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Abstract 
 

In computer-aided diagnosis, breast cancer classification accuracy of artificial intelligence (AI) method might be 
influenced by imbalanced classification samples. Model training efficiency also decreases with the increase in data size. 
To decrease the influences of sample classification imbalance and increase data size on breast cancer classification 
efficiency, this study proposed a triple-negative breast cancer classification algorithm (TNBCC) based on similarity 
query. Similar breast cancer feature data could be stored in a similar region by establishing the TNBCC index. A pruning 
algorithm was designed based on the TNBCC index, which decreases similarity measurement with nodes of the index 
tree significantly during data input and query. Users could find data similar to the query object quickly and accurately 
through the TNBCC index using pruning algorithm, and they could obtain the molecular subtype of the query object 
according to the searched data. Results demonstrate that, on the real dataset provided by the Affiliated Tumor Hospital of 
Xinjiang Medical University, the TNBCC algorithm decreases the influences of sample classification imbalance on 
accuracy effectively compared with the existing AI algorithm, and the classification accuracy reaches 91%. Given the 
mass high-dimensional data, it takes 49 s to build the TNBCC index tree, with an efficiency higher than that of the 
existing AI algorithm. This study provides a good reference to improve the performances of breast cancer classification 
algorithm. 
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1. Introduction 
 
Breast cancer is a common cancer in woman around the 
world. According to statistics of International Agency for 
Research on Cancer of the World Health Organization, the 
global population diagnosed with breast cancer was about 
2.26 million in 2020, which was higher than the population 
diagnosed with lung cancer (about 60,000) [1]. With the 
continuous development of medical imaging technologies 
and computer-aided diagnosis, determining the molecular 
subtype of breast cancer by artificial intelligence (AI) 
technology becomes the current focus of study [2]. Since the 
AlexNet model has won the championship of the ImageNet 
Competition in 2012, deep learning algorithm has been 
studied continuously in the field of image processing [3]. In 
the medical field, deep learning algorithm is often applied to 
classification tasks of molecular subtype of breast cancer [4]. 
Ha R et al. predicted the molecular subtype of breast cancer 
by using deep learning [5]. Data with few classifications 
were input in multiples to decrease the influences of 
classification imbalance in the dataset, and the prediction 
accuracy was 70%. Jiang et al. trained the ResNet50 model 
on single center dataset, and its accuracy on two external test 
sets were 88% and 92%, respectively [6-7]. 

With the image data accumulation of breast cancer, 
directly using mass data with multi-type features is difficult. 

For example, scholars usually balanced sample classification 
by using oversampling and undersampling methods under 
situations of sample classification imbalance [8]. AI 
algorithm also costs abundant memory and central 
processing unit (CPU) (or graphics processing unit: GPU) 
resources and time in the model training stage. For instance, 
convolutional neural network takes 43 s to train 300 pieces 
of 35-dimensional data in an environment with Intel(R) Core 
i5-5200U 2.20 GHz CPU and 8G memory. 

On this basis, sample classification imbalance and 
improvement of model training efficiency of AI algorithm 
have been widely reported [9-11]. However, sample 
classification imbalance is still processed using sampling 
and synthesis method on real dataset. This approach still has 
a disadvantage of long training time for mass data 
classification model. 

To address this problem, the molecular subtype 
classification algorithm of breast cancer based on similarity 
query [12] was proposed. First, features of breast cancer 
were extracted from relevant historical images in hospitals 
by using radiomics technology [13]. Then, they were stored 
in a database by the triple-negative breast cancer 
classification (TNBCC) algorithm. Next, similarity of query 
objects was measured according to radiomics features of 
breast cancer through the TNBCC algorithm and data in the 
database. This way aims to search the objects with the 
shortest feature data distance to the query objects and return 
the molecular subtype of breast cancer. The TNBCC 
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algorithm classifies molecules of breast cancer according to 
similarity query of radiomics features of breast cancer for 
high accuracy of molecular subtyping. Thus, references to 
improve the performances of the algorithm for breast cancer 
classification are provided. 
 
 
2. State of the art  
 
Nowadays, scholars are actively studying the molecular 
subtype of breast cancer based on AI algorithm. 
Convolutional neural network is a common method of image 
classification which trains model after processing of the 
original data [14-15]. This method requires multiple 
preprocessing of data, which takes a lot of time. Zhu Z et al. 
proved through an experiment that the GoogLeNet model 
was superior to other algorithms in terms of luminal A-type 
breast cancer classification [16-17]. However, the dataset of 
this study had imbalance in molecular subtypes of breast 
cancer, which influenced the prediction accuracy of deep 
learning algorithm significantly. Yang et al. trained the 
breast cancer classification model based on magnetic 
resonance imaging (MRI) by using the traditional 
convolutional neural network and convolutional long short-
term memory (CLSTM), and the accuracy of CLSTM 
reached 91% [18]. This algorithm took a long time and 
consumed high software and hardware resources for model 
training on mass datasets, and the experiment was only 
applicable to MRI images. Moon et al. trained breast cancer 
models by using different deep learning models and chose 
the optimal models as the reference model for classification; 
then, the images were classified through ensemble learning 
method [19]. Virmani et al. classified ultrasound images of 
breast cancer by combining algorithms such as VGG19 and 
GoogleNet and transfer learning [20]. This algorithm 
combined different models to improve the accuracy of 
corresponding datasets in this study, which was inapplicable 
to different dataset. Since the radiomics was proposed, 
cancer features were transferred into measurable data, which 
built a bridge between descriptive and forecasting models of 
molecular subtype of breast cancer [21-22]. However, the 
forecasting efficiency of models might be influenced if all 
features were applied to the model training of machine 
learning algorithm. Thus, features have to be selected before 
model training. The combination of breast cancer radiomics 
features and machine learning algorithm becomes the major 
research topic at present [23]. Li W et al. classified breast 
cancer molecules based on extracted feature data through 
logic regression, random forest, gradient-boosted tree, and 
support vector machines (SVMs) [24]. For high-throughput 
extraction features of breast cancer in MR, Hui et al. chose 
radiomics features related with breast cancer molecular 
subtypes [25]. Fan et al. extracted cancer features through 
contrast-enhanced MRI (DCE-MRI) of breast cancer and 
predicted molecular subtypes of breast cancer using multi-
class logistic regression classifier [26]. Laajili R et al. 
classified benign and malignant breast cancers by using 
feature selection and machine learning model, and the 
classification accuracy was 85% [27]. Different molecular 
subtypes of breast cancer become a factor that influences the 
accuracy of this algorithm. Preprocessing should be 
conducted before model training to improve accuracy of the 
model for decreasing the influences of data sample 
classification imbalance and abnormal values [28-29]. 

However, this method still has poor performances in 
radiomics of hybrid imaging. The abovementioned analyses 
on radiomics features of breast cancers have the problem of 
classification sample imbalance. 

The aforementioned studies focus on breast cancer 
classification, but few works are available on increasing 
utilization of source data, decreasing generation of 
synthesized data, and improving training efficiency of breast 
cancer classification model. In this study, an ultrasound 
breast cancer classification method based on similarity query 
was proposed. It classifies breast cancers by searching 
feature data which are the closest to the query object through 
similarity query. Based on improvement in radiomics feature 
data utilization and accuracy of breast cancer, it further 
increases similarity query efficiency by building the 
similarity index and pruning algorithm. 

The remainder of this study is organized as follows. 
Section 3 introduces definitions needed by TNBCC of breast 
cancer based on similarity query. Meanwhile, production of 
the TNBCC index structure during inputting of radiomics 
feature data of breast cancer and TNBCC process based on 
similarity query are introduced. Section 4 analyzes the 
experimental results. Section 5 summarizes the conclusions. 
 
 
3. Methodology  

 
The definitions needed to build the TNBCC index were 
introduced first in this study, and they are the foundation to 
build the TNBCC index tree. Next, the construction of the 
TNBCC index tree was described. Finally, similarity query 
of radiomics feature data of breast cancer was realized 
through TNBCC index to conduct molecular subtyping of 
breast cancers. 
 
3.1 Definitions related with the TNBCC index 
Definition 1: Extraction of ultrahigh-dimensional ultrasound 
radiomics feature data of breast cancer. Radiomics features 
included shape features, fusion and fractal features, first-
order histogram features, and texture features. The ultrasonic 
image of breast cancer and corresponding mask pattern of 
breast cancer were given. The given ultrasonic image of 
breast cancer was filtered using different filters, and the 
filtered image may produce n images. A total of n*m (m is 
the number of extracted cancer features) of breast cancer 
features were extracted through different filtering images. 

For example, breast cancer features were extracted using 
pyradiomics [30]. Ultrasound images of breast cancer and 
corresponding mask pattern are shown in Figs. 1(a) and 1(b), 
respectively 

Next, Harr wavelet processing was performed to Fig. 
1(a), which produced four different filtering images (Fig. 2). 
Subsequently, images were processed using Original, 
Wavelet, LoG, Square, SquareRoot, Exponential, Gradient, 
and LocalBinaryPattern2D filters (all can produce one 
filtering result except that wavelet can produce four filtering 
results). Finally, First Order Statistics (18 features), Gray 
Level Co-occurrence Matrix Features (GLCM, 24 features), 
Gray Level Run Length Matrix Features (GLRLM, 16 
features), and Gray Level Dependence Matrix Features 
(GLDM, 14 features) were extracted, which produced a total 
of 3960 (5*11*72) features. Some data are shown in Table 1. 
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(a) Original ultrasonic image of breast cancer                                                         (b) Corresponding mask pattern 

Fig. 1. Ultrasonic image of breast cancer 
 

 
Fig. 2. Harr wavelet processing results of original ultrasonic images of breast cancer 
 

Table 1. Some radiomics feature data of breast cancer 

o_original_firstorder_Mean o_squareroot_firstorder_Uniformity 
cA_lbp-
2D_glrlm_RunLength 
NonUniformity 

cH_square_ 
firstorder_Variance 

cH_wavelet-
HL_glrlm_ 
RunPercentage 

49.06202 0.171907 6.77663 1.314174 0.559408 
47.69668 0.164514 6.92821 1.580532 0.555886 
61.5427 0.188621 8.2809 0.275911 0.547224 
58.32409 0.290501 5.979683 0.116707 0.577135 
 
 

Definition 2: Euclidean distance. The given dataset (S) 
and two groups of data  and 

 (where ,  were used as 
dimensions of data;  and  ( ) numerical values 
corresponding to feature ith in data objects  and ). The 
measuring formula of Euclidean distance is 

. 
Definition 3: Molecular subtypes of radiomics feature 

data of breast cancer based on similarity query. Two groups 
of ultrasound radiomics feature data of breast cancer 

,  and the similarity 
threshold (ℇ) were given. If , then  and 

 are the same molecular subtypes of breast cancer. 
Otherwise,  and  are different molecular subtypes of 
breast cancer. 

Definition 4: Triangle inequality. Three data objects , 
, and  were considered. The three data objects were 

used as three vertexes, and they meet the triangle inequality 
principles  and . 

 

3.2 Building TNBCC index based on stored radiomics 
feature data of breast cancer 
 
In this section, a three-layer TNBCC tree was built using the 
dataset . 
Nodes in each layer were also placed in an ascending order 
according to distance to the father node. Specifically,  
and  are the ith image of breast cancer and the 
corresponding molecular subtype. The structure of the 
TNBCC tree is shown in Fig. 3. 
 

 
Fig. 3. Structure of TNBCC tree 

 
The key structure is Level@Disparent@Rid, where 

Level is the layer number of the reference node in the 
TNBCC, @ is the separator, Disparent is the threshold of 
distance from the reference node to the father node, and Rid 
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is the id of the reference node data. When  is similar to a 
reference point, its key uses the value of key attribute in the 
reference node, splices it with the id of , and stores it. 

Theorem 1: Pruning principle. Three pieces of data (R, D, 
and Q) were given. R is the reference node, D is the subnode 
of R, and Q is the query node. The similarity threshold (ℇ) 
was given. According to Definitions 2 and 3, R, D, and Q 
form a triangle (Fig. 4). If , then Q and R are 
similar. If , then the subnode of R was pruned. 
According to the triangle inequality, let 

, which yields 
. Thus, the 

subnodes with a distance to the father node larger than 
 were pruned. 

 
Fig. 4. Pruning principle 

 
Each node in the index tree is a reference node of one 

region of similarity. When the database is empty, the 
TNBCC index tree is empty. The first piece of radiomics 
feature data of breast cancer  was input. The TNBCC 
index tree viewed as the root node (or known as the 
reference point ). Meanwhile, the index of  was built 
and stored. During the input of , the similarity between 

 and  was measured first according to Definitions 2 
and 3. If , then the query index of  was 
built and stored into the database. Otherwise, pruning 
calculation of the reference node of the root node was 
conducted using triangle inequality. If , 
then similarity between  and  was calculated.  was 
used as the reference point  when  is empty. If 

, then similarity between  and  
was calculated.  was used as the reference point . 
when  is empty. The rest was performed in the same way. 
During the input of , the distance between  and  is 

supposed to be . Then, similarity 
between  and  was measured. Under this 

circumstance, if , then  was used as the 

root node and the subnode of  was obtained. The 
construction algorithm of TNBCC is shown in Algorithm 1. 
The batch storage of historical ultrasonic data of breast 
cancer in hospitals is shown in Algorithm 2. 
 
Algorithm 1 Building the index tree for radiomics features 
similarity query of breast cancer TNBCCA (Node root, 
Node newNode). 

Input: TNBCC and query node (Q) 
Output: TNBCC 
1. if TNBCC is null then 
2.   TNBCC.root=new Node(Q) 

3. else then  
4.  if TNBCC.root.getSons() is not null then   

// getSons() acquire the subnode 
5.  

 rNode=TNBCC.root.getSons().getRf(ED(TNBCC.root,n
ew Node(d))                     // getRf() acquire the reference 
node 

6.   if ED(rNode,new Node(d))<=ℇ 
then        

7.    insertDatabase(d)  // 
insertDatabase() store data into the database 

8.   else 
9.    for n ∈ rNode do 
10:     

 TNBCCA(n,newNode) //iterate 
11:    endfor 
12.   endif 
13.  endif 
14. endif 

 
Algorithm 2 Building TNBCC index tree. 

Input: Dataset , similarity query 
threshold (ℇ). 

Output: TNBCC index 
1. for i in S do 
2.  d=SoftMax(i)              //Standard normalization by 

using softMax function 
3.  TNBCCA (Node root, new Node(d)) 
4. endfor 

 
3.3 Molecular subtype of radiomics features of breast 
cancer 
According to the TNBCC index tree produced in Section 3.2, 
this section describes the molecular subtyping of breast 
cancer by using the TNBCC index tree and pruning 
algorithm. 

The HBase key value database was taken as an example 
[31]. The stored data order of HBase is defaulted as the 
dictionary order of RowKey. Thus, similar ultrasound 
radiomics feature data of breast cancer were stored together 
according to RowKey, which was reconstructed according to 
the TNBCC index tree when building the TNBCC index tree. 
As a result, the region of similarity was formed. 

The query process was similar to the abovementioned 
process of index building. Fig. 3 was taken as an example. 
Step 1: Measure similarity between Q and . If 

, then search within the key of . 
Meanwhile, similarity between data in the region of 
similarity which uses  as the reference node and Q was 
measured, and the closest node to Q was returned, as shown 
in 1 in Fig. 5. If , then pruning of  was 
performed according to the pruning principle. If 

, then  and  were 
pruned, as shown in 2 in Fig. 5. The TNBCC index tree was 
iterated using  as the root node to search the region of 
similarity of Q. The molecular subtyping of radiomics 
feature data of breast cancer based on similarity query is 
shown in Fig. 5. 
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Fig. 5. Molecular subtyping of radiomics feature data of breast cancer 
based on similarity query 

 
 

4. Result Analysis and Discussion 
 

4.1 Experimental settings 
Cluster setting: This experiment was operated on 5 servers 
with an operating system of CentOS 7.5. This cluster of 
servers has 8 GB memory, 6-core CPU, and 64G nave 
protocol m.2 disc (reading speed: 2400 MB/S; writing speed: 
1750MB/S), including 1 master node and 5 calculation 
nodes. Hadoop 2.7.3, Zookeeper 3.4.6, and HBase 1.3.1 
were applied. 

Dataset: The image dataset of breast cancer with 9500 
images (privacy information has been processed) provided 
by the Affiliated Tumor Hospital of Xinjiang Medical 
University was used. According to Definition 1, a total of 
3960 features were extracted from each image. 

Parameter setting: Radiomics feature data of breast 
cancer in this experiment were all normalized. Similarity 
threshold after data normalization was set to 19 
 
4.2 Experimental results 
Based on the TNBCC algorithm described in Section 3, the 
experiment compared the proposed TNBCC algorithm with 
machine learning algorithm in terms of accuracy. No study 
is available yet on molecular subtyping of ultrasound 
radiomics feature data of breast cancer based on similarity 
query. Thus, the TNBCC was compared with Brute force 
Query (BQ) and Not Prune-Three negative breast cancer 
classification (NP-TNBCC) in this experiment in terms of 
data size and dimension. 

(1) Time for model building and accuracy comparison 
The TNBCC algorithm implements molecular subtyping 

of breast cancer based on similarity query. It does not 
involve training of model parameters, but it requires storage 
of historical data to build the TNBCC index. The time for 
building TNBCC index was compared with the time for 
model building (single-machine processing) of machine 
learning algorithm (Fig. 6(a)). Breast cancer data were 
transformed into measurable clinical index data through 
radiomics technology, and the breast cancer feature data 
with the shortest distance to the query node were measured 
by Euclidean distance. Comparison of TNBCC, SVM, XGB, 
and RandomForest algorithms in terms of accuracy is shown 
in Fig. 6(b). The TNBCC algorithm is superior to XGB and 
RandomForest algorithms. Although time for building the 
TNBCC algorithm is longer than that for SVM, the accuracy 
is improved compared with that of SVM. 

(2) Effects of threshold on accuracy of TNBCC 
algorithm 

The TNBCC algorithm measured similarity of 
ultrasound radiomics feature data of breast cancer by using 
Euclidean distance, which realized molecular subtyping of 
breast cancer. The effects of different similarity thresholds 
on the classification results are shown in Fig. 7. The best 

accuracy is achieved when the similarity threshold is set to 
19. 

 

 
(a) Time for building TNBCC index and time for building 

machine learning model 

 
(b) Accuracies of different algorithms 

Fig. 6. Comparison of evaluation indexes of different algorithms 
 

 

 
Fig. 7. Effects of threshold on the accuracy of the TNBCC algorithm 
 

(3) Performances of the TNBCC algorithm 
During similarity query, the BQ algorithm has to 

transverse all data in the database to measure similarity of 
ultrasound radiomics feature data of breast cancer. The NQ-
TNBCC algorithm takes longer time than the TNBCC 
algorithm in searching the region of similarity at query 
nodes given that it has no pruning. The results are shown in 
Fig. 8(a). As the data dimension increases continuously, the 
TNBCC algorithm is influenced less by dimensions 
compared with other algorithms. The results are shown in 
Fig. 8(b). 

 
(a) Effects of data size on the TNBCC algorithm 
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(b) Effects of dimension on the TNBCC algorithm 

Fig. 8. Performances of the TNBCC algorithm 
 

(4) Time complexity of the TNBCC algorithm 
Adding pruning algorithm into TNBCC can decrease the 

times of reference node calculations when searching the 
region of similarity. The TNBCC algorithm calculates at 
least one reference node and at most three reference nodes in 
each layer of the index tree. Therefore, time complexity 
when searching the region of similarity was , where m 
refers to the number of layers in the TNBCC index tree, and 
it is far lower than the data size in the database. After the 
region of similarity was positioned at the query node, 
TNBCC has to transverse data in each region of similarity 
and measure similarity with query points. The time 
complexity was , where p is the data size in the region 
of similarity, and it is significantly lower than the data size 
in the database. 
 
 
5. Conclusions 
 
A similarity index tree was built in this study to analyze 
subtypes of ultrasound radiomics feature data of breast 
cancer for improving molecular subtyping efficiency of 
breast cancer. The TNBCC index tree was built by storing 
historical data of the hospital into the key value database. 

TNBCC index tree was used for query of historical data 
similar to breast cancer features. A pruning algorithm was 
also designed. Calculation of unnecessary reference nodes 
was decreased by pruning, which increased inputting and 
query efficiency of radiomics feature data. The following 
conclusions could be drawn: 

(1) Molecular subtyping of breast cancer based on 
similarity query can classify cancers quickly in mass data, 
and the classification accuracy is superior to that of the 
machine learning algorithm. 

(2) Given that similarity query is applied, data skewing 
in AI algorithm may not influence the breast cancer 
classification accuracy of the TNBCC algorithm. During 
similarity query, all radiomics features of breast cancer 
participate in the calculation of similarity measurement. 

In this study, a data classification method based on 
similarity query is proposed by combining theoretical and 
practice studies. It can provide some references to follow-up 
studies on clinical therapy of breast cancer. Breast cancer 
can also be separated to establish an ultrasound radiomics 
feature data analysis and subtyping system of breast cancers 
based on similarity query. 
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