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Abstract 
 

An autonomous vehicle is anticipated to increase comfort, safety, energy efficiency, emissions reduction, and mobility. 
The development of autonomous vehicles depends on decision-making algorithms that can handle complex and dynamic 
urban intersections. Hence in this research, a TCWO based ensemble classifier-based instantaneous decision-making 
model involved in driverless vehicles is devised. The ensemble classifier is designed through the combination of the 
Timber chased wolf optimization (TCWO) for detecting traffic sign along with decision process is performed. The 
bidirectional long short term (BiLSTM) and convolutional neural network (CNN) is combined to create the hybrid 
ensemble classifier, which is more effective. The TCWO is developed by hybridizing the characteristics of GWO and 
COA that helps to optimizing the classifiers and boots the classification performance. The TCWO based GAN helps for 
finding lane in the data that effectively reduces the problems of misclassification by generating synthetic data and 
training the data to differentiate the original and the generated data. The TCWO-based ensemble classifier attained the 
values of 98.88%, 98.36%, 98.88% while detecting the traffic sign, and 2.41%, 2.41%, 7.39% while predicting the lane 
using TCWO-based GAN, which is significantly higher than the competent technique. 

 
Keywords: Generative adversarial network, bidirectional long short term memory, convolutional neural network, Timber Cased Wolf 
Optimization, autonomous vehicles 
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1. Introduction 
 
An autonomous vehicle is becoming more and more popular 
as computer and communication technology advance so 
quickly. Numerous automobile companies is developed 
more advanced systems for autonomous driving [1]. More 
than 90% of recorded crashes are caused by driver error, 
which is the main factor in traffic accidents. An autonomous 
vehicle (AVs) remains as emerging and feasible solution to 
avoid crashes resulted by driver mistake. Enhancing driving 
safety and driver acceptance is a key goal of AV 
development [14][15][7]. Several automated cars, like 
Google Car, endorse car to guide their navigation and enable 
more fluid control [16]. AVs are equipped with reducing 
technology that enables them to sense their immediate 
environment and independently navigate using the 
information gathered. This is primarily made possible by 
many sensor types like cameras, Light detection and ranging 
(LiDAR), Inertial Measurement Units (IMU), and Radio 
detection and ranging (RADAR) [10][11][17], which have 
vision or non-vision capabilities. AVs must accelerate or 
decelerate, surrounding maneuver, and deduce stationary 
and moving obstacles based on these inputs [30][2]. Most 
essential elements for secured and reliable independent 
driving is accurate identification of surrounding with the 
help of radar, LiDAR, camera, LiDAR, and other sensors 
[29]. 

An autonomous vehicle is an extensive export model that 
combines technology for mobility control, path planning, 

environmental awareness, and decision-making [18]. The 
ability to develop highly intelligent and trustworthy decision 
systems has progressively become the focal point of research 
in driverless vehicles. The decision–making system acts as 
the central nerve of driverless vehicles and is important for 
the safe and effective operation of vehicles. While 
considering the surrounding environment, the other car 
motion and the evaluation of self-esteemed vehicles, 
decision-making is indicated to develop reasonable and safe 
driving characteristics at the human level. The motion 
control system then takes these driving behaviors into 
account to attain effective autonomous driving operation 
[19][20] [13]. The fundamental element of vehicle security 
and driving efficiency is the driver’s behavior decision-
making and planning in response to diverse traffic 
environments and emergency situations. However, making 
precise, effective, and secure decisions and plans in 
complicated surroundings remains difficulty for autonomous 
cars. [1]. The autonomous car makes decisions and designs 
the local trajectory based on the particular environmental 
and road situation, traffic laws, and other factors. The 
machine learning and rule-based method are the two basic 
approaches to behavioral planning and decision-making. The 
rule-based behavior decision-making method categorizes 
autonomous vehicle behavior and creates a library of 
behavior rules based on driving regulations, knowledge, 
experience, traffic regulations, etc. [21], [22] [1]. 

The two main categories of decision-making techniques 
are traditional techniques and learning-based techniques. 
Typically, autonomous vehicles work with other traffic 
participants to navigate complicated, dynamic environments. 
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Due to their poor robustness, traditional methods is not 
always effective in such driving environments, so learning-
based methods is used to improve autonomous vehicle 
decision-making [23] in addition, learning-based approaches 
have grown immensely in popularity and significance in the 
autonomous vehicle field [24] [13]. Numerous institutions 
and researchers, including Google [25], Carnegie Mellon 
University [26], Berkeley [27], and Baidu [28], have looked 
at the issues of strong deliberated decision-making for 
autonomous vehicles in a dynamic and complex 
environment. Machine learning-based decision-making 
techniques have attracted a lot of interest as a result of the 
advancement of artificial intelligence. This approach uses 
environmental samples to learn on its own, and after 
establishing behavior rules utilizing self-learning data 
obtained from various learning techniques or network 
structures. The decision output is based on environmental 
data. Deep learning (DNN), recurrent neural network 
(RNN), reinforcement learning (RL), and other techniques 
are the core components of machine learning. [31] [32] [1]. 
 The main concentration of the research is to devise an 
instantaneous decision-making system in driverless vehicles 
that depends on an ensemble classifier. The data is 
accumulated from the Road video dataset. The pre-
processing is executed in Road vehicle video data to reduce 
the noises in the data and the Region of Interest (RoI) is 
extricated from the video sequence. The preprocessed Video 
is directed to the ensemble classifier to recognize traffic sign 
and instruct to make decision. Furthermore, preprocessed 
video is directed to Modified Lane-GAN, which is optimized 
for LANE Prediction because Generative Adversarial 
Network (GAN) has shown good image enhancement and 
image restoration capabilities. The hyperparameter of the 
ensemble classifier is optimized where the parameter tuning 
and cascading are employed optimally through the TCWO 
algorithm. The main research contribution includes: 
 
• Timber chased wolf optimization: The timber-chased 

wolf optimization is proposed through the hybrid 
characters, such as the hunting and communicating 
characteristics of the wolfs and coyotes. The reason 
behind choosing these characters relies in their improved 
convergence phenomenon towards the global optimal 
convergence.    

• Timber chased wolf optimization based GAN: The 
optimized Lane-GAN model highlights the Lane from 
the road video dataset to support the accurate maneuver 
detection for which the timber chased wolf trains the 
GAN model.  

• Timber chased wolf optimization based Ensemble 
classifier: The maneuver detection is performed through 
the ensemble deep model with CNN and BiLSTM 
classifiers using the lane and sign information of the real 
roads.  

 
Manuscript-organization: Section 2 lists the existing 

studies along with their techniques, benefits, and difficulties. 
Section 3 provides a description of the autonomous vehicle 
decision-making system and its operational methods. Section 
4 provides details on the suggested timber chasing wolf 
optimization, its operational methods, and mathematical 
model. In section 5, the classifier results are described in 
depth, and section 6 concluded by highlighting the 
research’s accomplishments. 

 
2. Related works 

 
An autonomous vehicle decision-making and planning 
system based on motivation and risk assessment was 
developed by Yisong Wang et al. [1]. This method examined 
the driving environment at the moment to determine whether 
there is a motivation to change the driving state or not. This 
technique increased the computational efficiency of the 
decision-making process and also ensured safety, but 
achieved low level computational efficiency. An end-to-end 
car-following framework for autonomous vehicles was 
developed by Mehdi Masmoudi et al. [2] using automated 
object detection and navigation decision modules. This 
approach enhanced the prediction accuracy and captured 
information about both low-level and high-level objects; but 
the processing time of the key frames is reliably high. A new 
security-by-design approach was designed by Mohamed 
Abdel-Basset et al. [3] to estimate the uncertainty of 
autonomous vehicles and measure cyber risks. As a result, it 
helped decision-makers to handle the risks of the physical 
design and their attack surfaces. Although this technology 
made life safer for walkers and passengers, but it cannot be 
adjusted for high weather because of the high expense of 
operating. Kaya Kuru et al. [4] initiated fully autonomous 
unmanned aerial vehicles and the framework worked based 
on agent-based decentralized control architecture that keeps 
track of and manages swarms of resource-constraints in real-
time with the purpose of maximizing their urban usage. It 
can operated in hazardous and disaster-prone environments 
and attain high transit speeds, but the battery capacities are 
limited. Xianzhe Xu et al. [5] developed a model applicable 
for RSUs by integrating both recentness of the effectual sub-
maps that are collected locally from vehicles and the cub-
map retrieval cost.  The sub-maps retrieval cost are not 
accumulated at RSUs but need for high-level driving 
authority. This approach gave an accurate representation of 
the road ahead and information about the surroundings. An 
effective fuzzy compromised solution model was created by 
Muhammet Deveci et al. [6] based on the logarithmic 
method and Power Heronian function that addressed the 
problem of advantage priority in real-time traffic 
management techniques. This approach produced better 
results in locations with heavy mainline traffic, but it has a 
lower importance rating on the fuzzy linguistic scale. A 
transfer reinforcement learning framework was developed 
by Hong Shu et al. [7] that enhanced the control 
performance and learning effectiveness of automated vehicle 
decision-making issues. Although this approach increased 
learning effectiveness and performance, the rate of 
convergence was low. Using the Vehicular Edge Computing 
(VEC) cloud concept, Andrea Tesei et al. [8] a novel secure 
architecture that enables the deployment of mission-critical, 
instantaneous driving applications at the network’s edge. 
With this approach, a smaller window of susceptibility and 
the least amount of influence on the decision-making 
process are guaranteed. The method’s disadvantage was an 
increase in computing time. 

Khaled S. Refaat et al. [43] efficiently ranked the agents 
relying upon their importance in making decisions, using the 
CNN network that effectively learned the features and 
obtained the domain knowledge. This method promoted 
large number of agents and attained a reduced loss but the 
depending upon their planning capability the performance of 
the system gets varies, which initiates instability. A deep 
reinforcement learning-enabled decision-making framework 
was developed by Guofa Li et al. [42] that enabled 
autonomous vehicle to navigate junctions automatically, 
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safely, and effectively. This technique demonstrated that 
autonomous parking could be successfully implemented 
with high robustness but higher computational cost acts as a 
disadvantage. 
 
2.1 Challenges 
The various challenges are illustrated in the below section: 
 
• The primary cause of uncertainty in motion prediction in 

real-world traffic scenarios is the anticipated future 
behavior of the surrounding cars. The interactions 
between the vehicles themselves also present significant 
challenges for the prediction [1]. 

• Accurately detecting the other participant trajectory and 
simultaneously weighing efficiency and safety into 
vehicles interaction are major challenges in the operation 
of autonomous vehicles robustly [12]. 

• The guaranteed performance and validation of the 
autonomous driving pipeline is the challenging task 
experienced in the existing model due to the complex 
decision-making methods and the complex planning [9]. 

• The probabilistic illustration of the traffic scenarios and 
participants need online validation of the general 
maneuvers, which remains as the challenging task due to 
high complexity [18]. 

• The conventional model requires to evaluate the large 
space to enable faster computing, which ensures the 
users with service and real-time booking. Thus, 
exploring the decision space is the challenging task in 
decision making [20]. 

 
 
3. Methodology for assisting Decision making system for 
autonomous vehicle using timber cased wolf optimization 
based ensemble classifier and GAN network 
 
The main aim of the research is to assist the instantaneous 
controlling system by the detection and prediction of lane 
and traffic sign in autonomous vehicles using a TCWO 
based ensemble and GAN classifier. The enabled TCWO 
based ensemble classifier makes the decision and the GAN 
network assists in the prediction of lane. Initially, the data 
from the real world dataset [33] is gathered and then the 
preprocessing of the collected data is performed. The 
preprocessing step acts as a preliminary stage, which makes 
the data more suitable for the detection of lane and for 
making decisions. Here, in the preprocessing stage the 
videos are converted into key frames for reducing the 
dimensionality and the key frames are processed for 
obtaining the necessary information. Along with that the 
region of interest (ROI) is also extracted and the extracted 
region is fed forwarded to both ensemble and GAN 
classifier. Both the classifiers are effectively optimized using 
the TCWO algorithm, which effectively boosted the 
convergence by the integration of the hunting and the 
communicative behavior. Hence the traffic sign and the lane 
is predicted with more accuracy and the decisions are made 
efficiently. The schematic representation of the methodology 
is shown in figure 1. 
 
3.1 Input  
The data is gathered from the Road vehicle video dataset 
[33] as a preliminary step and is 
given by Eq.1, 
 
𝑅 = ∑ 𝑅!

!
"#$                (1) 

 
where, 𝑅 denotes the dataset consists of videos, 𝑅!represents 
the number of videos present in the road vehicle dataset 
which is in the range [1, 𝑔]. 
 

Fig. 1. Block diagram of the decision making autonomous vehicle. 
 
3.2 Video preprocessing and audio extraction 
The collected data is preprocessed, where the data is 
converted into key frames and then the noise in the data is 
removed in order to improve the quality of the image. After 
enhancing the image the undesired areas from the image are 
excluded and the content in the image is retrieved as RoI and 
is used for further processing. 
 
3.3 Traffic sign prediction using TCWO modified 
ensemble classifier 
The TCWO modified ensemble classifier is used for the 
detection of the of the traffic sign to enhance the decision 
making of the autonomous vehicles. The modified ensemble 
classifier is developed by the hybridization of the CNN and 
BiLSTM classifier, where the necessary features needed for 
the detection of traffic sign is determined using the CNN and 
the BiLSTM classifier better predicts the traffic sign by 
analyzing the information in both forward and backward 
directions. The suggested TCWO algorithm enabled in the 
modified ensemble classifier tunes the best hyper parameters 
for the classifier, such as the biases and interconnection 
weights that provides the optimized solution and the output 
obtained from the classifier is mathematically modeled by 
the below equation as follows, 
 
𝐶 = 𝑑%𝐶% + 𝑑&𝐶&              (2) 
 
where, 𝐶%and 𝐶&denotes the output from the CNN AND 
BiLSTM classifier and the hyper parameters of the 
classifiers are represented by 𝑑%and 𝑑&. 
 
3.3.1 Architecture of CNN classifier 
CNN classifier reduces the dimensionality of the images 
without losing any information and it includes three layers 
such as pooling layer, convolutional layer, and fully 
connected layer. The convolutional layer produces the 
feature maps as the output, by the convolution process using 
number of kernels. In order to create the feature maps, each 
convolutional layers input is combined with the previous 
layer output according to the filter size and strides. Max 
Pooling is used to extract the minimum value from the 
Feature map and finally, the output is obtained from the fully 
connected layer, which is the network detection output. The 
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fully connected layers output is mathematically represented 
as, 
𝐶% = 𝐹𝑛.𝐻ℎ'

(0                    (3) 
 
where, 𝑝corresponds to the convolutional layer, 𝐻ℎ'

(is the 
convolutional output and is given by Eq.4, 
 
𝐻ℎ'

( = 𝐷𝑑' + ∑∑𝑉𝑣(
' ∗ 𝑅𝑒(

'           (4) 
 
where, 𝑉𝑣(

'illustrates the weights of 𝑝)*convolutional layer 
and 𝑢illustrates the feature map. 𝑅𝑒(

' is the 𝑢)*feature map 
from the 𝑝)*convolutional layer and 𝐷𝑑'is the bias respect 
to the 𝑝)*layer. Thus, 𝑇 ∈ .𝐷𝑑', 𝑉𝑣(

'0are determined by 
TCWO algorithm. The CNN classifier framework is 
exhibited in Fig. 2. 

Fig. 2. Architecture of CNN. 
 
 

3.3.2 Architecture of Bi-LSTM classifier 
BiLSTM classifier increases the amount of information 
available to the network. Two LSTM models with opposing 
directions compensate BiLSTM. BiLSTM offers a number 
of benefits while learning massive amounts of time series 
data. The forward LSTM and the backward LSTM 
compensate the bi-LSTM. The single unit of LSTM is 
explained below and the framework is illustrated in fig. 3. 
 

 
Fig. 3. Single unit of LSTM. 

 
 

Single unit of LSTM:An efficientclassifier with respect to 
deep neural networks is the LSTM classifier, which captures 
the non-linear interaction within the characteristics and 
preserves input data feature. The LSTM classifier 
successfully determines the unsuitable and irrelevant data 
relationship, which helps to improve classifier accuracy. The 
classifier has deep layers, a large amount of memory, and 
needs intensive computing, which aids in a detailed feature 
evaluations. The LSTM classifier performance is improved 
further by using the feedback layers to carry the data history. 
The input gate is given by Eq.5, 
 
𝑊𝑥+ = 𝜎(𝑉𝑣, ∗𝑊+ + 𝑉𝑣- ∗ 𝑁𝑛+.% + 𝑉𝑣/ • 𝐹+.% +
𝐷𝑑,)(5) 
 
where, 𝑊+ stands for the input vector, 𝑉𝑣' stands for the 
weight within the input layer and the input gate. The gate 
activation function is informed by𝜎,𝑉𝑣/ for the weight 
between the input layer and the cell output, and 𝑉𝑣- for the 
weight within the the input layer and the memory output. 
𝐷𝑑, stands for the input layer bias, and 𝑁𝑛+.% and 𝐹+.% 
represent the previous output of the cell and memory unit, 
respectively. • stands for element-wise multiplication, and ∗ 

stands for the convolutional operator. The Forget gate output 
is calculated as Eq.6, 
 
𝑄𝑗+ = 𝜎%𝑉𝑣01, ∗𝑊+ + 𝑉𝑣01-2 ∗ 𝑁𝑛+.% + 𝑉𝑣01/ • 𝐹+.% +
𝐷𝑑,

011																	               (6) 
 
where, 𝑉𝑣01, illustrates the weight within input and forget 
gate, 𝑉𝑣01/ represents the weight within output gate and cell, 
and 𝑉𝑣01-2 denotes the weight within output gate and the 
previous layers memory unit. 𝐷𝑑,

01denotes the forget gate 
bias. The weight activation function within memory unit, 
input layer and cell state, models the output from the 
temporary cell state. Based on the weight within the memory 
and output layers, the output layer output is represented by 
Eq.7 as 𝐶&. The LSTM classifier framework is illustrated in 
Fig.4. 
 
𝐶& = 𝜂(𝑉𝑣-""𝑁𝑛+ +𝐷𝑑"")           (7) 
 

Fig. 4. LSTM-framework. 
 
 

3.4 Modified Generative Adversarial network for lane 
Prediction 
The GAN network is used for the enhancement of the image 
for better prediction of the lane. GANs are composed of two 
main neural networks such as generator and discriminator, 
which fight for the ability to recognize, replicate, and 
interpret differences between the normal region and the lane. 
The GAN network has high restoration capabilities of the 
image using the generator and discriminator. When the 
quality of the image is low it initiates difficulties in the 
recognition of lane, hence to  deal with the blurred or low 
quality image the GAN network is utilized. The GAN has 
the capability to generate synthetic data samples by 
providing noise to the generator. The discriminator 
effectively differentiates the normal and the lane region, and 
the optimal solution in the GAN is determined using the 
TCWO optimization, which reduces the overfitting issues 
and reduces the cost function. The architecture of GAN is 
depicted in figure 5.  
 

Fig. 5. Architecture of GAN network. 
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4. Timber cased wolf optimization 
 
Timber cased wolf optimization (TCWO) is devised by the 
standard integration of GWO [34] and COA [35] that 
effectively hybridize the hunting and communication 
characteristics of the timber and chaser wolf, which helps to 
enhance the optimization process.  
 
4.1 Motivation 
The timber wolf (grey wolf) belongs to the canidae family 
and this wolf is the top predator of the food chain.Almost 
every wolfresides in groups, which consists of 5–12 
members in each group. Each wolf has a unique role in the 
population and they have a fairly rigid social order, as 
illustrated in Fig.6.𝛼 is the leader of the timber wolves 
present in the first layer and is responsible for making 
decisions regarding habitat and hunting. The second layer 
consists of subordinate timber wolf, known as𝛽, which 
supports 𝛼for leadership management or other wolf pack 
operations. The third layer consists of 𝛿wolves and is 
responsible for taking charge of boundaries of the territory, 
alerting the wolf pack in case of any danger, and caring for 
the sick and injured timber wolves. The lowest ranking 
timber wolf in the population known as𝜔present in the 
fourth layer and these wolf acts as the subordinate to all 
other dominating timber wolves. Although, it may appear 
that the 𝜔wolves are not significant members of the wolf 
pack, they are crucial in maintaining the population’s 
internal balance. The wolf pack’s leadership structure is 
important for successful hunting. First, the timber wolves 
search and follow the prey. Next, 𝛼timber wolf directs the 
other wolves to encompass the prey on all sides, and 
finally,𝛼timber wolf orders the 𝛽and𝛿wolves to hunt the 
prey. If the prey manages to escape, the other wolves that are 
fed from behind will keep attacking it until timber wolves 
manage to capture it. 

 
Fig. 6. Hierarchy of grey wolves. 
 
 
4.2 Mathematical representation for the TCWO 
In the section the behaviors of timber wolf such as social 
structure, surrounding behavior and hunting stages are 
mathematically described as follows: 
 
i) Social structure  
The TCWO algorithm simulates the wolf leadership 
hierarchy and predatory aspects using the timber wolf 
characteristics of hunting, search, encirclement, and other 
activities in the predation process. Assuming, 𝑁represents 
the wolves’ number and 𝑑denotes the search area and the 
wolf‘s position 𝑖)*is represented as𝑍3 =
H𝑍3! , 𝑍3" , 𝑍3# , . . . . . . . 𝑍3$J. The fittest solution of wolf is 

regarded as the alpha (𝛼) wolf. The subsequent best 
solutions are referred to as delta (𝛿) and beta (𝛽) wolves, 
respectively. The other candidate solutions is assumed as 
omega (𝜔) wolves. According to this algorithm, the best 
prey’s location is determined by alpha wolf. 
 
ii) Surrounding behavior 
During the hunt, grey wolves surround their prey, and this 
behavior can be mathematically described as Eq. (8),(9), 
 
𝐸 = L𝐺 × 𝑌4(𝑖) − 𝑌(𝑖)L            (8) 

 
𝑌(𝑖 + 1) = 𝑌4(𝑖) − 𝐵 × 𝐸           (9) 

 
where, set 𝑖 is the current iteration, set 𝑌4(𝑖) illustrates the 
position vector of prey, 𝑌(𝑖) illustrates the wolf’s position 
vector, and 𝐺denotes control coefficient, which is 
formulated by Eq.10, 
 
𝐺 = 2𝑠%              (10) 
 
where, 𝑆% is a set of random numbers between [0, 1] and a 
convergence factor 𝐵 is estimated as Eq.(11), (12), 
 
𝐵 = 2𝑏𝑠& − 𝑏             (11) 

 
𝑏 = 2V1 − 3

5%&'
()W           (12) 

 
where, the set 𝑆& is the random variable  within range [0, 1]. 
The set 𝑏 is the control coefficient, which directly reduces 
from 2 to 0 over the course of iterations, that is, 𝑏"67= 2, 
𝑏"32 = 0. 
 
iii) Hunting stage 
When the alpha timber wolf determines the prey, the wolf 
starts surrounding the prey and is continued by the other 
wolves. Hence the 𝛼wolf is responsible for determining the 
prey and it also instructs the other wolves to capture the 
prey. The position of 𝛼,𝛽 and 𝛿 in the grey wolves is  used 
to determine the prey’s location because they are the one 
that present closer to the prey. The mathematical notation of 
the encircling behavior wolves based on their hierarchy is 
represented as Eq. (13),(14),(15), 
 
𝐸8 = |𝐺% × 𝑌4(𝑖) − 𝑌(𝑖)          (13) 

 
𝐸9 = |𝐺& × 𝑌4(𝑖) − 𝑌(𝑖)|          (14) 

 
𝐸: = |𝐺; × 𝑌4(𝑖) − 𝑌(𝑖)|          (15) 
 

The grey wolves position is𝛼, 𝛽 and𝛿are given by Eq. 
(16),(17),(18), 
 
𝑌% = 𝑌8 − 𝐵% × 𝐸8           (16) 

 
𝑌& = 𝑌9 − 𝐵& × 𝐸9           (17) 
 
𝑌; = 𝑌9 − 𝐵; × 𝐸9           (18) 

 
After targeting the prey, the final updated position vectors 
for the three categories, 𝛼, 𝛽, and 𝛿is given by Eq. (19), 
 
𝑌(𝑖 + 1) = <!=<"=<#

;
           (19) 
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iv) Attacking the prey 
The timber wolves start attacking the prey, when the target 
prey completely stops moving and in order to show this 
behavior an attribute 𝑏 is used for the determining the target 
prey random movement. 𝑏is defined in the interval [−2𝑏, 𝑏], 
which is considered to be decreasing for various iterations. 
Timber wolves attack when𝐵 < 1, and they wait for the 
ideal opportunity to do so when𝐵 > 1. 
 
v) Search prey 
The timber wolves hunt for prey while keeping track of their 
location in relation to wolves𝛼, 𝛽, and 𝛿. The timber wolves 
divide into several groups to look for prey and then join 
together to attack the prey. But the joining behavior of the 
wolves is not defined and if their communication behavior 
gets enhanced, then the timber wolves could hunt efficiently 
within a stipulated time and the probability of the escaping 
of the prey also gets decreased. Hence for the efficient 
hunting, the interactive behavior of the cased wolf is 
incorporated to the position of the timber wolves and is 
mathematically represented as Eq. (20), (21), (22), 
 
𝜃>?@) = 0.5(𝑌(𝑖 + 1)) + 0.5%𝑛 − 𝑐𝑜𝑚A

B,D1      (20) 
 

𝜃>?@) = 0.5 @A<!=<"=<#;
B + A𝑓%𝑛 − 𝑐𝑜𝑚A

B,D1BD     (21) 

𝜃>?@) = 0.5 @A<!=<"=<#;
B + A𝑓%𝑐𝑜𝑚A

B,D + 𝑡% • 𝜆% + 𝑡& • 𝜆&1BD(22) 
 
where, 𝑛 − 𝑐𝑜𝑚A

B,Dis represented as a communication 
behavior of the 𝑘)*cased wolf of the 𝑜)*pack in the 𝑐)* 
instance of time, 𝜆& and 𝜆%denotes the pack and alpha 
influence. 𝑡& and 𝑡%represents the pack and alpha influence 
weights. Initially it represented as random numbers ranges 
from [0,1] with uniform probability. If the characteristic𝐺 <
1, the wolves search in different locations. If the𝐺 > 1, the 
wolves join together and choose their target based on 
weight. The Pseudocode for the TCWO is interpreted in 
table 1. 
 
Table 1. Pseudocode for the timber chassed wolf 
optimization 
S.No Pseudocode for the timber chased wolf 

optimization 
1. Initialization 
2. Initialize: 𝛼,𝛽,𝛿,𝜔. 
3. Social structure 
4. Find best solution 
5. Surrounding behavior 
6. Define:𝐸,𝑌(𝑖 + 1) 
7. Hunting stage 
8. Evaluate Fitness: 𝐸8, 𝐸9, 𝐸: 
9. Position update: 𝑌%, 𝑌& ,𝑌; 
10. Update final position: 𝑌(𝑖 + 1) 
11. Attacking stage 
12. { 
13. if(𝐵 < 1) 
14. Attack 
15. Else 
16. Wait 
 } 
17. Searching 
 { 
18. if(𝐺 < 1) 
19. Diverge 
20. Else 

21. Unite 
 } 
22. Determine optimal solution 
22. 𝜃$%&' = 0.5 &'

𝑌( + 𝑌) + 𝑌*
3

+ + ,𝑓.𝑐𝑜𝑚+
,,. + 𝑡( • 𝜆( + 𝑡) • 𝜆)567 

23. End 
24. End 
 
 
5. Result 
 
The results are discussed for the TCWO based ensemble 
classifier and GAN is enumerated in the below section. 
5.1 Experimental setup  
The experiment is performed using the python in the 
windows 10 OS with 8 GB RAM and the research is 
evaluated using the road video dataset. 
5.2 Dataset description 
There are 1171 aerial images illustrating the state of roads in 
the Roads Dataset. Each image has a dimension of 1500 by 
1500 pixels and covers 2.25 square kilometers. We divided 
the data into three sets at random: a 1108-image training set, 
a 14-image validation set, and a 49- 
image test set. The dataset covers more than 2600 square 
kilometers and includes a wide range of urban, suburban, 
and rural districts. The test set alone covers over 110 square 
kilometers and that helped researches to attain knowledge 
about the real-time decision-making systems in autonomous 
vehicles. 
 
5.3 Parameter metrics  
The metrics for the evaluation of TCWO tuned ensemble 
classifier is sensitivity, accuracy, and specificity and is 
described as follows: 
 
• Accuracy: Accuracy is described as the fraction of 

samples that are correctly identified by the TCWO based 
ensemble classifier in determining the decision making 
system in autonomous vehicle and is given by Eq. 23, 
 
𝑊6DD =

E()=E(*
E()=E+)=E(*=E+*

        (23) 
 

• Sensitivity: Sensitivity is characterized  as probability 
that a test result is true positive outcome by the TCWO 
based ensemble classifier in determining the decision 
making system in autonomous vehicle and is given by 
Eq. 24, 
 
𝑾𝑺𝒆𝒏 =

𝑾𝑻𝑷
𝑾𝑻𝑷=𝑾𝑭𝑵

           (24) 
 

• Specificity: Specificity is characterized as probability 
that a result is true negative by the TCWO based 
ensemble classifier in determining the decision making 
system in autonomous vehicle and is given by Eq. 25, 
 
𝑾𝑺𝒆𝒏 =

𝑾𝑻𝑵
𝑾𝑻𝑵=𝑾𝑭𝑷

           (25) 
 
• Mean Absolute Error:Mean Absolute Error (MAE) is 

defined as the magnitude of the difference between the 
individual measurement and the true value quantity of 
the TCWO based modified GAN in determining the lane 
prediction in autonomous vehicle and is given by Eq. 26, 
 
𝑇JKL =

%
7
∑ |𝑦37
3#% − 𝑦|         (26) 
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where, number of error is denoted as 𝑥, and absolute 
error is represented as |𝑦3 − 𝑦|. 
 

• Mean Square Error: Mean squared error (MSE) 
estimates the quantity of error in statistical models and 
also evaluates the average squared difference between 
the predicted and observed values of the TCWO based 
modified GAN in determining the lane prediction in 
autonomous vehicle and is given by Eq. 27, 

𝑆JML =
%
,
∑ V𝑧3 − 𝑧3

∧
W,

3#%
&
         (27) 

 
here, number of data points is denoted as 𝑤, predicted 
value is denoted as 𝑧3and observed value is denoted as 
𝑧3
∧

. 
• Root mean squared error: Root mean squared error 

(RMSE) is described as the root of the mean square of all 
of the error, for determining the lane prediction using 
TCWO based modified GAN in autonomous vehicle and 
is given by Eq. 28, 
 

𝐽OJML = g%
1
∑ (𝐴3 −𝑀3)&
1
3#%         (28) 

 
where, observations is denoted as 𝑀3, predicted values of 
the variable is denoted as 𝐴3 and 𝑗 represents the number 
of observations. 
 

5.4 Evaluation based on traffic prediction 
The performance and the comparative evaluation of TCWO 
based ensemble classifier is performed and classifier 
performance with different epochs is elaborated in detail in 
the below section. 
 
• Comparative methods: The TCWO-based ensemble 

classifier is evaluated with Support Vector Machine 
(SVM) classifier [M-1][36],  RNN [M-2] [37], Deep 
CNN [M-3][38], Deep CNN classifier with  Sparrow 
Search Optimization (SSO) [M-4][39], Deep CNN 
classifier with  Grey Wolf Optimization (GWO) [M-
5][34], Deep CNN classifier with Fire Hawk 
Optimization (FHO) [M-6][40], Deep CNN- 
Bidirectional Long Short Term Memory (BiLSTM) [M-
7][41], Deep CNN-BiLSTM with Coyote Optimization 
Algorithm (COA) [M-8][35], Deep CNN-BiLSTM with 
Grey Wolf Optimization (GWO) [M-9][34], TCWO 
based ensemble classifier.  

 
5.4.1 Performance evaluation based on training 
percentage  
The performance evaluation for the TCWO based ensemble 
for different epochs 10, 20, 30, 40, 50 is depicted in fig.7. At 
first, the accuracy of the methods is measured and the values 
of 94.79 %, 95.49 %, 95.83 %, 96.24 %, 96.88 % is attained 
by the TCWO based GAN as represented in fig.7 a) at 90% 
training. Similarly, the sensitivity of the TCWO based GAN 
classifier is measured, which obtained the values of 95.16%, 
93.75 %, 95.45 %, 96.36 %, 97.50 %, 97.56 % for the 
training percentage 90 shown in fig.7 b). The specificity of 
the TCWO based GAN classifier is 96.30 %, 96.77 %, 97.33 
%, 98.00 %, 98.08 % for the training percentage 90 shown in 
fig.7c). 
 
5.4.2 Comparative analysis with reference to training 
percentage 

The comparative analysis using metrics sensitivity, 
specificity and accuracy is estimated and is depicted in fig.8. 
The accuracy estimation is illustrated in fig.8 a) and the 
TCWO based ensemble classifier obtained the enhancement 
of 5.35 over deep CNN at 90% training. Likewise the 
TCWO based ensemble attained the enhancement of 6.16 
over deep CNN and the analysis is depicted in fig.8 b). At 
last the improvement in terms of specificity is measured and 
the TCWO based GAN achieved the improvement of 3.68 
over deep CNN at 90% depicted in fig.8 c). The evaluation 
illustrates that the TCWO-based classifier exhibits better 
performance than the previous existing methods. 
 
5.6 Evaluation based on lane prediction 
The performance and comparative evaluation of the TCWO 
based GAN is performed and the classifier performance with 
different epochs, which detailed in the subsequent section. 

 
Fig. 7. Performance analysis of the TCWO-based GAN training 
percentage on account of a) accuracy b) sensitivity c) sensitivity 

 



Swati Jaiswal and Chandra Mohan B/Journal of Engineering Science and Technology Review 16 (1) (2023) 75 - 84 

 82 

5.6.1 Performance evaluation on lane prediction 
The performance analysis for the TCWO based GAN for the 
varying epochs and training percentage is exhibited in 
fig.9.Initially, the MAE of the methods is measured and 
obtain value of 1.21, 1.09, 0.76, 0.76, 0.46 by the TCWO 
based GAN demonstrated in fig.9 a) at 80% training. The 
MSE of the TCWO based GAN is observed, which attain the 
values of 1.21, 1.09, 0.76, 0.76, 0.46 at 80% training 
illustrated in fig.9 b). At last the RMSE of the TCWO based 
GAN is observed and the values of 1.34, 1.28, 1.07, 1.07, 
0.83 at 80% of training is illustrated in fig.9 c). 
 

 
Fig. 8. Comparative analysis of the TCWO-based GAN concerning. (a) 
accuracy (b) sensitivity, (c) sensitivity. 
 

 
Fig. 9. Performance analysis of the TCWO based GAN concerning to 
(a) MAE (b) MSE (c) Root MSE 
 
 
5.7.1 Comparative analysis on lane prediction 
The comparative analysis is using metrics like MSE, MAE, 
and RMSE is measured and is given in fig.10. The MAE 
values is measured and it is shown in fig.10 a) and the 
TCWO based GAN shows the improvement of 16.89% over 
GWO, at 90% training. Likewise, for 90% of training the 
TCWO based-GAN achieves 16.89%improvement of over 
GWO while estimating the MSEand it is represented in 
fig.10 b). Finally performance enhancement in terms of 
RMSE is measured and the TCWO based GAN shows 
improvement of 6.43% over GWO for 90% shown in fig.10 
c). The analysis illustrates the TCWO-based GAN method 
achieved higher performance than the competent methods. 

(a)

(b)

(c) 

(a)

(b)

(c) 
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Fig. 10. Comparative evaluation of the TCWO based GAN on 
concerning to a) MAE b) MSE c) RMSEConclusion and future work 

 
An efficient real time decision making system for 

autonomous vehicle using Timber chased wolf optimization 
based ensemble classifier is devised. Data from the Road 
vehicle video is gathers and then preprocessing is performed 
for improvement in quality, intensity and resolution of the 
image after RoI extraction. Then the modified ensemble 
classifier detects the traffic sign and instructs the user to take 
Decision. Similarly, modified GAN is used for lane 
prediction. Finally the classification is made using the timber 
cased wolf optimization. This research relies on the metrics 
values estimation and the parameters of specificity, 
accuracy, and sensitivity is attained the of 98.88%, 98.36%, 
98.88% for traffic sign detection using TCWO-based 
ensemble classifier and the parameters of MAE, MSE, 
RMSE is attained the values of 2.41%, 2.41%, 7.39% for 
lane prediction using TCWO based modified GAN. The 
proposed decision making model achieves high metric 
values than the conventional methods, which shows the 
efficiency of the model. Theuses of autonomous vehicles for 
practical applications such as keep roadways safer,reducing 
accidents, and helps in industries. Future efforts will be 
made to establish the online application of autonomous 
vehicle decision-making policies.  

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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