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Abstract 

 
The phenomenal growth of big data in social applications and IT software platforms over the last few decades has 
emphasized the significance of a systematic requirement engineering strategy for analyzing the requirements of data-
intensive systems, that deliver valuable insights to business entities. Classification of data-intensive requirements can aid 
in the development of a more systematic and transparent requirements engineering process, resulting in increased 
requirement compliance and software project completion. As a result, this paper provides a unique approach Word2Vector 
based Fast Similarity Search (WV-FaSS) for improving the process of software requirement categorization for data-
intensive systems in two phases. Word2Vec begins by taking a corpus of software requirements as input and producing a 
well-trained high-dimensional vector space. Following that, the vectors that were extracted semantically are indexed. The 
query vector is then used to look for the most similar vectors within the index, and lastly, similar documents are obtained. 
Experiments on two benchmark datasets, PURE and WARC, as well as a dataset from the private IT industry, demonstrated 
that our model outperformed state-of-the-art techniques with precision, recall, and F1 values of 0.91, 0.9, and 0.9, 
respectively. Thus, the proposed model WV-FAISS enables developers to rapidly search for embeddings of similar 
requirements that are similar to one another, while also increasing the scalability of similarity search methods. 
 
Keywords: Data-intensive requirements, Word2Vector, FaSS, Requirement Classification, Sematic Similarity Search 
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1. Introduction 
 
In essence, big data is a vast collection of unstructured and 
organized data that is challenging to process using 
conventional methods [1]. By evaluating this vast amount of 
data, Data-Intensive Applications (DIA) assist corporate 
organizations in making predictive and informed 
recommendations. Business value is discovered through the 
requirements for big data applications. Thus, to elicit software 
requirements for the DIA, it is crucial to define the projects' 
implications early on [2]. Developing data-intensive systems 
necessitates the collection of specialized requirements for 
massive data. As a result, Requirement Engineering (RE) 
enables collaboration with diverse stakeholders and business 
analyst experience in analytical thinking to identify and 
adhere to the value and importance of each requirement. 
Because, according to statistics, RE is responsible for 60% of 
software development errors. As a result, gathering pertinent 
requirements reduces the risk associated with software-
intensive initiatives and hence increases quality [3]. 
Furthermore, requirements are iterative, dynamic, interactive, 
and never-ending [4]. Since the majority of requirements are 
expressed in natural language, developers, analysts, and 
software architects always strive to manually classify them, 
as it is time-consuming and error-prone. These activities 
necessitate specialization, education, experience, and domain 
knowledge [5]. Developers can organize and structure 
requirements for feature extraction, classification, and speech 
recognition by applying Natural Language Processing (NLP). 
Appropriate requirement classification based on the Software 
Requirement Specification (SRS) improves the quality of 

software-intensive products [6]. Nonetheless, the 
requirements engineering approach for traditional and big 
data business intelligence systems is similar in many ways 
and distinct in others. To comprehend and classify the 
requirements for end-user applications, a very clear 
description is required [7]. 
 In DIA, requirements must be processed independently 
and precisely categorized to increase requirement quality and 
minimize budget overruns. It is necessary to develop 
techniques for automatically classifying the elicited 
requirements into distinct classes [8]. According to Manal et 
al. [9], machine learning (ML) approaches to requirement 
document classification outperform classical natural language 
processing approaches. However, a systematic level of 
comprehension remains insufficient. Consequently, diverse 
classification schemes are utilized to differentiate between 
functional and non-functional needs [10]. However, there was 
no automated technology to enable the analysis and 
management of data-intensive requirements, which resulted 
in a variety of negative implications for DIA, including 
budget overruns, quality and security concerns, and customer 
unhappiness. Additionally, since the amount of data 
generated on the internet continues to grow exponentially, it 
is difficult for developers to identify and extract relevant 
information from the SRS, particularly textual requirements, 
due to their complex semantic meaning. Nonetheless, 
building DIA is a more difficult process as the corpus to be 
classified grows to millions of petabytes daily on the internet. 
As a result, a novel technique called WV-FAISS is proposed 
for classifying and retrieving high-dimensional vectors. 
Word2Vec converts an unstructured source corpus to labeled 
data and then learns how words are represented in a 
classification challenge. Data may be supplied into the model 
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in real-time and requires minimal filtering, requiring little 
memory. and also maintains the semantic links between the 
vectors. Even novices can grasp the concept and carry it out. 
As a result, a fine-grained technique called WV-FaSS takes 
use of data parallelism by parallelizing the processing of 
individual items, or words in a single document. This 
significantly enhances the search for k nearest neighbors in 
textual datasets and is easily mappable to newer highly 
threaded accelerators such as manycore GPUs. 
 The Business Analysis Book of Knowledge (BABOK) 
classifies requirements into four categories [11], as illustrated 
in Fig. 1. 

Ø Business Requirements – assertions of goals, 
objectives, and outcomes that justify initiating a 
change. 

Ø Stakeholder Requirements – enumerate the 
stakeholders' requirements that must be addressed to 
fulfill the business requirements. 

Ø Solution Requirements – define the features and 
characteristics of a solution that satisfies stakeholder 
requirements. 

Ø Transition Requirements - specify the 
competencies and circumstances that the solution 
must meet to facilitate the transition from the 
present to the future state, but which are no longer 
required after the change is accomplished. 

 
 

 
Fig. 1. BABOK Classification Schema 
 
 
 The research focuses on the distinction between Business 
Requirements (BR), Stakeholder Requirements (STR), 
Solution Requirements (SR), and Transition Requirements 
(TR), a subject that has been extensively investigated and 
whose theoretical foundations are currently being debated. 
The study mainly aims to retrieve the transition requirements 
for real-life scenarios. The rationale for emphasizing the 
importance of retrieving transition requirements is that 
neglecting their presence can have a significant real-world 
impact, resulting in a deteriorating product. They differ from 
other sorts of requirements in that they cannot be specified 
until a solution has been constructed. These requirements 
have a shorter lifespan than others since they only apply 
during solution transitions. Transition needs are handled in 
the same way as other requirements. The changes are in the 
sources, the type of changeover demands, and the fact that 
they become obsolete after the preceding solution is 
eliminated.  
 The following contributions are presented in the paper. 
 

Ø We manually annotate 3500+ requirements from the 
widely used PURE dataset [12], the WARC dataset 
[13], and one industrial project. Our annotations are 
based on the BABOK taxonomy [11], which allows 
a requirement to include organizational needs as 
well as functional and quality characteristics. 

Ø To define the baseline, annotated requirements are 
pre-processed and extracted into high dimensional 
feature vectors using Word2Vec. The vectors that 
were extracted semantically are indexed using 
FaSS. The query vector is then used to look for the 
most similar vectors within the index, and lastly, 
similar documents (transition requirements) are 
obtained. 

Ø The proposed WV-FAISS framework is validated 
on the benchmark datasets PURE and WARC and 
the performance measures are shown. 

 
 
2. Related Work 
 
This section describes related work on software requirement 
classifications and provides an outline of how semantic 
similarity search is used in the field of big data software 
engineering. 
 According to studies, a failure to comprehend and classify 
requirements is the primary cause of budget and time 
overruns, resulting in software system failure. All software 
requirements must be expressed completely and consistently, 
including specifications of all necessary services. On the other 
hand, developers must carefully read, interpret, and discern 
those requirements [14]. Initially, the process of writing and 
classifying software was carried out manually. Numerous 
modules and methodologies have been used to automate the 
process of requirement writing and classification over the last 
two centuries. Information Retrieval (IR), Genetic 
Algorithms, and Clustering Algorithms, among others, have 
been used to solve software requirement problems [15, 24]. 
All of the previous state-of-the-art methodologies are 
contingent on the developer's experience and background. 
This creates difficulties for the business and its stakeholders 
as a result of potential complications. 
 The success of a software system is highly dependent on 
compliance with non-functional requirements because when 
they are overlooked or neglected, severe complications 
develop. Slank et al. [25] offered a tool-based strategy to 
address this issue, namely the NFR finder. This tool 
categorizes and extracts sentences from natural language 
documents according to their NFR category. While the NFR 
finder enables analysts to effectively extract NFRs from 
available natural language materials via automated natural 
language processing, it is limited to text. It is unable to parse 
images and tables contained within the unconstrained 
document currently open. Similarly, security-related issues 
must be carefully examined while developing software that 
fulfills the needs of the consumer. Security requirements have 
been classified using text mining techniques and prediction 
models [26]. In 2017, Liang et al. [27,28] used feature 
extraction and machine learning techniques to automatically 
categorize user review needs, concluding that AUR -BoW 
with Bagging achieves the best classification results. Using 
semi-supervised and unsupervised machine learning methods, 
requirements can also be accurately identified as FRs and 
NFRs. 
 Additionally, a semi-supervised classification algorithm 
can be utilized to automatically extract the FR and NFRs from 
the SRS. In comparison to supervised techniques, semi-
supervised techniques produce superior outcomes because 
they use only a little amount of labeled data. In the former, all 
data sets must be labeled to facilitate classification. One such 
example is the app store, where requirements are identified as 
functional or non-functional using a self-labeling algorithm as 
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part of a semi-supervised classification technique [29]. Semi-
supervised classification approaches to aid in appropriately 
classifying requirements. Additionally, it will be enhanced in 
the future through the use of unsupervised learning 
approaches. 
 
2.1 Requirement Pre-processing 
SRS is composed of massive amounts of data of various types, 
all of which are heterogeneous by nature and include 
inconsistent values. Pre-processing is a critical step that must 
be accomplished prior to utilizing the data for model training. 
Tokenization, stop words removal, error correction, 
normalization, and vectorization are the primary pre-
processing stages [30,32]. Uysal et al. [31] tested the 
effectiveness of a mixture of pre-processing approaches on 
two domains, e-mail, and news, in two distinct languages. The 
results indicate that depending on the domain and language 
investigated, selecting optimal combinations of pre-
processing activities greatly enhances classification accuracy. 
It is self-evident that pre-processing results in cleaner, more 
manageable data sets, which are required for any business 
organization to gain significant insights. 
 
2.2 Feature Extraction 
The feature extraction procedure converts text into feature 
vectors using NLP pre-processing techniques. It enhances the 
learning algorithm's accuracy and speed. Therefore, this 
section discusses the various feature extraction strategies and 
their limitations. Using the vector space approach to choose 
features decreases to feature space dimensions [33]. With a 
predetermined keyword set, feature extraction techniques 
such as TF-IDF, Bag of Words, and Word2Vec generate the 
weights of the words in the text [34].  One hot encoding 
technique transforms text into a vector by building a 
vocabulary. However, due to its memory requirements, it 
cannot collect contextual information [35].  
 The BoW is a simple and effective feature extraction 
technique. In BoW, texts are represented as a bag of words by 
counting the number of occurrences of each instance or word 
in the bag, regardless of sequence or grammar.  Bow assigns 
a value to each feature in the document, giving them equal 
weight. The model is also influenced by recurring elements 
rather than the document's relevance.  But its non-zero 
dimensions and big vocabulary size lead to a high sparse and 
dimensional feature vector [36,37].  TFIDF is determined by 
multiplying the term and inverse document frequencies, 
according to Qaisier et al. [38]. Terms having a high TF-IDF 
weight are deemed to be more significant than those with a 
lower TF-IDF score. Though TF-IDF is the most well-known 
and widely used formula for generating a vector descriptor 
with several normalized forms, it has certain disadvantages. 
TFIDF is unconcerned about a term's position in the text, its 
meaning, or its co-occurrences with other texts in the 
document. To address the limitations of TF-IDF, an extended 
form of Fuzzy based TF-IDF (FTF-IDF) is introduced in 
2019. FTF-IDF is a vector representation in which the TF-IDF 
components are supplied to the Fuzzy Inference System as 
inputs (FIS). Following the defuzzification stage, weight 
terms are created as crisp outputs. FTF-IDF assigns semantic 
meanings to the documents' terms [39]. However, it does not 
attempt to investigate the co-occurrences of other texts inside 
the documents. 
 In the same year, Lakshmi et al. [40] introduced term 
weighting approaches to represent text documents using Term 
Frequency - Ranking of Term Frequency (TF-RTF) and Term 
Frequency - Ranking of fuzzy logic with the semantic 

relationship of terms (TF-RFST). It outperforms word count, 
Term Frequency-Inverse Document Frequency (TF-IDF), 
Term Frequency-Inverse Corpus Frequency (TF- ICF), Multi-
Aspect TF (MATF), BM25 in terms of accuracy, recall, and 
F1 measure. However, it does not focus on the syntax of the 
phrases. Also, Ricardo et al. [41] started YAKE without a 
trained huge corpus. It supports many languages and 
documents of any length. But it can't find explicitly assigned 
keywords in the text. Okapi BM25 is a ranking function that 
estimates document relevance to a search query regardless of 
document proximity. Using Twitter data, Kadhim et al. [42] 
found that TF-IDF outperforms BM25 in terms of F1 
measure. A large corpus cannot use BM25. 
 Since the weighting process is simply a linear 
transformation of feature vectors, adopting a weighting 
strategy is not required. In a nutshell, researchers can utilize 
any of the text feature extraction strategies or a hybrid of 
techniques based on the requirements of their study, as each 
method has its pros and cons [43]. 
 
2. 3 Software Requirement Classification 
The sub-section consists of various classification techniques 
suggested by the researchers to classify the requirements 
automatically. In 2019, Rahman et al. [44] used a variety of 
machine learning approaches to completely extract NFR from 
the SRS document. According to the statistical study, the 
SVM classifier produces the best results with a precision of 
0.66, a recall of 0.61, and an accuracy of 0.76. The trials used 
the well-known PROMISE dataset, which exhibits an 
imbalanced distribution of FRs and NFRs. Lima et al. [45] 
developed the PROMISE exp repository by expanding the 
PROMISE dataset. Once more, Edna et al. [46] conducted a 
comparative analysis of various machine learning algorithms 
such as Support Vector Machine (SVM), KNN (K Nearest 
Neighbour), Decision Tree, Multinomial Naive Bayes 
(MNB), and Logistic Regression (LR) to determine which 
algorithm is the best fit for automatically classifying 
requirements using PROMISE exp. The results indicate that 
the combination of TF-IDF with LR produces the best 
performance measures, with an F-measure of 91% for binary 
classification, 74% for 11-granularity classification, and 78% 
for 12-granularity classification. Before conducting any 
experimental analysis, researchers must verify whether the 
dataset being used is balanced or unbalanced because an 
unbalanced dataset leads to poor automatic classification of 
requirements.  
 Fuzzy Rough Set (FRS) is a sophisticated mathematical 
technique for handling uncertain data. The Fuzzy Rough Set 
based on Robust Nearest Neighbor (FRS-RNN) was proposed 
by Behera et al. [47]. Documents are first extracted using a 
modified CNN, then categorized using FRS-RNN. It 
outperforms SVM, Naive Bayes, DNN, and CNN. However, 
FRS-RNN hyperparameter tuning takes longer than other 
machine learning methods. An NFR sentence can have 
multiple classes. In 2019, Fuzzy Similarity KNN 
(FSKNN) was proposed for multi-label requirement 
categorization based on ISO/lEe 25010. On the other hand, 
the fuzzy similarity measure technique is employed to obtain 
a training pattern. The training data search set is utilized to 
find the K nearest neighbor. A maximum a posteriori (MAP) 
estimate will be used to categorize a test document [49]. A 
semi-supervised classification strategy was employed to 
classify the FR and NFR contained in the reviews on the APP 
store. The self-labeling algorithm assigns labels to the 
unlabelled data and classifies future reviews that aren't yet 
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seen. The findings, however, have not been empirically tested 
[49]. 
 In the field of RE, semantic information is extremely 
important. To create higher-quality semantic-based SRS, 
software engineers apply effective requirement classification 
approaches. For sharing and characterizing the classifications 
of requirements, a Requirement Classification Ontology 
(RCO) has been created. It is used to verify the semantic 
correctness of the RE process, maintaining consistency 
between the requirements [50]. In comparison to fuzzy rule 
mechanisms, machine learning approaches play a significant 
role in classifying requirements like FRs, NFRs, quality 
requirements, security requirements, legal requirements, and 
so on, according to various studies [51,52,53]. In 2020, 
Manuel et al. [54] found that Naive Bayes, K Nearest 
Neighbor, J48, and Natural Language Processing methods are 
the most frequently used classification algorithms. Academic 
databases and user reviews are the most popular training 
datasets. 
 Categorizing requirements by business organizational 
needs will enhance transparency in the RE process, promoting 
requirement fulfillment and finishing software-intensive 
projects. Contrary to popular belief, no research has been 
done to address the issues of extracting data-intensive system 
needs or to define criteria for categorizing requirements based 
on interactions. So, considering the technology's utility in 
software requirement classification, a new framework based 
on the BABOK classification schema [11] is established. 
Limiting the criteria to transition type, in particular, allows 
the engineers to focus on what the DIA developers care about 
while focusing on the ways to achieve it. To our knowledge, 
none of the existing techniques substantiate the resulting 
requirement categories.  This section's literature review 
emphasized the significance of semantic analysis search for 
identifying and retrieving data-intensive system 
requirements. Additionally, it demonstrated the inability of 
existing methodologies to produce satisfactory results with 
diverse datasets. Therefore, the proposed approach introduces 
a novel framework WV-FAISS for categorizing requirements 
and validating the categorized requirements. 
 
 
3 Classification Problem – Revisited 
 
Based on the BABOK classification schema [11], the 
classification problem is revisited as shown in Fig.2 and is 
applied to PURE [12], WARC [13] datasets, and one banking 
dataset obtained from the private sector. The PURE dataset 
consists of 79 SRS with 34,268 sentences. WARC dataset, 
web archive tool comprising of 89 SRS with at least 21,456 
sentences. The private dataset consists of 1512 requirements. 
We have selected 6876 requirements in total from the dataset 
and classified them as BR, STR, SR, and TRs.  
 Each dataset was individually labeled by two authors. The 
taggers then convened reconciliation meetings to resolve 
tagging disagreements. If the taggers were unable to agree on 
a final tag, a third author was consulted. The authors resolved 
all disagreements. Krippendorff's alpha (α) metric is a 
reliability coefficient developed to quantify the agreement 
between observers, coders, judges, or measuring equipment 
when making distinctions or assigning numerical values to 
normally unstructured events [55]. Table I shows the value of 
Krippendorff's alpha (α) for the tagged dataset. On average, α 
> 0.8 means the perfect agreement of the dataset by the raters. 
 The output of the tagging procedure following the 
reconciliation sessions are summarised in Table II and Fig.2. 

The datasets are sorted by the number of rows in each 
requirement. As previously stated, the taggers assigned the 
tags BR, STR, SR, and TR. Using these four identifiers, we 
next determined whether the row contains only BR, STR, SR, 
or TR. Following that, the reconciled classification is used to 
train and test the classifiers. 

 
Table 1. Krippendorff’s alpha (α) for the datasets 

Data
set 

Numb
er of 
Sente
nces 

Business 
Require
ments 
(BR) 

Stakehol
der 
Require
ments 
(STR) 

Solution 
Require
ments 
(SR) 

Transitio
n 
Require
ments 
(TR) 

PUR
E 
(Data
set 1) 

4352 0.79 0.81 0.86 0.81 

WA
RC 
(Data
set 2)  

695 0.84 0.83 0.78 0.89 

Bank
ing 
(Data
set 3) 

1829 0.80 8.87 0.81 0.84 

 
Table 2. Overall Tagged Dataset 

Data
set 

Numb
er of 
Sente
nces 

Business 
Require
ments 
(BR) 

Stakehol
der 
Require
ments 
(STR) 

Solution 
Require
ments 
(SR) 

Transitio
n 
Require
ments 
(TR) 

PUR
E 
(Data
set 1) 

4,352 452 1,089 1,826 986 

WA
RC  
(Data
set 2) 

695 97 187 278 133 

Bank
ing 
(Data
set 3) 

1,829 251 479 582 517 

Total 6,876 800 1,755 2,686 1,636 
 

 
Fig. 2 Distribution of Requirements over the datasets 

 
 

 Generally, there is some degree of imbalance between 
classes in any real data set. If the level of imbalance is pretty 
modest, there should be no impact on the performance of the 
knn classifier. As illustrated in Fig. 2, there is a considerable 
degree of imbalance between requirement categories in our 
dataset (classes). This is a frequent occurrence in 
requirements categorization. This issue prompted us to 
employ a variety of strategies for balancing the dataset to 
produce trustworthy classification results. The re-sample 
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technique is one of the most often used techniques for text 
instance balance. This strategy is based on over-sampling 
minority groups and under-sampling majority groups. To 
generate its synthetic data, this technique used the SMOTE 
strategy, which is based on the concept of nearest neighbors. 
SMOTE provides synthetic samples and instances for 
minority classes. This inevitably results in the creation of 
additional data that is identical to what we already have, 
without adding any diversity to our dataset. While under-
sampling procedures are achieved by randomly deleting a 
percentage of instances. Following the balancing task, the 
dataset became adequately balanced across categories, as 
illustrated in Fig. 3. 

 

 
Fig. 3 Distribution of Balanced Datasets to categories 

 
 

4 Implementation 
 
The Proposed design is shown in Fig. 4 which describes the 
four-phase implementation process. It starts from gathering 
the requirements from the stakeholders, business analysts, 
and later on, with the final approval of requirement analyst 
SRS is documented. In the second phase, SRS is given as an 
input for document pre-processing, then the features are 
extracted into high dimensional vectors using semantic 
embedding Word2Vec. Following that, the vectors that were 
extracted semantically are indexed using FaSS. The query 
vector is then used to look for the most similar vectors within 
the index, and lastly, similar documents (requirements) of 
various classes are obtained. 
 
4.1 Requirement Elicitation 
Requirement elicitation is used during the RE phase to elicit 
requirements for creating software-intensive projects from 
users, consumers, and other stakeholders. The requirements 
for DIAs should be identified early in the software life cycle. 
Conventional RE methods are incapable of meeting the 
organization’s needs for two primary reasons. To begin, it is 
primarily concerned with generic user requirements and 
provides no real insight into the features provided by big data 
that contribute to a more effective business intelligence 
solution. Second, the massive volume of data generated daily 
by various systems increases demand for various types of 
consumption. As a result, business analysts are included in the 
requirement elicitation process for DIAs to give business 
intelligence solutions to organizations. 
 During the framework’s early phase, a form was created 
to collect and document requirements from diverse 
stakeholders. The stakeholder form used to collect 
requirements is depicted in Figure 5. The form captures 
various details about a requirement, such as a stakeholder’s 
name, their role, the purpose of the requirement, the data 

required for the requirement, the stakeholder’s status, whether 
primary or secondary, the mode of interaction when entering 
the requirement, and the requirement’s description. As 
mentioned earlier, one dataset (banking) obtained from the 
private sector is gathered using the stakeholder form.  
 

 
Fig. 4 Proposed Framework of Requirement Classification using WV-
FAISS 
 

 
Fig. 5. Stakeholder Form 
 
 
 Requirement analyst determines the gap between what 
customers require and what the project stakeholders require, 
validates, and documents those requirements. During the 
analysis phase, the analyst classifies the requirements 
received via stakeholder form as stable or volatile in terms of 
their priority and feasibility [56]. The sample of requirements 
collected for the banking dataset is approved by the 
requirement analyst and is shown in Fig.6. 

 

 
Fig. 6. Sample of Requirements Approved by Requirement Analyst 
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4.2 Requirement Pre-Processing 
Requirement Pre-Processing is the second stage of the 
classification process. It immediately enhances model 
performance by reducing noise or ambiguous data taken from 
various sources. A series of actions are done to standardize 
textual data so that it can be used as an input by analytics 
systems and apps. Numerous pre-processing techniques such 
as stop word removal, tokenization, stemming, and 
lemmatization is available to help categorize requirement 
documents. The SRS text has been tokenized to make it more 
meaningful. Predefined stop words are eliminated after the 

conversion to meaningful tokens. Occasionally, even stop 
words can be defined by the user according to their intended 
usage. Eliminating such terms from the corpus decreases the 
dimension of the term space, which improves the model’s 
performance. Stemming is then used to determine the origin 
of a token within the corpus. This technique eliminates 
numerous suffixes, thus lowering the corpus tokens to save 
time and memory. Finally, lemmatization takes into account 
the morphological analysis of the tokens or words, reducing 
noise and accelerating the user’s task [57, 58]. 

 
Table 3. Corpus Pre-Processing 

RID Requirement Description Tokens 
1 The system shall have provision for the users to login 

with authentication 
['user', 'login', 'authentication'] 

2 The system shall have provision to accept the deposit 
money of the customers 

['accept', 'deposit', 'money', 'customer'] 

3 The system shall have provision to request customers 
to maintain sufficient balance 

['request', 'customer', 'maintain', 'sufficient', 'balance'] 

4 The system shall have provision to open an account for 
the customers 

['open', 'account', 'customer'] 

5 The system shall have provision to submit customers 
KYC forms 

['submit', 'customer', 'kyc', 'form'] 

6 The system shall have provision to submit income 
statements of the customers 

['submit', 'income', 'statement', 'customer'] 

7 The system shall have provision to set transaction 
limits for the transactions by the customers 

['set', 'transaction', 'limit', 'transaction', 'customer'] 

8 The system shall have provision for the customers to 
invest shares 

['customer', 'invest', 'share'] 

9 The system shall have provision for the users to pay 
automated bill payments 

['user', 'pay', 'automated', 'bill', 'payment'] 

10 The system shall have provision for the users to pay 
taxes 

['user', 'pay', 'tax'] 

11 The system shall have provision for the users to 
recharge the data card  

['user', 'recharge', 'data', 'card'] 

12 The system shall have provision for the customers to 
pay for travel through UPI 

['customer', 'pay', 'travel', 'upi'] 

13 The system shall have provision for the users to pay 
due (loan) 

['user', 'pay', 'due', 'loan'] 

14 The system shall have provision for the users to pay 
service charges 

['user', 'pay', 'service', 'charge'] 

15 The system shall have provision for the users to set the 
ATM, Mobile Pin, Net Banking transaction pin 

['user', 'set', 'atm', 'mobile', 'pin', 'net', 'banking', 'transaction', 'pin'] 

16 The system shall have provision for the customers to 
calculate EMI for loan 

['customer', 'calculate', 'emi', 'loan'] 

17 The system shall have provision for the customers to 
check the account balance of their account 

['customer', 'check', 'account', 'balance', 'account'] 

18 The system shall have provision for the users to 
withdraw the amount from their account 

['user', 'withdraw', 'amount', 'account'] 

19 The system shall have provision for the customers to 
view their weekly, monthly transaction details 

['customer', 'view', 'weekly', 'monthly', 'transaction', 'detail'] 

20 The system shall have provision for the customers to 
submit their details 

['customer', 'submit', 'personal', 'detail'] 

  
 All requirements in the corpus have gone through a pre-
processing step. Table 3 shows the requirements in the corpus 
before the pre-processing and after pre-processing. In this 
paper, Spacy, a free, open-source library for NLP is being 
used to process and understand a large volume of text. It 
performs the pre-processing steps and provides the fastest and 
more accurate syntactic analysis of any NLP released to date 
[59]. For example, the requirement specified in the second 
row of table 3 after pre-processing is converted into tokens. 
 
4.3 Feature Extraction 
The corpus after wrangling, cleaning up, and standardizing 
the textual requirements into a form (i.e., tokens) is taken up 

as an input for the feature extraction process. This stage 
converts the pre-processed corpus into machine-learnable 
numerical features representing the information contained in 
the requirements. Since the actual text is extremely complex 
and unstructured, each unique word or token is viewed as a 
distinct dimension, making classification algorithms difficult 
to apply. Word2Vec is capable of identifying correlations 
between words, both syntactic and semantic. The embedding 
vector is compact and versatile, and because it is 
unsupervised, it requires less human work to tag the data [60]. 
It accepts as input a huge corpus of tokens generated from the 
second phase of the normalization procedure shown in Table 
3 and generates a vector space of unique tokens. Words in the 
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vector space that occur in familiar settings in the corpus are 
clustered together. The sample of semantic vectors obtained 
from the tokens is depicted in Fig. 7. 
 

 
Fig. 7. Sample of semantic embedded vectors generated using 
Word2Vec 
 
 
 Spacy [59] parses full blocks of text and assigns word 
vectors from the loaded models seamlessly in Fig. 6. 
Word2vec enhances the quality of features by taking into 
account the contextual semantics of words in a text, hence 
increasing the accuracy of machine learning and requirement 
categorization. 
 
4.4 Requirements Discovery 
Requirement discovery is the final phase of the 
implementation process. In it, the semantically extracted 
vectors are indexed in memory. After converting the query set 
to a vector, it is utilized to find the most similar vectors within 
the index, and finally, similar requirements are retrieved using 
Fast Similarity Search (FaSS). FaSS compares the similarity 
values of a query vector to term vectors and delivers the 
matrices that fulfill the query conditions. The datasets 
examined in this article are textual. As it contains textual data, 
an inverted index can be used to swiftly locate documents that 
are similar to the query. Owing to the inverted index, 
considerable space is conserved. To begin, an inverted index 
is a built-in memory, assuming that the dataset is static and 
fits in memory. Let ν denote the input dataset's vocabulary, 
that is, the collection of different terms contained within the 
source set of documents Ɗin. The input data set £ is a 
collection of distinct term-document pairs (t, d) that appear in 
the entire dataset, with t ∈ ν and d ∈ Ɗin. The inverted index 
is stored in an array of size |£|. Once the set £ is in memory, 
each pair is inspected in parallel, with the result that each time 
a word is visited, the number of documents in which it occurs 
(document frequency - df) is increased and put in the array df 

of size | ν |. On the df array, a parallel prefix-sum is performed 
by tracing each value to the sum of the phrases preceding it 
and saving the outcomes in the indexing array. Then, each 
value of the index array refers to the location of the matching 
initial element in the inverted index, which will be used to 
store all (t, d) pairs in the order specified by the term. Then, 
given a query q, the proximity between q and Ɗin is 
determined using the cosine distance metric, and the top k 
documents that are closest to the query are retrieved. By 
selecting a subset of documents with a high degree of 
correlation to the query, a threshold can be established to 
eliminate any possibilities with a similarity value less than it. 
Thus WV-FaSS is a very fast and scalable tool for computing 
the top k nearest in high dimensional and sparse data.  

 
Fig. 8. Word Cloud of the Query Set 
 
 
 Fig.8 illustrates the word cloud of the query set created to 
retrieve the similar requirements matched to it. The word 
cloud of the query set is based on the banking (Dataset 3) 
obtained from the private sector. A threshold value of greater 
than 0.75 is set to retrieve the most similar documents 
(requirements) resulting from the proposed WV-FaSS. 
Results obtained using dataset 3 are presented in Table 4, 5, 
6, and 7 respectively. Table 4, 5, 6, and 7 shows the top 
retrieved documents of BABOK classification schema – BR, 
STR, SR, and TR with a similarity score. Results obtained 
using benchmark datasets are presented in section 5. As the 
proposed methodology mainly focuses on the retrieval of 
transition requirements Table 4 produces the top 15 
documents retrieved with a similarity score greater than 0.75. 
Tables 5, 6, and 7 illustrate the top 5 documents retrieved for 
each category with a similarity score greater than 0.75 
respectively. 

 
 
Table 4. Top 15 Documents Retrieved for Transition Requirement Type with Threshold value > 0.75 

S. No RID Requirement Description Requirement Type Similarity Score 
1.  53 The system shall have provision to accept deposits from 

customers 
Transition 0.95782 

2.  11 The system shall have provision to accept the deposit 
money of the customers 

Transition 0.95216 

3.  103 The system shall have provision to Invest capital Transition 0.94384 
4.  18 The system shall have provision for the customers to 

invest shares 
Transition 0.92737 

5.  20 The system shall have provision for the users to pay taxes Transition 0.89454 
6.  24 The system shall have provision for the users to pay 

service charges 
Transition 0.89127 

7.  11 The system shall have provision to accept the deposit 
money of the customers 

Transition 0.84769 
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S. No RID Requirement Description Requirement Type Similarity Score 
8.  19 The system shall have provision for the users to pay 

automated bill payments 
Transition 0.84128 

9.  22 The system shall have provision for the customers to pay 
for travel through UPI 

Transition 0.83179 

10.  53 The system shall have provision to accept deposits from 
customers 

Transition 0.81059 

11.  11 The system shall have provision to accept the deposit 
money of the customers 

Transition 0.80456 

12.  68 The system shall have provision for the staff to update 
the system software 

Transition 0.79854 

13.  104 The system shall have provision to Observe the stock 
exchange market 

Transition 0.77826 

14.     73 The system shall have provision for the staff to Exchange 
currency with other banks in case of cash shortage 

Transition 0.76891 

15.  70 The system shall have provision for the staff to Link 
account details with Aadhar 

Transition 0.75697 

 
Table 5. Top 5 Documents Retrieved for Solution Requirement Type with Threshold value > 0.75 

S. No RID Requirement Description Requirement Type Similarity Score 
1.  48 The system shall have provision for the users to login 

with authentication 
Solution 0.98721 

2.  137 The system shall have provision to view billing details Solution 0.96745 
3.  107 The system shall have provision to Check the financial 

statement of a customer   
Solution 0.95781 

4.  89 The system shall have provision to check for locker 
facility   

Solution 0.89745 

5.  54 The system shall have provision for the customers to 
submit their details 

Solution 0.85478 

 
Table 6. Top 5 Documents Retrieved for Stakeholder Requirement Type with Threshold value > 0.75 

S. No RID Requirement Description Requirement Type Similarity Score 
1.  39 The system shall have provision to get shares details in 

the stock market 
Stakeholder 0.97215 

2.  65 The system shall have provision to set the Regulation of 
foreign exchange 

Stakeholder 0.94578 

3.  92 The system shall have provision to set the Regulation of 
money 

Stakeholder 0.92147 

4.  104 The system shall have provision to Monitor Rotation of 
cash 

Stakeholder 0.87458 

5.  2 The system shall have provision to Limit the financial, 
legal, and reputational risks 

Stakeholder 0.81726 

 
Table 7. Top 5 Documents Retrieved for Solution Requirement Type with Threshold value > 0.75 

S. No RID Requirement Description Requirement Type Similarity Score 
1.  47 The system shall have provision to view the response 

time for the customer queries 
Business 0.97215 

2.  23 The system shall have provision to check the monthly 
transactions bills for customers feedback and responses 

Business 0.94578 

3.  73 The system shall have provision to monitor the cash flow 
per day, per week 

Business 0.92147 

4.  99 The system shall have provision to check whether the 
customer receives the banking product services in time 

Business 0.87458 

5.  81 The system shall have to evaluate the risk report 
documentation concerning loan approvals 

Business 0.81726 

 
 Table 8 and Fig. 9 depict the distribution of sample 
documents retrieved for a few queries. For example, the query 
“Get” retrieves 15 documents and queries “Deposit”, 
“update”, “check” and “display” retrieve 25, 18, 30, and 8 
documents respectively.  
 
Table 8. Sample Documents Retrieved for the Query set 

S. No Query  No of Documents 
Retrieved 

1.  Get 15 

S. No Query  No of Documents 
Retrieved 

2.  Deposit 25 
3.  Update 18 
4.  Check 30 
5.  Display 8 
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Fig. 9. Distribution of the Sample Documents Retrieved for Few 
Queries. 
 
Proposed Algorithm WV-FaSS 
Input: let f represent the stakeholder form, SRS be the 
Software Requirement Specification, i be the ith requirement 
in SRS 
Output: let BR, STR, SR, and TR represent the Business 
Requirement, Stakeholder Requirement, Solution 
Requirement, Transition Requirement, respectively. 
Data: Data set (x)  
Begin 
Generate a stakeholder form f  
foreach f in the sequence do 

Get the requirements ri from s € S where S= 
{Primary Stakeholder, Secondary Stakeholder}  

Requirement Analyst Form ß Save ri 
RID ß Assign ri   // RID stands for Requirement ID 
if ri is feasible and approved 

add ri to SRS 
else 

revert to stakeholders 
 endif 
endfor 
Function Preprocessing (SRS, Feature Vectors) 
Parse all the input requirements ri where i = 1,2,3…. n 
foreach requirement ri do 
 Tokenize ß ri 

 Store the Tokens as array 
 Create a customized stopword list 
 foreach T from ri 

 compare T and customized stopword list 
  if T = customized stopword list 
   remove T from ri 

  else 
   store the Tokens 
 Remove suffixes from the tokens 
 Siß Store tokens 
 endfor 
endfor 
 Function FeatureExtraction (Si, WV) 
Let Si be the tokens in corpus 
Read the model word2vec 
Set the parameters size =300, window = 2, min_count = 20, 
negative = 20, alpha = 0.03 
foreach Si in the corpus do  
 Build the vocabulary table v with d be the dimension of 
word vectors 
 Train the model 
 Return word vectors wv for the vectors Si in the corpus 
endfor 
Function Query Processing (wv, QS, ExD) 

Let QSi, be the Query Set where i = 1, 2…n, RD represent the 
requirement documents from SRS, ExD represent the 
extracted requirement documents 
Create Query_Set (QS) 
Create query vector qv € QS  
foreach query vector qv do 
 compute distances between qv and WV 
 sort the computed distances 
 select the k-nearest vectors concerning k small distances 
(SimS) 

if qv = Si in Corpus 
  Retrieve the documents (RDi) with SimS 

else 
  Return no match 
Assign ExD  ß RDi 
endfor 
end 
 
 
5 Experimental Results 
 
The experimental investigations were conducted on an 
Anaconda platform utilizing the Python programming 
language [62]. A Microsoft Windows Server 2012 R2 
communication system was used in conjunction with an Intel 
Xeon E5-2630 2.20 CPU and 64 GB of memory. A 
comparative evaluation of several approaches is performed in 
terms of precision, recall, and F1 measure on the benchmark 
datasets PURE and WARC. The results demonstrate that, 
across all benchmark datasets (PURE, WARC), the proposed 
approach WV- FaSS consistently outperforms the 
competition in terms of precision, recall, and F1 measure 
compared to TF-FaSS (Term Frequency- Fast Similarity 
Search) [61], Question Bank Similarity Searching System 
(QB3S) [63], Rider Spider Monkey Optimization Algorithm 
(RSOA) [64], Document Ranking Optimization (DROPT) 
[65], Fuzzy Logic IR (Information Retrieval) [66] 
respectively.  
 
5.1 Evaluation Metrics 
Evaluation metrics are mainly used to evaluate a model's 
performance. The performance of the proposed model WV-
FaSS is validated using mathematical methods that compare 
the model's predictions to the database's actual values. 
Precision is defined as the proportion of retrieved documents 
that are relevant to the user's information need. Precision can 
be formulated as in equation 1. 
 
𝑃 = |{#$%$&'()	+,-./$()0}∩{#$)#3$&$+	+,-./$()0}|

|{#$)#$3&$+	+,-./$()0}|
     (1) 

 
 A Recall is the proportion of documents that are 
successfully retrieved relevant to the query. Recall can be 
formulated as in equation 2. 
 
𝑅 =	 |{#$%$&'()	+,-./$()0}∩{#$)#3$&$+	+,-./$()0}

|{#$%$&'()	+,-./$()0}|
                    (2) 

 
 F – measure is the weighted harmonic mean of precision 
and recall. F1 score can be formulated as in equation 3. 
 
𝐹 = 2 ∗	 (5∗7)

(597)
                      (3) 
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Table 9. Precision, Recall, and F – measure Comparison 
S. 
No 

Algorithm Precision Recall F - 
measure 

1.  WV-FaSS 0.91 0.89 0.9 
2.  TF-FaSS 0.89 0.86 0.87 
3.  QB3S 0.78 0.76 0.77 
4.  RSOA 0.82 0.81 0.81 
5.  DROPT 0.84 0.83 0.83 
6.  Fuzzy Logic 

IR 
0.79 0.78 0.8 

 
 Table 9 shows the weighted average scores where the 
proposed WV-FaSS depicts the highest precision, recall, and 
F1 measures compared to other state of art approaches like 
TF-FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR. Fig. 
10, 11, and 12 illustrates the comparison of weighted average 
scores. 

 
Fig. 10. Comparison of Precision Scores 
 
5.2 Analysis of Computation Time 
Computation time is measured to process the SRS 
requirements concerning the query set. It is the total time 
spent on the calculating process for the user input query. 
Seconds are used to denote the computing time (s) and are 
expressed in equation 4. 
 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒 =
	3 (𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒	𝑁	𝑞𝑢𝑒𝑟𝑖𝑒𝑠):

(;<                   (4) 
 
Where, 
N – Total number of queries 
Computing time N queries – Time consumed for computing 
“N” queries 
 

 

 
Fig. 11. Comparison of Recall Scores 
 

 
Fig. 12. Comparison of F1 Scores 

 

 
Table 10. Analysis of Computation Time 

Number of 
queries 

Computation Time (s) 
WV-FaSS TF-FaSS QB3S RSOA DROPT Fuzzy Logic 

IR 
10 13 16 21 29 18 28 
20 29 34 38 41 48 52 
30 45 53 59 61 58 77 
40 68 89 91 98 109 98 
50 81 109 111 128 137 147 
60 101 121 129 157 168 185 
70 119 148 153 189 208 218 
80 134 167 176 211 239 245 
90 158 194 199 238 257 269 
100 185 209 212 259 287 297 

 
 
 Table 10 compares the computation time of the proposed 
WV-FaSS to that of other existing approaches such as TF-
FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR. The 
experimental procedure considers a variable number of query 
ranges. The queries in the range of 10 to 100 are considered 
from the SRS. When the number of queries is between 10 and 
50, the computational time for the proposed WS-FaSS 
technique is between 13 and 84 seconds, whereas the existing 
TF-FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR 
techniques take between 16 and 109 seconds, 29 to 128 

seconds, 18 to 137 seconds, and 28 to 147 seconds, 
respectively. The computation time analysis reveals that when 
the number of queries is small (less than 50), the proposed 
WV-FaSS technique minimizes computation time 
significantly; however, when the number of queries is large 
(greater than 60), the proposed WV-FaSS technique achieves 
a large deviation in computation time and significantly 
outperformed the existing techniques. 
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Fig. 13. Comparison of Computation Time 
 
 Fig. 13 describes the computation time comparison along 
with queries in the range of 50-100. From the analysis, it is 
observed that the lower computation time is attained for the 
WV-FaSS technique while compared with the existing 
techniques. On the whole, TF-FaSS outperforms well 
compared to DROPT, QB3S, RSOA, and Fuzzy Logic IR. 
However, 18.15% of computation time is minimized using the 
proposed WV-FaSS compared to TF-FaSS. 
 
 
6 Threat to Validity 
 
This section summarises the major constraints and threats to 
the validity of the experiments done. Although every effort 
has been made to ensure that the outcome was not impacted 
by adverse conditions, there are a few aspects to consider 
before recreating these experiments: 
 

Ø The primary threat is that dataset annotation was 
performed manually, implying some degree of 
objectivity and reliability. To mitigate this danger, a 
deliberate process was used to establish the ground 
truth. A guideline for annotation is created and 
many trial runs are undertaken, followed by a 
reconciliation of any discrepancies. Finally, 
assessed the annotation's quality using inter-rater 
agreement metrics. 

Ø Also, concerns about reliability pertain to the extent 
to which the data and analysis are dependent on the 
researchers. In theory, if another researcher repeats 
the same study later, the results should be identical. 
All findings in this study were derived by at least 
two researchers and then reviewed by at least three 
additional researchers. As a result, this threat has 
been diminished. 

Ø The framework is intended to be independent of the 
context in which it is implemented. However, 
because it has not been tested in a multitude of 
environments, it is possible that some unique 
restrictions have not been taken into consideration.  
Precision, recall, and F1 metrics are utilized to 
assess the effectiveness of requirement extraction 
and classification approaches to reduce the threat.  

 
 To recapitulate, the researchers claim that the risks to the 
results' validity have been mitigated, though the inferences 
should not be applied to all businesses. 
 
 
7 Conclusion  
 
The research findings indicate that it is critical to properly 
identify data-intensive requirements in SRS to ensure the 
successful development of software-intensive projects. The 
novelty of this paper lies in the retrieval of transition 
requirements, specifically for DIAs. The retrieval of pertinent 
data enables the development of significant insights into 
business intelligence difficulties. Vectorizing requirements 
documents using word embeddings enables semantic analysis 
of the texts. Along with Word2Vec, using a fast similarity (k 
-NN) search, it retrieved the requirements independently as 
business requirements, stakeholder requirements, solution 
requirements, and transition requirements. Additionally, it 
evaluated the extracted documents' impact by comparing their 
performance to metrics derived from a comparison of the 
proposed WV-FaSS to state-of-the-art methodologies using 
benchmark datasets. Precision, recall, and F1 have values of 
0.91, 0.90, and 0.90, respectively. As a result, retrieval of 
data-intensive requirements enables developers to more 
efficiently capture their initiatives by eliminating rework. The 
work is innovative since it does not compare the query 
document to all training documents. Rather than, an inverted 
index is utilized to discover documents that share vectors with 
the query vectors rapidly. Also, compared to existing 
strategies, the suggested WV-FaSS saves 18.15 percent of 
computing time. 
 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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