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Abstract 
 

Since the outburst of COVID-19, the medical system has been facing great challenges due to the explosive growth in 
detection and treatment needs within a short period. To improve the working efficiency of doctors, an improved 
EfficientNet model of Convolutional Neural Network (CNN) was proposed and applied for the diagnosis of pneumonia 
cases and the classification of relevant images in the present study. First, the acquired images of pneumonia cases were 
divided to determine the zones with target features, and image size was limited to improve the training speed of the 
network. Meanwhile, reinforcement learning was performed to the input dataset to further improve the training effect of 
the model. Second, the preprocessed images were inputted into the improved EfficientNet-B4 model. The depth and width 
of the model, as well as the resolution of the input images, were determined by optimizing the combination coefficient. 
On this basis, the model was scaled, and then its ability in extracting the features of deep-layer images was strengthened 
by introducing the attention mechanism. Third, the learning rate was adjusted by using the Adaptive Momentum 
(ADAM), and the training efficiency of the model was accelerated. Finally, the test set was inputted into the trained 
model. Results demonstrate that the improved model could detect 98% of patients with pneumonia and 97% of patients 
without pneumonia. The accuracy rate, precision rate, and sensitivity of the model were generally improved. Lastly, the 
training and test results of VGGNet, SqueezeNet-Elus, SqueezeNet-Relu, and the improved EfficientNet-B4 models were 
compared and evaluated. The improved EfficientNet-B4 model achieved the highest comprehensive accuracy rate, 
reaching 92.95%. The proposed method provides some references to the application of the CNN model in image 
classification and recognition. 
  
Keywords: Attention Mechanism, Convolutional Neural Network(CNN), Data Augmentation, EfficientNet model 
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1. Introduction 
 
With the spreading of the Corona Virus Disease 2019 
(COVID-19) [1] around the world as a public health 
emergency with a wide range of infection, rapid 
transmission and difficult control, the accurate and quick 
recognition and diagnosis of COVID-19 at a low cost 
become the key and difficult problem to solve during the 
medical crisis.  

The diagnosis of pneumonia shows that X-ray image is 
an important diagnosis standard, and the reading efficiency 
directly determines the detection rate of lesion and working 
efficiency. Applications of artificial intelligence technology 
in disease screening can optimize some medical processes 
under the assistance of a computer [2]-[5]. Abundant 
information can be obtained from fast analysis as long as 
data are collected and the trained model is inputted. Later, 
more accurate auxiliary diagnosis is realized by combining 
with  the  background  data  for comparison, thus enabling to 
achieve a more accurate diagnosis and prevent danger from 
happening. 

As the first deep neural network that is trained 
successfully, Convolutional Neural Network (CNN) [6] 
learns feature expression automatically through large-scaled 
sample data, which can effectively reduce network 

complexity and simulate the complicated hierarchical 
cognitive laws of the human brain. Recently, CNN has been 
widely studied in the field of computer vision, and some 
research progresses have been achieved in image 
classification. 

Especially in 2006, many improved models have been 
gradually developed after proposing deep learning theory, 
and they have been applied to the diagnosis and treatment of 
many diseases in the medical field. However, these models 
still have some problems, such as they contain abundant 
parameters to cause excessive training time, low accuracy, 
and overfitting of the model. 

EfficientNet [7] is a new generation of high-performance 
CNN model that is designed based on Neural Architecture 
Search (NAS) by Google in 2019. A mainnet was designed 
through architecture search. Moreover, the depth and width 
of the model, as well as the resolution of input images, were 
scaled by a simple yet highly effective compound coefficient, 
and then the ConvNet model was expanded. Finally, 
EfficientNet B0~B7 models were obtained, thereby 
improving the operation efficiency of the whole network. It 
can reach relatively high accuracy at extremely low 
calculation workloads. This can constrain the target 
computing resources while assuring the model training 
efficiency. That is, given the limited computing resources, it 
can achieve higher image classification accuracy. 

Studies on the intelligent intervention of COVID-19 
based on image-assisted diagnosis are in the stage of 
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continuous trial and there’s a promising application prospect. 
Based on the classification of the pathological images of 
pneumonia, the improved EfficientNet-B4 model was 
applied to X-ray image analysis in this study. The feasibility 
and effectiveness of the model in the automatic recognition 
of pathological images of pneumonia were verified by the 
experiment, aiming to assist doctors in completing diagnosis 
and relieving pressure of medical workers. 
 
2. State of the art 
 
CNN algorithm attracts wide attention because of its unique 
superiority in the field of image recognition. The diagnosis 
method based on Deep Learning (DL) [8] classifies images 
mainly through the deep network model, which is trained by 
Backpropagation (BP) [9]. Common basic classification 
models include VGGNet [10], Inception [11], ResNet [12], 
DenseNet [13], CapsNet [14], and EfficientNet. With the 
support of CNN, scholars at home and abroad applied 
relevant models to the classification and recognition of 
medical images and gradually improved the performance 
and accuracy of the network through continuous 
development and optimization [15]. 

After the performance evaluation of VGG19, 
MobleNetV2, Xception, Inception, and Inception-ResNetV2 
on the set that involved 1427 X-ray images, Apostolopoulos, 
et al. [16] detected patients with COVID-19 automatically in 
a small dataset through Transfer Learning. According to 
comparison, VGG is superior to other models. Das et al. [17] 
proposed a deep learning TLCoV model by combining the 
transfer learning technology. This approach achieved a 
precision rate of 96.65% and an accuracy rate of 97.67% in 
pneumonia cases.Wang et al. [18] proposed a COVID-Net 
model based on ResNet and analyzed how COVID-Net 
make reasonable prediction through an interpretable method. 
Narin et al. [19] presented three different diagnosis models 
of COVID-19 based on ResNet50, ResNet101, ResNet152, 
InceptionvV3, and Inception-ResNetV2, wherein the 
ResNet50 model achieved the highest classification 
performance through fivefold cross-validation. Pathak et al. 
[20] enhanced the results by using the smooth loss function 
on ResNet50 and overcame the overfitting problem by using 
Transfer Learning and tenfold cross-validation method. 
Montalbo et al. [21] proposed the light-weighted model 
Fused-DenseNet-Tiny by integrating mirror images of the 
DenseNet model, which solved the problem of extremely 
large parameters.Zhang et al. [22] used the CAAD model to 
perform pre-training on ImageNet to realize the 
classification and anomaly detection of COVID-19 patients 
and obtained the model sensitivity, specificity, and AUC of 
71.7%, 73.8%, and 83.6%, respectively. Nishio et al. [23] 
trained the model based on VGG16 by using the X-ray 
images of patients with COVID-19, hence finally achieving 
an accuracy rate of 83.6% on the test set, and sensitivity for 
COVID-19 pneumonia was more than 90%. Bhatt et al. [24] 
enhanced the image classification effects of VGG19 and 
EfficientNet-B3 models by using progressive adjustment and 
transfer learning technology, which achieved a relatively 
high accuracy rate. 

During the continuous improvement and applications of 
DL and CNN, artificial intelligence (AI) achieved 
considerable development progresses in the field of 
computer vision. However, it still has many problems, such 
as small dataset, excessive long training time of the model, 
and ignorance of evaluation indexes. Due to the rapid 
spreading of COVID-19, many researchers are devoted to 

the development of new automatic diagnosis systems for 
COVID-19. Combining with practical needs, this study 
attempted to improve the comprehensive performance of 
models in terms of classification, identification and 
diagnosis of pneumonia images. The improved EfficientNet-
B4 model was used to extract the features of each image in 
the data-enhanced training set, and a series of model 
operations and training, such as convolution, pooling, 
activation, and full connection, were also utilized. 
Combining with Adaptive Momentum (ADAM) 
optimization method, the overfitting effect was minimized, 
and classification effectiveness was strengthened. 

The reminder of this study is organized as follows. 
Section 3 elaborates the experimental design and 
implementation process of algorithms. Section 4 introduces 
the classification and evaluation indexes of the model, 
analyzes the model training and test results, and compares it 
with the test results of three other classical models. Section 5 
summarizes the study and draws the corresponding 
conclusion. 
 
3. Methodology 
 
3.1 Experimental design 
 
3.1.1 Datasets 
All chest X-ray images were selected from the public data of 
a group of retrospective studies on Kaggle. The dataset 
contains 5,856 X-ray images (JPEG) and was classified into 
3 documents. A total of 5216 images in the training set, 16 
images in the validation set, and 624 images in the test set. 
Tags of images in each document were divided into 2 classes, 
namely, Pneumonia or Normal. 

To analyze the chest X-ray images, all were screened, 
and quality was controlled by eliminating all low-quality or 
unreadable scanning. Next, image-based diagnosis was 
graded by two professional physicians, and the classification 
tags of images were recorded. To solve possible scoring 
errors, a third expert was invited to examine the test set [25]. 
 
3.1.2 Blocking treatment of data images 
The original images in the dataset have tens of millions of 
pixels. Thus, analyzing the images directly is difficult due to 
excessive image size. Moreover, the image background 
accounts for a high proportion, indicating that the 
information is excessive. This also increases the model 
training cost significantly. In this study, Mask R-CNN [26] 
was used to implement object detection and positioning in 
images, hence realizing the goal of producing high-quality 
practical segmentation while detecting targets in images 
effectively and thereby dividing the clipping images into 
blocks. Small-sized images were obtained through non-
repeated sampling on different sizes of case images 
according to a fixed size. The gained results were processed 
by binarization. Images were filtered on the basis of the 
effective information area in images. 
 
3.1.3 Data Augmentation 
Due to limited sample size referred by the dataset and 
imbalanced sample proportions in the training set 
(pneumonia cases are almost three times of normal cases) 
(Fig. 1), a series of transformation operations of images was 
performed through Data Augmentation [27], thus finishing 
data expansion in the dataset with some randomness. 
Without changing the original texture structure, 
organizational morphology, and other symbolic features of 
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the images, high learning efficiency with fewer samples and 
decreased overfitting phenomena of the model were 
effectively achieved, thus avoiding deviations. 
 

 
Fig. 1. Histogram of quantities of different image types among samples 
in the training set 
 
3.1.4 EfficientNet model design 
MBConv is the main component of EfficientNet model [28]. 
In MBConv, an optimization block can make models 
squeezed and activated to realize the effect of adding an 
attention mechanism into the model. Moreover, a composite 
coefficient was introduced to control the scaling of model 
structural parameters. The overall design of the EfficientNet 
[7] is: 

The convolutional layer is expressed as: 
 

                                           (1) 
 

where  denotes the output,  expresses the tensor of 
<C,W,H> input, and  represents various operations of 
convolution. (C, W, and H are number of image channels, 
image width, and image height, respectively.) 
A CNN model can be expressed as a list of a series of 
convolutional layers. 
 

         (2) 
 

Given that a CNN usually can be expressed as several 
stages, the convolutional operations in each stage have the 
same properties. Therefore, a neural network can be 
expressed as: 
 

                                (3) 

 
where  means that the convolution is repeated by  

times in Stage i. 
A  conventional  CNN  aims  to  find  the  optimal  

network structure , while EfficientNet aims to find the 
best  when  is fixed. To improve model 
accuracy to the maximum extent under limited resources, 
EfficientNet defined the optimization goal as the following 
model, which is limited by the condition that 
 

        (4) 

 
where d, w, and r are the depth and width of the network 

model, as well as the resolution of the input images. To 
solve simultaneous changes in these three parameters, a 

composite coefficient ( ) was set to control d, w, and r 
uniformly.  
 
depth:                                                                   (5) 
 
width:                                                                  (6) 
 
resolution:                                                           (7) 
 

The limitations are  and . The 
composite coefficient ( ) is a user-oriented hyper-
parameter, and its value is corresponding to resource 
consumptions. 
 
3.2 Implementation process of the algorithm 
 
3.2.1 Model preprocessing 
The used dataset contains 5216 images in the training set, 16 
images in the validation set, and 624 images in the test set. 
Considering that the images in the validation set are few and 
develop the reverse control effect of the validation set on 
model training is difficult, 10% of the images were chosen 
randomly from the training set and divided into the 
validation set. The whole dataset was divided into layers. 
According to the fivefold cross-validation method, the 
training and validation datasets were divided into 90% 
training and 10% validation. Finally, 4694 images in the 
training set, 522 images in the validation set, and 624 images 
in the test set were obtained. 

Images were transformed into images with 64×64 pixels 
through preprocessing. After color normalization, images 
were changed images with 30° random rotation, 20% 
random scaling and 10% random horizontal displacement, 
10% random vertical displacement, and random horizontal 
flip through data enhancement, thus getting the dataset after 
expansion. 
 
3.2.2 Model construction 
 
Based on the basic framework of EfficientNet-B4 model in 
Section 3.1, the model was improved. Specifically, the stem 
layer was used in preliminary feature extraction. The block 
layer was used to apply the attention mechanism on the 
results of depth separable convolution. The global layer was 
applied to reduce the parameter quantity of the model, which 
is convenient for training and increases speed. Additionally, 
two Fully Connected (FC) layers with ReLu activation 
functions were added in this study, and model overfitting 
was avoided by setting 30% of loss rate. Finally, a FC layer 
was applied for binary classification, and the target image 
classification system was established using the sigmoid 
activation function. The total parameter number was 
17,790,681, which included 125,200 non-training parameters 
and 17,665,481 training parameters. 
 
3.2.3 Model training and test 
The 4,694 images in the training set were inputted in 147 
times, 32 non-repeated images at random each time, and a 
total of 15 epochs were trained. Based on the constructed 
network model, the cross entropy loss function was applied 
to train the model during the whole optimization process. 
Learning rate was updated dynamically by combining with 
ReduceLROnPlateau to update the learning rate dynamically 
and use the ADAM optimizer to enhance performance. BP 
was implemented according to the predicted results and the 
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loss function of the training set. Parameters were adjusted in 
the reverse manner layer by layer, and the results were 
assessed through fivefold cross-validation. The optimal 
model was recognized and used to verify the test. After 
finishing model training, the improved and finally optimized 
EfficientNet-B4 model was applied to test the dataset. The 
tag prediction results of each image were obtained through 
the network model to verify its performance. 
 
 
4. Result Analysis and Discussion 
 
4.1 Model evaluation indexes 
To verify the effectiveness of the algorithm, the tags of the 
output results after the test set was inputted into the model 
were compared with real tags, thereby obtaining various 
evaluation indexes of the model in the pathological image 
classification of pneumonia. The evaluation indexes [29] for 
binary classification included: true positive (TP), false 
positive (FP), false negative (FN), and true negative (TN). 

Accuracy rate reflects the proportion of accurately 
classified prediction samples in the total samples. 
 

                                       (8) 

 

Precision rate reflects the probability of actually positive 
samples in all samples that are predicted positive. 
 

                                                    (9) 

 
Recall rate reflects the probability of predicted positive 

samples in actual positive samples. 
 

                                                    (10) 

 
 value refers to the harmonic mean of precision rate 

and recall rate. 
 

                                           (11) 

 
The accuracy rate, precision rate, recall rate, and  

value are the main parameters that determine the 
performance of the model. 
 
4.2 Model training results and analysis 
Training was performed by using the basic model in Section 
3.2 and the improved model. The model training results 
before and after improvement are listed in Tables 1 and 2, 
respectively. 

 
Table 1. Model training results before improvement 

Epoch Time Loss Accuracy Recall Precision Val_Loss Val_Accuracy Val_Recall Val_precision 
1 480 s 0.2922 0.8796 0.7481 0.6301 0.7728 0.8314 0.7894 0.7464 
2 515 s 0.145 0.947 0.8092 0.7871 0.0456 0.8084 0.8199 0.8166 
3 524 s 0.1221 0.9572 0.8271 0.8342 0.1569 0.931 0.8421 0.8485 
4 462 s 0.1091 0.9629 0.8521 0.8585 0.101 0.9617 0.8628 0.868 
5 497 s 0.1206 0.954 0.8673 0.8712 0.1754 0.9521 0.8734 0.8764 
6 521 s 0.0754 0.9717 0.8807 0.8805 0.0022 0.9713 0.8865 0.8863 
7 512 s 0.0637 0.9787 0.892 0.892 0.0661 0.9674 0.8961 0.8966 
8 536 s 0.0623 0.9806 0.9004 0.901 0.0336 0.9751 0.9044 0.9046 
9 684 s 0.0542 0.9815 0.9077 0.908 0.0059 0.9789 0.911 0.9112 

10 700 s 0.0526 0.9823 0.9138 0.9142 0.0451 0.9693 0.9161 0.9165 
11 733 s 0.0503 0.9813 0.9182 0.9188 0.1943 0.9789 0.9203 0.9209 
12 687 s 0.0478 0.983 0.9222 0.9229 0.0116 0.9808 0.9241 0.9246 
13 729 s 0.0393 0.9853 0.9262 0.9265 0.0036 0.977 0.9279 0.928 
14 689 s 0.0398 0.9851 0.9293 0.9293 0.0626 0.977 0.931 0.9309 
15 613 s 0.04 0.9836 0.9323 0.932 0.0082 0.9732 0.9334 0.9332 

 
Table 2. Model training results after improvement 

Epoch Time Loss Accuracy Recall Precision Val_Loss Val_Accuracy Val_Recall Val_precision 
1 437 s 0.2586 0.892 0.7163 0.6646 1.5262 0.8525 0.7739 0.7942 
2 427 s 0.1666 0.9382 0.7916 0.8185 0.187 0.9444 0.8177 0.8381 
3 419 s 0.136 0.9519 0.8333 0.8532 0.0328 0.9521 0.8477 0.8615 
4 392 s 0.1176 0.9582 0.8579 0.8677 0.002 0.9636 0.8677 0.8745 
5 358 s 0.1096 0.961 0.8745 0.8798 0.0569 0.9693 0.8802 0.8843 
6 422 s 0.0957 0.967 0.8832 0.8898 0.0011 0.9789 0.8878 0.8949 
7 331 s 0.09 0.9683 0.8916 0.8981 0.0445 0.8602 0.8956 0.8978 
8 611 s 0.0933 0.9687 0.8985 0.898 0.0094 0.977 0.9016 0.9008 
9 630 s 0.0898 0.9702 0.9049 0.9033 0.2487 0.9157 0.9069 0.9036 

10 677 s 0.0723 0.9704 0.9096 0.9039 0.0295 0.9808 0.9113 0.9062 
11 623 s 0.0533 0.9817 0.9139 0.9085 0.0006 0.9866 0.9167 0.9111 
12 301 s 0.055 0.9817 0.9189 0.9134 0.0006 0.9789 0.9206 0.9156 
13 301 s 0.0515 0.9819 0.9224 0.9176 0.0182 0.9732 0.9237 0.9194 
14 301 s 0.0498 0.9842 0.9253 0.9214 0.0254 0.9808 0.9266 0.9232 
15 299 s 0.0382 0.9864 0.9283 0.925 0.0003 0.9847 0.9296 0.9265 

 
This model experienced two stages of result verification. 

One is the fivefold cross-validation, in which the repeated 
datasets were applied for training and test. The other is to 

verify the model performance by using an independent 
validation set. According to the comparison of data in Tables 
1 and 2, the performance of the improved model is enhanced. 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
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=
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4.3 Model test results and analysis 
The test set data were inputted into the model trained by the 
EfficientNet-B4 network before and after the improvement, 
thereby getting prediction tags of the model to images in the 
test set. Through comparative computation with actual tags, 
the confusion matrices of the prediction results of the model 
before and after the improvement based on the test set are 
shown in Figs.2 and 3. The model test results before and 
after the improvement are listed in Tables 3 and 4. 
 

 
Fig. 2. Confusion matrix of the prediction results of the model test set 
before improvement 
 

     
Fig. 3. Confusion matrix of the prediction results of the model test set 
after improvement 
 
Table 3. Model test results before the improvement 

  Precision Recall f1-score Support 
Pneumonia  0.85 0.98 0.91 390 

normal 0.96 0.71 0.82 234 
accuracy — — 0.88 624 

macro avg 0.9 0.85 0.86 624 
weighted avg 0.89 0.88 0.88 624 

 
Table 4. Model test results after the improvement 

  Precision Recall f1-score Support 
Pneumonia  0.91 0.98 0.95 390 

normal 0.97 0.84 0.9 234 
accuracy — — 0.93 624 

macro avg 0.94 0.91 0.92 624 
weighted avg 0.93 0.93 0.93 624 

 
According to performance evaluation results and model 

test results above, the recall rate of the model before 
improvement for patients with pneumonia reaches 98%, the 
precision rate for normal people reaches 96%, and the 
comprehensive accuracy rate is 88%. The recall rate of the 
model after improvement for patients with pneumonia 
reaches 98%, the precision rate for normal people reaches 
97%, and the comprehensive accuracy rate is 93%. In a 
word, the improved model has better abilities in classifying 
and identifying the X-ray images of pneumonia. 
 

4.4 Model calculation results and comparison 
To verify the classification and identification effects of the 
improved model to pneumonia images, the feature extraction 
network models VGGNet, SqueezeNet-Elus, SqueezeNet-
Relu and EfficientNet-B4 were chosen. The accuracy rate 
and training time of the training set were compared, thereby 
obtaining the accuracy rates of the four models on the 
training set Fig. 4. 

 
Fig. 4. Accuracy rates of the four models on the training set 
 

The accuracy rates and training time of the four models 
are listed in Table 5. 
 
Table 5. Comparison of accuracy rates and training time of 
the four models 

Model Name Accuracy Training Time 
EfficientNetB4 92.95% 1:51:49 s 

VGGNet 90.54% 8:37:48 s 
SqueezeNet-Relu 88.94% 15:18 s 
SqueezeNet-Elus 91.51% 14:22 s 

 
According to the comparison of data, although the 

improved EfficientNet-B4 model fails to achieve the fastest 
network training, the training efficiency and comprehensive 
performance are better. 
 
 
5. Conclusions 
 
This study combines CNN with medical image classification 
and recognition to alleviate the impact of COVID-19 on the 
medical system, and the EfficientNet-B4 basic model was 
improved for the automatic classification of pneumonia 
images. Some conclusions could be drawn as follows: 

(1) The comprehensive performance of the improved 
EfficientNet-B4 model is increased by 5% compared with 
that before the improvement. Moreover, comprehensive 
evaluation indexes, including accuracy rate, precision rate, 
recall rate, and F1 value, are improved to some extent. It 
achieves high-efficiency learning in complicated images 
with relatively few calculation resources. 

(2) The recall rate of the improved EfficientNet-B4 
model for patients with pneumonia reaches 98%, and its 
precision rate to normal people reaches 97%. The improved 
EfficientNet-B4 model has higher sensitivity compared with 
the model before improvement, indicating that this model 
has considerable application potentials in the diagnosis and 
assessment of diseases. 

(3) The improved EfficientNet-B4 model is compared 
with the training and test results of three other classical 
models. Its findings show that although the improved 
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EfficientNet-B4 model has no absolute advantages in 
training time, the iteration convergence efficiency and 
accuracy rate at training are higher than those of the three 
other models. This result reveals that the improved 
EfficientNet-B4 model is feasible in classifying and 
identifying the pathological images of pneumonia to some 
extent. 

To sum up, the automatic image classification algorithm 
based on the improved EfficientNet-B4 model has some 
references to medical diagnosis, which requires image 
identification with human eyes. Considering that the used 
datasets come from only one hospital, it needs more sample 
data support to increase the universality of the model. 

Additionally, performance of the improved EfficientNet-
B4 model is determined on the basis of the weights of the 
pre-trained models to a very large extent. Hence, with the 
continuous optimization of the CNN algorithm, the 
performance of the model will be strengthened during test on 
dataset which has the more advanced AI technology and 
great system structure. It can play a greater role in 
developing a biomedical imaging exploration and analysis 
system. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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