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Abstract 
 
Permanent magnet synchronous motors with high-performance electric actuation require sophisticated control systems due 
to their complex motions. These methodologies for control typically result in algorithms best utilized digitally, employing 
robust microprocessors. To address the issue of adaptive control of low-power permanent magnet synchronous motors, we 
provide a solution in this paper. By using numerical algorithms and backstepping, efficient control schemes may be 
developed while still requiring little computational resources. Static and dynamic qualities are both satisfactory, and the 
system is relatively insensitive to external disturbances and parameter uncertainties. 
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1. Introduction 
 
The vast majority of the physical systems we encounter daily 
are nonlinear. Over their helpful operating range, these 
nonlinearities are typically either negligible or invisible. More 
accurate modeling allows for responses across a broader 
spectrum of operations due to the ongoing drive to boost the 
effectiveness of controlled systems. At this juncture, non-
linearities become manifest, rendering obsolete the linear 
field's analysis and synthesis tools for control laws, which 
were previously adequate for describing most but not all 
phenomena. As a result, studying how to regulate nonlinear 
systems has been a hot topic of study for a while now. 
 P, PI, or PID controllers can control the speeds. Yet 
regulators are developed with control strategies designed for 
linear models. 
 Historically, the linear approximation around an 
operational point or a trajectory has been used as a solution; 
in other words, one first reduces this complexity in 
linearization before defining a system as nonlinear. Even if 
the linearized system can have measurable and/or controlled 
parameters, the domain of validity of the linear approximation 
must be enlarged since, following linearization, the physical 
parameters can lose their interpretation and, consequently, 
their measurability around the interesting operational points. 
This is where we are first introduced to the idea of adaptive 
control; wherein control is considered adaptive if it employs 
parameters that can be adjusted in reareal-timether than 
predetermined in advance. The state might diverge infinitely 
for a finite amount of time during transitions of the estimated 

parameters, highlighting instability as the most challenging 
issue for this category of systems. Thus, the nonlinear 
triangular shape that we will depict later will be the nonlinear 
system for which the adaptive control proposed in this study 
provides a solution to this type of problem. Adaptive control 
is necessary in nonlinear systems due to the prevalence of 
explosive instability, which directly impacts the expected 
performance of control systems. The concept of linear 
approximation has to be broadened. 
 These modern adaptive control techniques include 
backstepping. Kanellakopoulos et al.[1] created it after being 
influenced by several researchers [2-3]. With this technique's 
recursive design process, the formulation of the control law 
[4]. and the associated Lyapunov function is systematic, 
which is a key innovation for lower triangular systems. While 
traditional linearization techniques necessitate precise models 
and frequently cancel out some valuable nonlinearities, 
backstepping provides a design tool by avoiding cancellations 
at the nonlinear system level. In what follows, we propose 
introducing the backstepping algorithm. The first stage is to 
select the conditions that let this technique be applied, and the 
second step is to choose nonlinear functions that may make 
use of this control method. At last, we'll use the proper 
numerical algorithms described in this research to perform 
direct numerical modeling of the permanent magnet 
synchronous motor model. 
 
 
2. Research method 

 
In this part, we will describe the research approaches and 
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the modeling of the synchronous motor PMSM. 
Meanwhile, the assumptions that will promote 
simplification are provided [5]. 
 
2.1. Model 
The Permanent magnet synchronous motor model in the 
reference frame (d-q) is shown below: 
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Where: 
𝑅#: Stator resistance (Ω) 
𝐿",	𝐿$: d,q axis self-inductance (H) 
𝜑%: Mutual flux due to permanent magnetic (Wb) 
𝑖",	𝑖$: d,q axis currents (A) 
𝛺  Angle speed (rad/s) 
𝐽: Moment of inertia (kg.m2) 
𝑓: damping constant (N/rad/s) 
𝑝: Number of pole pairs 
𝐶&: load torque (N.m) 
 
 The equations presented above suggest that PMSM is a 
nonlinear dynamic system owing to the bend that arises 
between both the equations that describe the state of the 
electrical current and the speed. It is essential to keep in mind 
that all incredibly different depending on the operating 
conditions, the much more notable of which are the 
fluctuations in heating, the saturating effects, and the 
disturbances in torque generated by the applied load. 
Therefore, if high-performance speed control of PMSM is 
necessary, the design of the controller must take into 
consideration any and all nonlinearities, parameter 
uncertainties, and unknown external disturbances [6]. 
 
2.2. Performed Backstepping control 
The main goal of the central control is to make an 
asymptotically stable speed-tracking controller for PMSM 
that can keep an eye on the reference trajectory even if there 
are errors or changes in the parameters and an unknown 
change in the load torque disturbance. This goal can be 
reached by ensuring that the speed-tracking controller is not 
affected by any disruptions caused by PMSM or load torque. 
As a direct result, it is necessary to have an adaptive online 
estimate of all the parameters and external disturbances. One 
of the objectives of utilizing adaptive backstepping is to 
identify a virtual control state and then coerce that state into 
performing the role of a stabilizing function. This is one of 
the purposes. The output of this method will be an error 
variable structured in a suitable manner [7]. Consequently, the 
error variable can be more stable by implementing 
Lyapunov's stability theory [8]. It is possible to create the 
overall control design by working through the following three 
steps in the following order: 
 
Step 1: Define the reference speed 
as 	Ω∗ and 	Ω∗	as	continuous	second− order	dérivatves . 
Moreover, the speed tracking error can be defined as: 
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is the integral action added to the backstepping order to ensure 
convergence-tracking error towards zero despite uncertainties 
of type piecewise constant at each step of the algorithm? 
So by using model (1), we find:  
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Consider the first Lypanov function as:  
 
V* =

+
,
z*, 		and the derivative of V*	is ∶ 
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 Finally, the virtual control i-,/01	is given by the following 
equation: 
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 Given that it does not offer accurate simulations, we will 
no longer employ integral proportional regulation when 
controlling the currents. This choice has been made as it is 
inefficient. 
 
Step 2: The 𝑖$  current tracking error can be defined to 
develop their dynamic: 
 
𝑧$ = 𝑖$,&4% − 𝑖$ 
 
So: 
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Define the second Lypanov function as:  
 

𝑉$ = 𝑉( +
1
2 𝑧$

2 
 
Then  by using model (1), we find:: 
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Where: 
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Step 3: The 𝑖"  current tracking error can be defined to 
develop their dynamic: 
 
𝑧" = 𝑖",&4% − 𝑖"     
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Define the third Lypanov function as:  
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Then:   
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By using model (1)	we	find: 
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And finally: 
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2.3. Numerical Algorithm 
With numerical approaches, the function F is evaluated 
repeatedly at each subdivision interval, making the process a 
one-step affair. The idea is, of course, to obtain precision and 
order. 
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Where, Here, the temporal discretization is demonstrated to 
be dissolved. 

 
 
 We considered five interconnected differential equations, 
making up a nonlinear system due to our considerations. Two 
fundamental functions, AlgoPaper and Algo, were defined 
throughout the Python implementations of numeric resolving. 
The finalized script is demonstrated in Fig. 1.

 
Fig. 1. Algorithm 
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3. Results and discussion 
 
This section summarizes the research findings while also 
providing a complete discussion. 
 
3.1. Nominal parameters of the PMSM 
The ratings and nominal parameters of the PMSM used in the 
simulations are given in Table 1 : 
 
Table 1. The nominal parameters 

Parameters Value 

P 3 

Rs 0.2377[W	] 

Ld 0.0733[H] 

Lq 0.0728[H] 

φf 0.29562[Web	] 

J 0.025942JN.mS2/radM 

f 0.02124 
 
 
3.2. Simulation Results  
The methodologies outlined in the preceding sections were 
validated using numerical simulations based on precise 
synchronous motor data, as shown in Table 1. The gains for 
each of the six gains are shown in alphabetical order in Table 
2. Additional simulations support each of these numbers. To 
demonstrate the quality of the control, figures depicting 
asymptotically converged speeds and currents, as well as the 
electromagnetic torque's reaction to overloads, will be 
presented. In order to eliminate undesirable harmonics, a 
synchronous motor model and a number of bandpass filters 
have been added to the Simulink model's converter output. 
The effect of this series of filters was increased in the event 
of overheating by saturation effect in a real-time simulation. 
Using a temperature sensor on an Arduino, constant 
temperature readings can be obtained.  
 
Table 2. Gain values 

Parameters Value 

Kd 800 

𝑘𝑞 800 

Kw 800 

Kdd 16 

Kqq 8 

  

Kww 10 
 
 
3.2.1. Response Speed and d-q Currents Using 
Backstepping 
 The following figures illustrate the findings of the 
command by backstepping with integral action applied at the 
PMSM. The results are obtained with a perturbation due to 
the nominal load torque of amplitude 5N.m.The objective is 
to control the closed-loop system's operation by first varying 
the rotational speed reference. The following figures provide 

simulation results demonstrating the command's efficiency 
and performance. The efficiencies and robustness of the 
control are shown by the curves, which show the effect of 
changing the load torque, the resistance, and the inductance 
by 100%. 
 

Fig. 2 Reference and Response Speed 
 
 
 Fig. 2 and Fig. 3 demonstrate that the speed converges 
towards the reference, and the decoupling of the currents is 
preserved when all parameters are altered. Fig. 4 illustrates 
the electromagnetic torque Cem. 
 
 

Fig. 3. D-Q Currents 
 
 

Fig. 4. Electromagnetic torque. 
 
 
3.2.2. Response Speed and d-q Currents Using Numerical 
algorithm 
Timelines of d-q-currents, and response speed with their 
associated phase portraits, are shown in Fig. 5(a,b), Fig. 6(a,b), 
and Fig. 7(a,b). 
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Fig. 5.  Id and Iq Currents. (a): vd=0_vq=220, (b): vd=220_vq=0. 

 
 

 
Fig. 6. Phases portraits of D-Q Currents. (a) vd=0_vq=220, (b): 
vd=220_vq=0. 

 
Fig. 7. Response Speed and Phase portrait. (a): vd=0_vq=220, (b): 
vd=220_vq=0. 
 
 
3.2.3. Discussion of results 
As noted in Section 2.2, it is critical to ensure that the time 
derivative of the Lyapunov function candidate is negative 
semi-definite in order to maintain the asymptotic stability of 
the entire control system. This essentiality is assured if the 
parameter and load torque disturbance estimate errors 
converge to zero or a constant value, since their time 
derivatives are equal to zero. The total control system's 
asymptotic stability is then ensured. The simulation findings 
indicate that this essentiality is guaranteed in both 
circumstances. The proposed control's performance was 
evaluated using simulations for the classic adjustment of an 
PMSM supplied by a two-level voltage inverter, with a PI 
regulator facing a reference speed ranging from 100 to 300 
(rad / s), followed by the application of a resistive torque of 5 
(Nm) at a period of [1.27s], between t = 0.22 (s) and 1.449 (s) 
(s). We denote a diligent pursuit of the reference speedas 
shown in Figure 2. The simulation results in Figure 3 
demonstrate that the decoupling is maintained regardless of 
the load variation (in the steady-state). Due to the fact that the 
inverter generates fluctuations that are reduced by the 
cascaded bandpass filters, they are not felt strongly at the 
torque level. After the transitory regime expires, the current 
Id value reverts to zero. The rate of change is rapid, with very 
little overshoot and no static inaccuracy. Additionally, 
disturbance rejection is quick, with an ideal rising time of 0.06 
seconds (s). Additionally, they have a significant effect on the 
estimation of other parameters. 
 Fig. 4 illustrates the tracking errors and their convergence 
to zero under all parameter uncertainties/perturbations and 
variations in load torque disturbance. Figures 5, 6, and 7 show 
that the controller maintains a high-reliability level. Although 
the system is non-linear, the equations describing the 
machine's behavior are intricate. The direct numerical 
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resolution of model (1) by integrating only two additional 
equations is emphasized as the primary contribution of this 
work. The asymptotic convergence shown in the numerically-
obtained phase pictures is also underlined; this is a surprising 
and promising result. 
 The second additional value of this study is the restriction 
on the potential values of the gains Kww, Kqq, and Kdd, 
which affect the stability, speed, and precision of the dilemma. 
For example, a large value of k results in a big overshoot. 
However, as illustrated in Figure 8, we observe an exceptional 
degree of accuracy and an optimal rise time. Additionally, it 
is found that as the load torque grows, a big value of the gains 
may yield a stunning pseudo-periodic transient regime with a 
singularity. As seen in Fig. 8 and Fig. 9. 
 

 
Fig. 8 . Overshoot for Kww=160;Kqq=8;Kdd=10; 
 

 
Fig. 9. Pseudo-periodic transient regime, for :Kww=800; Kqq=8; 
Kdd=100.  
 What is critical to emphasize is that the integral action PI 
must be performed on all parameters: speeds and currents, or 
else the results will be skewed. The figures 10 and Figure 11 
clearly illustrate the enormous overshoot and significant 
spread of the transient regime, which exceeded 0.02 seconds 
for kdd = Kqq = 0, but exceeded 0.4 seconds for Kww = 0. 
 

 

Fig.10 . Response speed for:Kww=16;Kdd=0;Kqq=0; 

Fig. 11. Response speed for:Kww=0;Kdd=5;Kqq=5; 
 
 
 Our work created an adaptive backstepping technique to 
improve the control's dynamic performance. The steps of the 
algorithm and the stability analysis have been explained in 
detail. This method shows how useful it is by letting the stator 
resistance, load torque, and inductors be changed even when 
the parameters for the stator, load torque, and inductors are 
unknown. The simulation results match what was expected, 
demonstrating that the method works. Compared to previous 
research [9], [10–18], and [19], the proposed methodology 
has no static error and the best rising time. It is said that the 
results of this study could be improved by using a new 
algorithm for mobile energy optimization that gives a 
heuristic solution based on the device's tasks [20–23]. The 
authors of [24]  investigate the optimization of processing 
time and computing resources in a mobile edge computing 
node. Lastly, the results of this study show how integrated 
data analysis techniques like ICA-NMF-SVD-PCA [25–27] 
and [28–32] , which are often used in biomedical signal 
processing, can be used with wavelets to make the methods 
even more effective. 
 
 
4. Conclusion 
 
This work highlights numerous significant and outstanding 
outcomes, which can be summed up as follows: 
 
1. The pi controller's method is not impacted by any 

parameters or disturbances in the load torque of a PMSM. 
2. The yardstick provided by the numerical control 

algorithm can handle all parameter uncertainties and 
disturbances. 

3. The numerical resolution can be made in the backstepping 
command, which means that the algorithm can be used in 
real-time with the best execution time.  

This can be exploited in the industrial world, especially in the 
computer industry. electric cars. 
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