946 
M2-NCDF 30.8988 52.8679 0.8346 27.2027 
M3-
DCTWT 

27.1608 125.0273 0.7487 27.6054 

M4-AWBF 29.8727 66.9593 0.6983 19.7385 
M5-ACED 32.2760 38.5016 0.7703 23.7114 
M6-TGVD 26.7684 136.8480 0.7490 19.3746 
M7-
Proposed 

33.2943 28.3393 0.9557 28.7925 

 

 
Fig. 2. Output denoised images for OCT Image2.  

 
Table 3. PSNR, MSE, SSIM & CNR values for Image3. 
 PSNR MSE SSIM CNR 
M1-HMF 31.1096 50.3644 0.7886 20.4535 
M2-NCDF 31.7030 43.9319 0.8597 26.9078 
M3-
DCTWT 

25.8223 170.1556 0.7007 25.6809 

M4-AWBF 31.2878 48.3389 0.7748 16.3099 
M5-ACED 33.2743 30.5951 0.8013 23.6480 
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M6-TGVD 25.8695 168.3185 0.7610 15.2158 
M7-
Proposed 

33.9355 23.0772 0.9680 28.0387 

 

 
Fig. 3. Output denoised images of different filters for OCT Image3.  

 
Table 4. PSNR,MSE, SSIM & CNR values for Image4. 

 PSNR MSE SSIM CNR 
M1-HMF 31.2511 48.7494 0.7840 22.9940 
M2-NCDF 31.5898 45.0912 0.8515 26.4439 
M3-
DCTWT 

26.3437 150.9082 0.7388 20.6109 

M4-AWBF 30.6957 55.3997 0.7549 19.8099 
M5-ACED 32.7326 34.6595 0.7931 30.6515 
M6-TGVD 24.4638 232.6476 0.7523 18.1366 
M7-
Proposed 

33.8075 24.0665 0.9727 32.0782 

 

 
Fig. 4. Output denoised images of different filters for OCT Image4. 
 
Table 5. PSNR, MSE, SSIM & CNR values for Image5. 
 PSNR MSE SSIM CNR 
M1-HMF 31.7669 43.2898 0.7966 24.0730 
M2-NCDF 31.5539 45.4664 0.8589 26.7359 
M3-
DCTWT 

26.5952 142.4150 0.7472 22.0755 

M4-AWBF 31.7869 43.0913 0.7763 21.2162 
M5-ACED 31.4361 33.1565 0.8026 33.7259 
M6-TGVD 25.6024 178.9929 0.7638 16.2525 
M7-
Proposed 

33.0235 32.4132 0.9765 32.1328 

 

 
Fig. 5. Output denoised images of different filters for OCT Image5. 

 
Table 6. PSNR, MSE, SSIM & CNR values for Image6. 
 PSNR MSE SSIM CNR 
M1-HMF 31.2072 49.2446 0.7813 34.4460 
M2-NCDF 30.7117 55.1955 0.8417 28.1104 
M3-
DCTWT 

26.7548 137.2786 0.7441 47.8303 

M4-AWBF 30.9215 52.5928 0.7619 21.8838 
M5-ACED 32.3804 37.5869 0.7823 32.8393 
M6-TGVD 26.1052 159.4278 0.7637 16.8254 
M7-
Proposed 

38.6444 8.8845 0.9480 16.1261 

 

 
Fig. 6. Output denoised images of different filters for OCT Ιmage6. 

 
Table 7. PSNR, MSE,SSIM & CNR values for Ιmage7. 
 PSNR MSE SSIM CNR 
M1-HMF 36.6474 14.0716 0.9284 22.2185 
M2-NCDF 33.4052 29.6865 0.9518 18.3114 
M3-
DCTWT 

28.6480 88.7739 0.8259 40.7371 

M4-AWBF 35.6778 17.5916 0.8655 9.8524 
M5-ACED 38.3009 9.6159 0.9311 22.3677 
M6-TGVD 25.2056 196.1191 0.8850 6.1865 
M7-
Proposed 

42.2124 3.9069 0.9780 12.9027 

 

 
Fig. 7. Output denoised images of different filters for OCT Ιmage7. 
 
 
Table 8. PSNR, MSE,SSIM & CNR values for Ιmage8. 
 PSNR MSE SSIM CNR 
M1-HMF 30.3408 60.1169 0.7459 34.9442 
M2-NCDF 30.5964 56.6807 0.8227 33.8313 
M3-
DCTWT 

25.3464 189.8648 0.7030 59.1050 

M4-AWBF 28.1789 98.8982 0.7294 22.9507 
M5-ACED 31.6503 44.4687 0.7586 37.7689 
M6-TGVD 25.2597 193.6905 0.7128 19.5767 
M7-
Proposed 

38.6364 8.9009 0.9430 17.0124 
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Fig. 8. Output de-noised images of different filters for OCT Ιmage8. 
 
Table 9. PSNR, MSE, SSIM & CNR values for Ιmage9. 
 PSNR MSE SSIM CNR 
M1-HMF 31.1930 49.4065 0.7826 19.9690 
M2-NCDF 29.5964 55.6807 0.8227 32.8313 
M3-
DCTWT 

33.4997 29.0476 0.8599 41.0618 

M4-
AWBF 

31.6639 44.3289 0.7732 17.7401 

M5-ACED 32.7438 34.5699 0.7875 23.0163 
M6-TGVD 26.6209 141.5773 0.7634 17.2864 
M7-
Proposed 

38.8281 8.5165 0.9503 11.6087 

 

 
Fig. 9. Output denoised images of different filters for OCT Ιmage9. 
 

Table 10. PSNR, MSE,SSIM & CNR values for Ιmage10. 
 PSNR MSE SSIM CNR 
M1-HMF 30.2144 61.8923 0.7450 35.0652 
M2-NCDF 30.5347 57.4916 0.8199 29.6888 
M3-
DCTWT 

32.9557 32.9236 0.8418 51.4546 

M4-
AWBF 

31.1409 50.0027 0.7453 23.2807 

M5-ACED 31.7620 43.3387 0.7534 36.7475 
M6-TGVD 25.2031 196.2338 0.7297 18.5763 
M7-
Proposed 

38.2377 9.7567 0.9430 17.5355 

 

 
Fig. 10. Output de-noised images of different filters  for OCT Ιmage10. 

 
 

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, 
Table 7, Table 8, Table 9 and Table 10 are shown the 
quantitative comparison of the proposed framework with the 
six state-of-art filter use for de-speckling the OCT Images 
for the OCT Image1, Image2, Image3, Image4, and  Image5, 
respectively.  From the quantitative result assessment, it is 
found out that the proposed framework outperform in 
comparison to all state-of-art filters. The proposed filter has 
the highest PSNR, SSIM, CNR values, although the value of 
MSE is the lowest for the proposed framework. These 
numerical results justify that the proposed framework has a 
better de-speckling ability and edge, preserving. Similarly, 
Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 
9 and Fig. 10 show the visual result comparing the proposed 
framework with the six state-of-art filters. The visual effects 
also support the quantitative result.  

 
4.1. Comparative Results  
Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, 
Table 8, Table 9 and Table 10 are shown the quantitative 
comparison of the proposed framework with the six state-of-
art filter use for de-speckling the OCT images for the OCT 
Image1, Image2, Image3, Image4, and Image5, respectively. 
For example for image 1 PSNR value are  31.7532, 32.4918, 
27.2325, 31.7582, 32.8410, 26.7554, 33.6096 for filter 
M1,M2,M3, M4,M5,M6 and M7 respectively that indicate 
that proposed filter give better enhance image in comparison 
to compared filter. Same results are obtain for other images 
also. Similarly comparative Table concluded that proposed 
method de-noise the images effectively.  
 
 
5. Conclusion 
 
For the purpose of minimizing the speckle noise encountered 
in OCT pictures, this proposed framework presented a de-
speckling technique. Two distinct types of speckle noise 
components are filtered differently in this system. For the 
additive portion of the noise, Wiener filtering is utilised, and 
for the multiplicative portion, the NSST domain is used. The 
suggested framework focuses on a different aspect of the 
image's speckle noise independently. The multiscale and 
multidirectional analysis of filtered pictures is carried out by 
the NSST domain. The high amplitude noise components 
were suppressed by the diffusion process in the suggested 
framework, and edge preservation is improved by 
thresholding. The suggested system's capacity for denoising 
is enhanced by this collaborative process. On OCT images 
and conventional test images, the proposed framework has 
also contrasted the quantitative and qualitative findings with 
those from other cutting-edge filters. According to the 
experimental findings, the suggested approach reduces 
speckle noise more effectively than any other filters while 
also having greater edge preservation abilities. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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