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Abstract 
 

Accurately predicting the failure depth of the coal seam floor is an important premise to prevent water inrush from the coal 
seam floor and ensure safe and efficient mining operations. Based on the coal seam floor damage degree data collected 
from various mining areas in China, this study selected six indexes (coal seam mining thickness, coal seam dip angle, 
mining depth, working face slope length, floor damage resistance and presence of a cutting fault) to predict the value of the 
coal seam floor damage depth. Based on Support Vector Machine(SVM) model ,the factor analysis method was applied to 
reduce the dimension and extract the original data variables. The extracted variables were used as the input for the SVM 
model. Afterwards, the Grey Wolf Optimizer (GWO) algorithm was adopted to optimize the parameters C and g, and the 
Factor Analysis(FA)-GWO-SVM coal seam floor failure depth prediction model was established. The reliability of the 
model was verified before proceeding with the investigation. Results indicate that the prediction model of the coal seam 
floor failure depth based on the FA-GWO-SVM method has a good generalization ability and a strong prediction 
performance for the new sample data. Compared with the traditional SVM model and the GWO-SVM model, it has the 
minimum MAPE, RMSE and MAE values. Furthermore, the learning ability, stability and prediction accuracy of the model 
are significantly improved. The model does not only overcome the drawbacks of the traditional prediction methods that do 
not consider the interaction of various factors but also simplifies the input scale of the SVM model. The issue of affecting 
the prediction accuracy due to the difficulty of the parameter optimization in the SVM model is solved using the GWO 
optimization technique, and the model’s prediction accuracy and operational performance are enhanced. This study 
provides an effective method for accurately predicting the failure depth of the coal seam floor. 
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1. Introduction 
 
Coal accounts for 62% of China's total primary energy 
consumption [1]. In recent years, with the gradual depletion 
of shallow coal resources and the continuous increase of deep 
coal mining, the problem of water inrush from the coal mine 
floor has become increasingly problematic. This resulted in a 
large number of casualties and property losses [2]. The failure 
depth of the coal seam floor refers to the maximum depth 
achieved by the mutual penetration of cracks in the floor 
under the action of mine pressure [3]. During the coal mining 
operation, the waterproof rock strata of the coal seam floor 
deform, causing floor heaving and fissures, allowing 
groundwater to easily flow into the mine and causing water 
inrush accidents [4]. As a result, the prediction and research 
of floor failure depth have always been the research focus in 
the field of mine water disaster prevention for years. The 
failure depth of the stope floor is the critical data used to 
evaluate the water resistance of the coal seam floor and design 
a waterproof and safe coal pillar. Accurate prediction of coal 
seam floor failure depth is of great significance to effectively 
prevent floor water inrush and ensure safe and efficient 
mining [5]. 

Several scholars have performed extensive studies on the 
failure depth of coal seam floors. Mirjalili et al.[6] proposed 
a swarm intelligence optimization algorithm to simulate the 
hierarchy and hunting behavior of gray wolves in their natural 
habitat. This algorithm is characterized by simple operations, 
few adjustment parameters, easy programming and etc., but 
the parameter optimization operations need to be taken into 
consideration when applied to the destruction depth of the 
coal seam floor. At present, the most frequently used research 
techniques include the Theoretical analysis method, the 
empirical formula calculation method, the field measurement 
method [7], the numerical simulation test, the physical 
similarity simulation test [8] and the mathematical method. 
Many valuable insights and conclusions have been obtained 
by applying these methods. However, there are still some 
shortcomings. For example, on-site measurement provides 
more accurate results, however, it has some drawbacks, such 
as being time-consuming, labor-intensive, and requiring a 
large capital investment. Theoretical analysis and empirical 
formula calculations show large errors in comparison with the 
actual scenario due to a reduced number of influencing factors. 
On the other hand, due to the relatively ideal model 
configuration and complex parameter debugging, it is often 
difficult to obtain an exact estimate of the bottom plate failure 
depth when using numerical simulation and physical 
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similarity simulation methods. Based on the research results 
of roadway convergence, deformation and failure, Piotr 
Malkowsk et al.[9] suggested that the failure depth of the floor 
was primarily affected by faults. Additionally, due to the 
complex mechanical and physical characteristics of the coal 
seam floor, predicting the depth of the floor water diversion 
failure zone becomes a complicated and nonlinear problem 
influenced by a variety of factors. Islam M R et al.[10] 
explored the stress characteristics and deformation 
surrounding faults in the conveyor band roadway of the 
Balapuria Mine (Bangladesh) through numerical simulations 
by using a boundary element method. They determined that 
the redistribution of mining-induced stress causes significant 
deformation in and around the two faults, and high stress 
concentrates near the ends of the two faults. In contrast, the 
mathematical prediction technique of predicting the failure 
depth of coal seam floor by studying the relationship between 
the elements impacting the failure depth of coal seam floor 
has certain advantages from the perspective of many factors 
[11]. With the advancement of computer technology in recent 
years, the method of establishing prediction models through 
machine learning has also become popular among researchers. 
At present, the common machine learning prediction models 
used in the prediction of floor failure depth mainly include 
grey theory, neural network, support vector machine, etc. On 
this premise, various new prediction models have been 
developed, yielding more accurate forecast results. Among 
them, the Support Vector Machine (SVM) follows the 
principle of structural risk minimization and offers great 
advantages in dealing with problems such as small samples, 
nonlinearity and large dimensions. However, SVM is highly 
dependent on parameter selection and the optimization 
method can be used to optimize the parameters of SVM. Xu 
et al. optimized the parameters of SVM through Particle 
Swarm Optimization (PSO) algorithm and established Least-
Squares Support-Vector Machines (LS-SVM) model for 
predicting the failure depth of coal seam floor based on PSO 
optimization. Zhu et al. [12] and others used the artificial bee 
colony algorithm to optimize the parameters of SVM, and 
established a prediction model of floor failure depth based on 
the combination of the artificial bee colony algorithm and 
support vector machine. Jin et al.[13] developed a 
comprehensive application of the genetic algorithm and PSO 
algorithm to the SVM model, and established the evaluation 
model of coal seam floor damage degree based on Genetic 
Algorithm-Particle Swarm Optimization–SVM (GAPSO-
SVM). The SVM model optimized by these algorithms 
achieved good prediction results in the prediction of coal 
seam floor failure depth [14], however, according to the 
existing research results, the convergence speed of the genetic 
algorithm is slow. The ant colony algorithm has strong 
adaptability to big data samples, but the convergence of the 
algorithm is slow and its implementation is complex. Gray 
Wolf Optimization (GWO) algorithm outperforms PSO 
algorithm, genetic algorithm and other intelligent 
optimization algorithms in global optimization. It has the 
advantages of easy implementation, fast convergence and 
high precision. 

Furthermore, there are many factors influencing the 
failure depth of coal seam floor, the majority of which are 
accompanied by noise, which directly affects the accuracy of 
floor failure depth prediction When using numerous elements 
to construct a prediction model of floor failure depth in the 
past, most of them did not address the impact of the 
overlapping information between the influencing factors on 
the prediction results. 

Considering the above-mentioned research gaps, this 
study uses the unique advantages of SVM in processing small 
samples and nonlinear data and employs the SVM model as 
the main body to predict the failure depth of coal seam floor. 
Firstly, factor analysis is used to reduce the dimension and 
process the influencing factors of coal seam floor failure 
depth, minimizing overlapping information between 
influencing factors. The processed data is used as the input 
vector of SVM. Simultaneously, GWO is used to optimize the 
penalty parameter C and kernel function parameter g in SVM 
in order to improve the fitting ability of the model. Finally, a 
prediction model of coal seam floor failure depth is developed 
based on FA-GWO-SVM. 
 
 
2. Materials and Methods 
 
2.1 Factor analysis 
Factor analysis is a kind of multivariate statistical analysis 
technique. It is an advanced version of the principal 
component analysis method. It is a statistical method that uses 
a few factors to describe the relationship between numerous 
indicators or factors and uses a few factors to reflect the 
majority of the information of the original data [15]. Factor 
analysis is the best synthesis and simplification of 
multivariable plane data. Based on the principle of ensuring 
the least loss of data information, the dimensionality of high-
dimensional variable space is reduced, which not only 
reasonably explains the correlation between factors but also 
simplifies the observation system [16]. According to the 
correlation matrix of variable x, the original P variables can 
be expressed as the linear combination of M (m < p) new 
variables, and its mathematical model is 
 

        (1) 

                     
It can be expressed in the matrix form as, 
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a special factor;  is a load of common factor and A is the 
load matrix of common factor. 

The factor analysis has been conducted based on specific 
steps which are as follows [17-18]: 

1) The data with Z-score are standardized. 
2) The covariance matrix, i.e. correlation matrix R, is 

calculated according to matrix X. 
3) According to the covariance matrix, the eigenvalues 

and their corresponding eigenvectors are calculated. 
4) The cumulative percentage of variance of the previous 
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principle based on which the number of common factors is 
determined. 

5) The factor is rotated and the factor load matrix A is 
calculated. 

6) The factor score model is then established and solved. 
 
2.2 SVM regression algorithm 
Support vector machine (SVM) is a regression method based 
on statistical learning theory. The fundamental basis of this 
method is to map the input data (low dimensional space) into 
a high-dimensional feature space and then construct a kernel 
function to form the linear regression function [19]. It is 
capable of solving linear regression and nonlinear regression 
problems. It has unique advantages in solving small sample, 
nonlinear and high-dimensional problems. 

Suppose the training sample is 
. For the prediction of floor 

failure depth, xi in the sample is the influencing factor and  
is the effect quantity. SVM will have to establish an optimal 
functional relationship  through a given sample to 
fit the relationship between the influence quantity and the 
effect quantity. The prediction of floor failure depth is a 
nonlinear problem, which can be mapped to high-dimensional 
space as a linear problem. The regression function is 
expressed as: 

 
                       (4)  

 
Where: is the inner product of vectors  and 

;  is the regression coefficient; is the mapping 
function from input space to feature space; b is the threshold. 

Here, the relaxation variable  is introduced to 
solve w and b. according to the SRM criterion, equation (4) is 
transformed into a convex quadratic programming problem: 
 

                     (5) 

 
 

         (6) 

 
 

Where, the regularization parameter C is the penalty 
factor; ε is the insensitive loss function. 

The Lagrange function solution formula (6) is introduced 
to convert the inner product operation of high-dimensional 
space into the original two-dimensional space calculation 
through kernel function , including: 

 

                            (7) 

 
The regression function of the obtained SVM regression 

model is: 
 

               (8) 

 

Where,  and  are Lagrange multipliers and weight 
vectors required for optimization respectively. If is not 

zero or  is not zero, it means that this sample is a support 
vector. 

In the case of nonlinearity, the general kernel function is 
Gaussian radial basis function (RBF), and its expression is as 
follows (9) 
 

            (9) 
 

Where,  is the gamma parameter function setting (if 
 is the number of attributes, g defaults to ). 

The values of the penalty factor C and the kernel 
function parameter g in the support vector machine model 
have a significant impact on the accuracy of training and 
prediction data [20]. The tolerance of error is represented by 
penalty factor C. Too large or too small values of C can result 
in either over fitting or under fitting which is a bad impact. 
After mapping to the new feature space, parameter g 
determines the distribution of data implicitly. The size of g is 
proportional to the number of support vectors. The prediction 
ability of SVM is visibly influenced by penalty factor C and 
kernel function parameter g. This necessitates the 
optimization of the parameters, C and g, to obtain a support 
vector machine with high prediction accuracy. 
 
2.3 GWO algorithm 
 
2.3.1 Overview of GWO algorithm 
GWO algorithm is a swarm intelligence algorithm that 
constantly calculates the optimal value in an iterative way by 
replicating the hierarchy and predation strategy of wolves. 
The algorithm seeks the optimal position among multiple 
optimal solutions, has strong global search ability, effectively 
reduces the probability of falling into the local extremum, and 
requires fewer parameters to be adjusted. Further, it has the 
advantages of fast convergence and high precision. At present, 
it has been widely used in the engineering field. Existing 
research results show that the GWO algorithm performs better 
than the PSO algorithm, genetic algorithm, and other 
intelligent optimization algorithms in global optimization. 
The life habits of gray wolves are mostly gregarious, with 
obvious social attributes, and there is a strict hierarchy within 
them. According to the social level, individuals in the gray 
wolf group can be divided into four categories, thus forming 
a hierarchical pyramid structure, as shown in Figure 1. The 
wolf on the first floor of the pyramid is the leader wolf, which 
is defined as . They have the right to decide all major issues 
of the whole wolf pack. The wolf on the second layer is 
represented by , who assists the leader to make decisions. 
The wolf on the third layer is represented by . They are 
responsible for sentry, reconnaissance and other tasks. The 
wolf at the lowest level is represented by . In terms of 
activity, the clan is always under the command of the first 
three levels of gray wolf. When hunting the prey, grey wolves 
divide their predation process into three stages: search, 
encirclement and attack. , and  wolves can more 
accurately grasp the position of their prey. Whereas, ω, under 
the command of the first three wolves, jointly complete the 
task of herding up the prey. 
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Fig. 1.  Experimental wolf rank pyramid  

 
2.3.2 Mathematical model of GWO algorithm 
The gray wolf population size is defined as N and the search 
space dimension is D. The gray wolf population can be 
expressed as: ,in which the position of 

the ith gray wolf can be expressed as , 
and the position of each gray wolf represents a solution of the 
problem. The gray wolf with the best current position is 
represented as α, the second best gray wolf is represented as 

, the third best gray wolf is represented as , and the 
remaining gray wolves are represented as . The position 
corresponding to the globally optimal grey e wolf of the 
algorithm is the position of the prey. Let the distance between 
wolves and prey be D, then [24-25]: 
 

                     (10) 
 

                      (11) 
 

                               (12) 
 

                                        (13) 
 

Where, t is the number of iterations;  is the location 

of prey;  is the position of the t-generation gray wolf;  
 is the position of the   gray wolf individual, so 

as to update the gray wolf position;  and  are coefficient 
vectors. By adjusting these two vectors, wolves can reach 
different positions around prey; is the number that 
decreases linearly from 2 to 0 in the iterative process;  and 
y are random numbers between [0~1]. 

After each generation is updated, the first three solutions  
 with the lowest fitness value in 

history are selected as the position of current generation 
through the calculation of fitness value. 

The next generation of gray wolf individuals takes  as 
the traction and update the position through equation (14). 
The predation process of gray wolf group is shown in Figure 
2. 

 

          (14) 

 
Fig.2. Location update during wolf hunting 
 
2.4 FA-GWO-SVM model 
FA-GWO-SVM model uses the SVM model as its main body. 
After determining the factors influencing the depth of water 
flowing through the fracture zone of the coal seam floor, 
factor analysis and processing are performed on the original 
sample data. A group of new variables is then extracted that 
can reflect the majority of the information of the original data. 
This will minimize the redundant information and noise, 
eliminate the interference of correlation between various 
influencing factors on the prediction results, and optimize the 
input variables of subsequent SVM models. The new 
variables generated from factor analysis are then fed into the 
SVM algorithm for training, and the GWO algorithm is used 
to optimize the penalty factor C and kernel function parameter 
g of SVM. The optimized parameters, C and g, are used in 
modeling, following which the test set is predicted, and the 
prediction results are analyzed. The flow chart for 
establishing the FA-GWO-SVM model is shown in Figure 3. 

 
Fig.3.  Flow chart of FA-GWO-SVM model 
 
 
3. Result Analysis and Discussion 
 
3.1 Determining influencing factors and data sources 
 
3.1.1 Analysis of the influencing factors of failure depth of 
coal seam floor 
On completion of coal seam mining, the floor rock mass gets 
damaged. The floor in front of the working face is affected by 
concentrated stress, which exceeds the ultimate strength of 
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floor rock mass and causes floor damage. The prediction of 
the depth of water flowing through the failure zone of the 
floor is a complex and nonlinear problem that is influenced 
by many factors [5]. In general, the failure depth of the floor 
is mainly affected by stress conditions, surrounding rock 
properties and geological structure [13]. The restrictive 
factors of stress conditions include mining depth, coal seam 
inclination, mining thickness, working face slope length, 
advancing speed, and pressure step. The natural conditions of 
surrounding rock are primarily the failure-resistance ability of 
floor rock which includes rock strength, rock combination, 
and original fracture rate. The geological structure conditions 
mainly consider whether there is a cutting through fault or 
fracture zone in the working face. The presence of cutting 
through fault or fracture zone in the floor has a significant 
impact on the failure of the floor. The factors affecting the 
failure depth of the bottom plate are as follows: 

1) Mining depth: With the increase in mining depth, the 
self-weight of the overlying strata increases and the original 
rock stress of the coal seam increases. Further, the stress 
concentration of the floor becomes more obvious after mining, 
and the failure depth of the floor increases as well [21]. 

2) Coal seam dip angle: The dip angle of the coal seam 
affects the stress distribution and stress concentration of the 
floor, which in turn influences the failure depth of floor. 
Within a certain range, the greater the dip angle of the coal 
seam, the more obvious the mine pressure is, and the deeper 
the damage depth of the coal seam floor. This is because the 
greater the dip angle of the coal seam, the greater the 
tangential stress of the coal pillar on the side of the working 
face on the floor, and squeezing the floor easily causes it to 
bulge and break [5]. 

3) Thick mining: The greater the mining thickness of the 
coal seam, the bigger the deformation range of the roof, the 
greater the supporting stress that the coal wall and floor 
should bear, and the greater the damage depth of the floor [22]. 

4) Inclined length of working face: Within a certain range, 
the longer the inclined length of the working face, the larger 
the scope of the goaf. This in turn increases the range of rock 
strata in which the roof moves causing higher mine pressure 
and subsequent damage to the coal seam floor at higher depth. 

On the other hand, as the length of the working plane 
increases, so does the likelihood of involvement of the 
working plane [12]. 

5) The failure-resistant ability of coal seam floor: This 
index is a comprehensive reflection of the development of 
primary fractures in the floor, rock stratum combination, and 
rock strength. Under the same conditions, the stronger the 
failure-resistant ability of the floor, the less developed the 
primary cracks of the floor, the greater the rock strength, the 
less easy it is to destroy the floor and hence, the smaller the 
failure depth of the floor [5, 22]. 

6) Another influencing condition is Whether or not the 
working face has a cut-through fault or fracture zone. When 
there is a cut through fault or fracture zone in the coal seam 
floor, a floor fissure is developed and the overall strength is 
reduced. The maximum failure depth occurs near the fault 
zone or fracture zone. The failure depth of the floor near the 
fault or fracture zone increases due to the presence of a weak 
surface [23]. 
 
3.1.2 Research data sources 
Six indexes are chosen as the key controlling factors affecting 
the failure depth of the coal seam floor based on prior study 
findings and the concepts of easy acquisition and unified 
quantification of influencing factor data [14,23]. These 
factors are assigned a nomenclature as follows: 
Mining depth: X1 

Coal seam dip angle: X2 
Mining thickness: X3 
Inclined length of working face: X4 
Damage resistant ability of coal seam floor: X5  
Whether there is a cutting fault or fracture zone in the working 
face: X6 

Cut through fault or fracture zone in the working face is 
represented by 1, and no cut through fault or fracture zone in 
the working face is represented by 0. Data of coal seam floor 
failure depth from various mining areas in China are selected 
as sample data for the analysis and are presented in Table 
1[23]. Among them, 1-27 groups of measured data are used 
as training samples and 28-30 groups are used as test samples 
to verify the prediction effect of the model on new samples. 

 
Table 1.  Measured data of failure depth of coal seam floor in mining area 

Sample 
number 

Mining 
depth 

 

Coal seam dip 
angle 
  

Mining 
thickness 

X3/m 

Inclined 
length of 

working face 
 

Damage resistant 
ability of coal 

seam floor 
  

  

Whether there is a cutting 
fault or fracture zone in 

the working face 
  

Bottom 
plate 

failure 
depth y/m 

1 123 15 1.1 70 0.2 0 7 
2 123 15 1.1 100 0.2 0 13.4 
3 145 16 1.5 120 0.4 0 14 
4 130 15 1.4 135 0.4 0 12 
5 110 12 1.4 100 0.4 0 10.7 
6 148 18 1.8 95 0.8 0 9 
7 225 14 1.9 130 0.8 0 9.75 
8 308 10 1 160 0.6 0 10.5 
9 287 10 1 130 0.6 0 9.5 

10 300 8 1.8 100 0.4 0 10 
11 230 10 2.3 120 0.6 0 13 
12 230 26 3.5 180 0.4 0 20 
13 310 26 1.8 128 0.2 0 16.8 
14 310 26 1.8 128 0.2 1 29.6 
15 259 4 3 160 0.6 0 16.4 
16 320 4 5.4 60 0.6 0 9.7 
17 520 30 0.94 120 0.6 0 13 
18 400 9 7.5 34 0.4 0 8 
19 400 9 4 34 0.4 0 6 
20 227 12 3.5 30 0.4 0 3.5 
21 227 12 3.5 30 0.4 1 7 
22 900 26 2 200 0.6 0 27 

1 /mX 2 /X °
4 /mX 5X

6X
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23 1000 30 2 200 0.6 0 38 
24 200 10 1.6 100 0.2 0 8.5 
25 375 14 2.4 70 0.6 0 9.7 
26 375 14 2.4 100 0.6 0 12.9 
27 118 18 2.5 80 0.2 0 10 
28 320 4 5.4 100 0.6 0 11.7 
29 400 9 4 45 0.4 0 6.5 
30 327 12 2.4 120 0.6 0 11.7 

 
3.2 Establishment of prediction model 
 
3.2.1 Factor analysis on data preprocessing 
In this study, factor analysis (FA) was performed on 27 
groups of training sample data from Table 1 using SPSS26 
software. Firstly, KMO (Kaiser Meyer Olkin) test statistics 
and the Bartlett's test are used to assess the correlation 
between indicators to determine whether the original 
variables are suitable for factor analysis [24-25]. The results 
are shown in Table 2. The measured value from KMO is 
0.518 > 0.5. From the result of Bartlett's test, the sig value is 
found to be 0.002 which is less than 0.05, indicating that the 
selected indicators and measurement data are suitable for 
factor analysis [25-26]. 
 
Table 2. KMO and Bartlett test 

Kmo sampling suitability quantity 0.518 

Bartlett's test 

Approximate chi 
square 36.231 

freedom 15 
Significance 0.002 

 
Table 3 displays the results of the correlation analysis 

conducted between the six main control factors which affect 
the failure depth of coal seam floor in 27 sets of training 
sample data. It can be seen from Table 3 that there is a definite 
correlation between various factors, among which the 
correlation coefficients between , and  are 0.473 
and 0.438, respectively. The correlation coefficient between 

 and  is 0.507, whereas, the correlation coefficient 
between  and  is -0.481. This indicates that there is a 
strong correlation between these factors. Due to the existence 
of information redundancy, the prediction of the failure depth 
of the coal seam floor will become more complex, making 
prediction accuracy difficult to guarantee. Thus, it is 
necessary to use the factor analysis method to treat the 
relevant variables as new comprehensive variables that are 

low dimensional, uncorrelated and can retain most of the 
information of the original variables. 
 
Table 3. Correlation matrix of main control factors 

       

 1 0.473 0.096 0.438 0.333 -0.053 

 0.473 1 -0.336 0.507 -0.093 0.143 

 0.096 -0.336 1 -0.481 0.027 0.054 

 0.438 0.507 -0.481 1 0.264 -0.174 

 0.333 -0.093 0.027 0.264 1 -0.252 

 -0.053 0.143 0.054 -0.174 -0.252 1 

 
Principal component analysis was used to extract factors 

for  using the SPSS26 software, 
and four principal components were 
extracted. The explanation of the total variance is given in 
Table 4. The interpretation degree of the extracted main 
components to the original variables reaches 90.02 percent > 
80 percent, as shown in Table 4. After rotating by the 
maximum variance method, the score coefficient matrix of 
each component is obtained, as shown in Table 5. Based on 
this, the relationship expression between the extracted four 
new principal components and the original variables is 
obtained as follows: 
 

     (15) 

   
After standardizing and substituting the original data of 

training and test samples into equation (15), four new 
variables are calculated. These four new variables are then 
used as the input variables for the SVM model. 

 
Table. 4. Interpretation of total variance 

Component 
Initial eigenvalue Extract the sum of squares of loads 

Total Percentage variance accumulate % Total Percentage 
variance Accumulate  % 

1 2.188 36.475 36.475 2.188 36.475 36.475 
2 1.394 23.24 59.715 1.394 23.24 59.715 
3 1.134 18.896 78.611 1.134 18.896 78.611 
4 0.686 11.439 90.05 0.686 11.439 90.05 
5 0.329 5.491 95.541    
6 0.268 4.459 100    

Table 5. Component score coefficient matrix 
 Component 1 Component 2 Component 

3 
Component 

4 
 

0.573 0.311 0.105 -0.037 
 

0.491 -0.082 -0.32 0.055 
 

0.216 0.733 -0.035 -0.069 
 

0.204 -0.352 0.141 -0.081 
 

-0.124 -0.071 0.911 0.173 

 
-0.028 -0.045 0.19 1.011 

 
3.2.2 Establish SVM prediction model optimized by GWO 
algorithm 
The training sample and test sample data  
processed by factor analysis are used as the input data. The 
radial basis kernel function is selected and the GWO 
algorithm is used to optimize the parameters of the SVM 
model. The optimal penalty factor C and kernel function 
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parameter g is then determined. The initial parameters of the 
GWO algorithm are set as follows: the number of wolves is 
20, the maximum number of iterations is 20, and the 
optimization range of SVM parameters is set as [0,100]. 

The Mean Square Error (MSE) is selected as the fitness 
function of the model, The fitness function is an index that 
describes the parameter performance as well as an evaluation 
standard that determines whether the current target parameter 
value is the best [27]. MSE is defined as the expected value 
of the square of the difference between the predicted and 
measured. When MSE is the minimum value, it is considered 
that the target parameter value reaches its optimal standard. 
The SVM model is optimized by the GWO algorithm. The 
GWO-SVM model is trained using the training sample set, 
then the output is predicted with the help of the test sample 
set, and finally, the MSE is calculated. When the MSE reaches 
the minimum value, the model reaches the optimum. The 
whole process is implemented using MATLAB 2018b 
software. SVM is simulated using libsvm toolbox for design. 
The kernel function is defined using the radial basis function 
which uses the above-mentioned GWO algorithm to optimize 
the penalty parameter C and kernel function parameter g in 
SVM model until the iteration termination conditions are met. 
The fitness change curve during training is shown in Figure 4. 
It is observed that with the increase in the number of iterations, 
the optimal fitness value gradually decreases. When the FA-
GWO-SVM model is iterated 10 times, the algorithm tends to 
be stable and the convergence accuracy is high. The 
parameters of SVM optimized using GWO algorithm are C = 
52.8184 and g = 12.5487 respectively. Herein, the MSE value 
of the training sample is 9.47793e-05, and the goodness of fit 
R2 = 0.999772. The MSE value of the test sample is 
0.00573678, and the goodness of fit R2 = 0.872324. The 
predicted values of the model for training samples and test 
samples are shown in Figure 5 and Table 6. 

 

 
Fig. 4. Convergence curve of FA-GWO-SVM model 
 
3.3 Model effect evaluation 
To validate the optimization effect of the FA-GWO-SVM 
model, the traditional SVM model and GWO-SVM model are 

developed based on the data of training samples and test 
samples, and the prediction effects of each model are 
compared. Figure 5 shows the prediction outcomes of each 
model for training data, whereas Table 6 displays the 
prediction results for test samples. It can be seen from Figure 
5 that the fitting effect of the FA-GWO-SVM model and 
GWO-SVM model on training samples is better than that of 
the traditional SVM model. Further, it can be seen from Table 
6 that among the three test samples, FA-GWO-SVM model 
delivers two best prediction results, whereas, GWO-SVM 
model and traditional SVM model each provide one best 
prediction result. 
 

 
Fig. 5. Prediction results of each model using training samples 
 
 

In order to quantitatively evaluate the prediction 
performance of the model, the Mean Absolute Percentage 
Error (MAPE), Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) is introduced to compare the 
prediction accuracy of the model [28]. The smaller the RMSE 
index, the better the regression ability, learning ability and 
stability of the model. The smaller the MAE and MAPE index 
values, the higher the prediction accuracy of the model. The 
mathematical expression of each index is as follows [29]: 
 

              (16) 

 

                (17) 

 

                       (18)
 

 
Table 6. Predicted values of three models using test samples 

Test samplenumber Measuredvalue/m SVME 
stimate/m 

GWO-SVME 
stimate/m FA-GWO-SVMEstimate/m 

28 11.7 14.0456  13.1543  11.1399  
29 6.5 6.8435  8.1350  6.3010  
30 11.7 13.7078  13.1568  13.8835  
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The comparison of the prediction performance results of 

the three models using the test samples is presented in Table 
7. Table 7 shows that FA-GWO-SVM model has the smallest 
MAPE, RMSE and MAE values, indicating that it is capable 
of reducing the prediction error and improving the fitting 
degree with the actual data. Thus, its prediction effect is 
significantly better than the traditional SVM model and 
GWO-SVM model. Further, compared with the traditional 
SVM model, the GWO-SVM model has smaller RMSE and 
MAE index values, but larger MAPE values. In general, the 
prediction effect of the SVM model optimized with the GWO 
algorithm is better than that of the traditional SVM model. 
FA-GWO-SVM model performs factor analysis and 
processing on the original data. It extracts the comprehensive 
components that have a significant impact on the damage 
depth of the bottom plate eliminating the noise and 
information redundancy in the data. The information is then 
reflected by the data more objectively and effectively, 
reducing the input scale of SVM model through 
dimensionality reduction. This improves the operation 
efficiency of the model to a certain extent. The values of the 
three evaluation indices are reduced further when compared 
to the GWO-SVM model, and the model's learning ability, 
stability, and prediction accuracy are enhanced ultimately. 
The effectiveness of FA-GWO-SVM model is verified, which 
shows that the model has good prediction accuracy and 
operation efficiency and that it fully meets the actual needs of 
coal seam floor failure depth prediction. 
 
Table 7. Comparison results of prediction performance of 
each model on test samples 

Model MAPE RMSE MAE 
SVM 14.16% 1.7936 1.5657 

GWO-SVM 16.68% 1.5177 1.5154 
FA-GWO-SVM 8.84% 1.3065 0.9809 

 
3.4 Discussion 
The prediction of failure depth of coal seam floor is a complex 
and nonlinear problem affected by many factors. Based on the 
measured data of coal seam floor failure depth collected from 
many mining areas in China, this study uses the advantages 
of SVM in processing small samples and nonlinear data. 
Herein, the SVM model is made the main body and the factor 
analysis method is used to reduce the dimension and extract 
the original data variables. The factor analysis methods then 
use the extracted new variables as the input of SVM model, 
eliminating the noise and information redundancy between 
data and avoiding the influence of correlation between 
variables on the prediction results. Considering that the 
prediction ability of the traditional SVM model is 
significantly affected by the penalty factor C and kernel 
function parameter g, GWO algorithm is used to optimize the 
parameters of SVM model, C and g. This effectively avoids 
the problems of low search efficiency, poor convergence and 
the possibility of falling into local extremum. Among the 
SVM parameter optimization methods, GWO method has the 
advantages that traditional methods do not have in the global 
search of complex search space. It can accurately find the 
optimal SVM model parameters C and g. Finally, the 
prediction model of coal seam floor failure depth based on 
FA-GWO-SVM is developed. The reliability of the model is 
verified by comparing the three model performance 
evaluation parameters the model with that of the traditional 
SVM model and GWO-SVM model. This study provides a 
novel method for accurately predicting the failure depth of a 
coal seam floor. 

However, it should be noted that the depth of floor 
collapse is affected by a variety of conditions. This study 
solely takes into account six factors that have a direct impact 
on the depth of floor failure which are coal seam mining 
thickness, dip angle, mining depth, inclined length of working 
face, floor anti-failure ability, and the presence of cutting 
through fault or fracture zone. The evaluation indexes 
affecting the depth of floor failure are not comprehensive. For 
example, according to relevant research, the advancing speed 
of working face, the pressure step, coal mining method and 
roof management method also have a certain impact on the 
failure depth of the floor. Simultaneously, when considering 
the influence of geological structure factors on the failure 
depth of the coal seam floor, the deciding factor is whether 
there is a cutting through fault or fracture zone in the working 
face. The nature, fall and inclination of the cutting through 
fault also have an impact on the failure depth of the coal seam 
floor, however, the extent of the impact has not been 
investigated in detail. In the future, a more comprehensive and 
detailed evaluation index system should be established, and 
more measured data samples should be collected to further 
improve the prediction model of coal seam floor failure depth. 
The results of the present study show that the prediction 
performance of the GWO-SVM model optimized by the 
GWO algorithm is improved to a certain extent compared to 
the traditional SVM model. Further, the prediction 
performance of the FA-GWO-SVM model after factor 
analysis is improved compared with the GWO-SVM model. 
In the future, the prediction performance of the FA-GWO-
SVM model should be compared to that of other optimization 
models (such as genetic algorithms, particle swarm 
optimization algorithms, etc.). Further discussion and 
verification of the prediction effect of the FA-GWO-SVM 
model need to be done. 
 
 
4. Conclusions 
 
Based on the measured data of coal seam floor failure depth 
collected from various mining areas in China, factor analysis 
was performed to reduce the dimension of the original data 
and eliminate the influence of the correlation between factors 
on the prediction results. GWO algorithm is used to optimize 
the parameters, C and g, of the SVM model. Finally, a 
prediction model of coal seam floor failure depth based on 
FA-GWO-SVM is established. The main conclusions are as 
follows: 

1) The dimension of the measured data of the floor failure 
depth is reduced using factor analysis. The six factors 
affecting the floor failure depth are transformed into four new 
variables that can reflect most of the original data 
information. These four new variables are used as the input of 
the SVM model, which eliminates the noise and information 
redundancy in the data. It reduces the input scale of the SVM 
model and improves the prediction accuracy and operation 
efficiency of the model. 

2) GWO algorithm is used to optimize the parameters, C 
and g, in the SVM model. The optimized parameters of the 
support vector machine are found to be C = 52.8184 and g = 
12.5487, to obtain an SVM with high prediction accuracy. 

3) The prediction performance of the FA-GWO-SVM 
model, traditional SVM model and GWO-SVM model using 
test samples are quantitatively compared. Three indexes are 
used in the comparison, namely, Mean Absolute Percentage 
Error (MAPE), Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). The results show that the FA-GWO-
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SVM model has the smallest MAPE, RMSE and MAE values, 
indicating that the prediction performance of the FA-GWO-
SVM model is significantly better than that of the traditional 
SVM model and GWO-SVM model. 

    4) The prediction model of coal seam floor failure depth 
based on FA-GWO-SVM has good generalization ability and 
strong prediction performance. It can thus meet the actual 
needs of coal seam floor failure depth prediction in modern 
mine production. 

The obtained conclusions can effectively improve the 
prediction accuracy of the destruction depth of the coal seam 
floor. In the future, a more comprehensive prediction index 
system and a prediction model with excellent forecasting 
performance will be developed to further improve the 
prediction accuracy of the destruction depth of the coal seam 
floor. The research conclusions can accurately infer the 

destruction depth of the coal seam floor and provide guidance 
for mining safety procedures. 
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