

Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

Research Article

Identification of Data-Intensive Systems Requirements using Semantic Similarity

Search

Renita Raymond and S. Margret Anouncia*

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Received 4 February 2022; Accepted 6 May 2022

Abstract

The phenomenal growth of big data in social applications and IT software platforms over the last few decades has
emphasized the significance of a systematic requirement engineering strategy for analyzing the requirements of data-
intensive systems, that deliver valuable insights to business entities. Classification of data-intensive requirements can aid
in the development of a more systematic and transparent requirements engineering process, resulting in increased
requirement compliance and software project completion. As a result, this paper provides a unique approach Word2Vector
based Fast Similarity Search (WV-FaSS) for improving the process of software requirement categorization for data-
intensive systems in two phases. Word2Vec begins by taking a corpus of software requirements as input and producing a
well-trained high-dimensional vector space. Following that, the vectors that were extracted semantically are indexed. The
query vector is then used to look for the most similar vectors within the index, and lastly, similar documents are obtained.
Experiments on two benchmark datasets, PURE and WARC, as well as a dataset from the private IT industry, demonstrated
that our model outperformed state-of-the-art techniques with precision, recall, and F1 values of 0.91, 0.9, and 0.9,
respectively. Thus, the proposed model WV-FAISS enables developers to rapidly search for embeddings of similar
requirements that are similar to one another, while also increasing the scalability of similarity search methods.

Keywords: Data-intensive requirements, Word2Vector, FaSS, Requirement Classification, Sematic Similarity Search
__

1. Introduction

In essence, big data is a vast collection of unstructured and
organized data that is challenging to process using
conventional methods [1]. By evaluating this vast amount of
data, Data-Intensive Applications (DIA) assist corporate
organizations in making predictive and informed
recommendations. Business value is discovered through the
requirements for big data applications. Thus, to elicit software
requirements for the DIA, it is crucial to define the projects'
implications early on [2]. Developing data-intensive systems
necessitates the collection of specialized requirements for
massive data. As a result, Requirement Engineering (RE)
enables collaboration with diverse stakeholders and business
analyst experience in analytical thinking to identify and
adhere to the value and importance of each requirement.
Because, according to statistics, RE is responsible for 60% of
software development errors. As a result, gathering pertinent
requirements reduces the risk associated with software-
intensive initiatives and hence increases quality [3].
Furthermore, requirements are iterative, dynamic, interactive,
and never-ending [4]. Since the majority of requirements are
expressed in natural language, developers, analysts, and
software architects always strive to manually classify them,
as it is time-consuming and error-prone. These activities
necessitate specialization, education, experience, and domain
knowledge [5]. Developers can organize and structure
requirements for feature extraction, classification, and speech
recognition by applying Natural Language Processing (NLP).
Appropriate requirement classification based on the Software
Requirement Specification (SRS) improves the quality of

software-intensive products [6]. Nonetheless, the
requirements engineering approach for traditional and big
data business intelligence systems is similar in many ways
and distinct in others. To comprehend and classify the
requirements for end-user applications, a very clear
description is required [7].
 In DIA, requirements must be processed independently
and precisely categorized to increase requirement quality and
minimize budget overruns. It is necessary to develop
techniques for automatically classifying the elicited
requirements into distinct classes [8]. According to Manal et
al. [9], machine learning (ML) approaches to requirement
document classification outperform classical natural language
processing approaches. However, a systematic level of
comprehension remains insufficient. Consequently, diverse
classification schemes are utilized to differentiate between
functional and non-functional needs [10]. However, there was
no automated technology to enable the analysis and
management of data-intensive requirements, which resulted
in a variety of negative implications for DIA, including
budget overruns, quality and security concerns, and customer
unhappiness. Additionally, since the amount of data
generated on the internet continues to grow exponentially, it
is difficult for developers to identify and extract relevant
information from the SRS, particularly textual requirements,
due to their complex semantic meaning. Nonetheless,
building DIA is a more difficult process as the corpus to be
classified grows to millions of petabytes daily on the internet.
As a result, a novel technique called WV-FAISS is proposed
for classifying and retrieving high-dimensional vectors.
Word2Vec converts an unstructured source corpus to labeled
data and then learns how words are represented in a
classification challenge. Data may be supplied into the model

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Jestr

r

*E-mail address: smargertanouncia@vit.ac.in
ISSN: 1791-2377 © 2022 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.152.25

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

216

in real-time and requires minimal filtering, requiring little
memory. and also maintains the semantic links between the
vectors. Even novices can grasp the concept and carry it out.
As a result, a fine-grained technique called WV-FaSS takes
use of data parallelism by parallelizing the processing of
individual items, or words in a single document. This
significantly enhances the search for k nearest neighbors in
textual datasets and is easily mappable to newer highly
threaded accelerators such as manycore GPUs.
 The Business Analysis Book of Knowledge (BABOK)
classifies requirements into four categories [11], as illustrated
in Fig. 1.

Ø Business Requirements – assertions of goals,
objectives, and outcomes that justify initiating a
change.

Ø Stakeholder Requirements – enumerate the
stakeholders' requirements that must be addressed to
fulfill the business requirements.

Ø Solution Requirements – define the features and
characteristics of a solution that satisfies stakeholder
requirements.

Ø Transition Requirements - specify the
competencies and circumstances that the solution
must meet to facilitate the transition from the
present to the future state, but which are no longer
required after the change is accomplished.

Fig. 1. BABOK Classification Schema

 The research focuses on the distinction between Business
Requirements (BR), Stakeholder Requirements (STR),
Solution Requirements (SR), and Transition Requirements
(TR), a subject that has been extensively investigated and
whose theoretical foundations are currently being debated.
The study mainly aims to retrieve the transition requirements
for real-life scenarios. The rationale for emphasizing the
importance of retrieving transition requirements is that
neglecting their presence can have a significant real-world
impact, resulting in a deteriorating product. They differ from
other sorts of requirements in that they cannot be specified
until a solution has been constructed. These requirements
have a shorter lifespan than others since they only apply
during solution transitions. Transition needs are handled in
the same way as other requirements. The changes are in the
sources, the type of changeover demands, and the fact that
they become obsolete after the preceding solution is
eliminated.
 The following contributions are presented in the paper.

Ø We manually annotate 3500+ requirements from the
widely used PURE dataset [12], the WARC dataset
[13], and one industrial project. Our annotations are
based on the BABOK taxonomy [11], which allows
a requirement to include organizational needs as
well as functional and quality characteristics.

Ø To define the baseline, annotated requirements are
pre-processed and extracted into high dimensional
feature vectors using Word2Vec. The vectors that
were extracted semantically are indexed using
FaSS. The query vector is then used to look for the
most similar vectors within the index, and lastly,
similar documents (transition requirements) are
obtained.

Ø The proposed WV-FAISS framework is validated
on the benchmark datasets PURE and WARC and
the performance measures are shown.

2. Related Work

This section describes related work on software requirement
classifications and provides an outline of how semantic
similarity search is used in the field of big data software
engineering.
 According to studies, a failure to comprehend and classify
requirements is the primary cause of budget and time
overruns, resulting in software system failure. All software
requirements must be expressed completely and consistently,
including specifications of all necessary services. On the other
hand, developers must carefully read, interpret, and discern
those requirements [14]. Initially, the process of writing and
classifying software was carried out manually. Numerous
modules and methodologies have been used to automate the
process of requirement writing and classification over the last
two centuries. Information Retrieval (IR), Genetic
Algorithms, and Clustering Algorithms, among others, have
been used to solve software requirement problems [15, 24].
All of the previous state-of-the-art methodologies are
contingent on the developer's experience and background.
This creates difficulties for the business and its stakeholders
as a result of potential complications.
 The success of a software system is highly dependent on
compliance with non-functional requirements because when
they are overlooked or neglected, severe complications
develop. Slank et al. [25] offered a tool-based strategy to
address this issue, namely the NFR finder. This tool
categorizes and extracts sentences from natural language
documents according to their NFR category. While the NFR
finder enables analysts to effectively extract NFRs from
available natural language materials via automated natural
language processing, it is limited to text. It is unable to parse
images and tables contained within the unconstrained
document currently open. Similarly, security-related issues
must be carefully examined while developing software that
fulfills the needs of the consumer. Security requirements have
been classified using text mining techniques and prediction
models [26]. In 2017, Liang et al. [27,28] used feature
extraction and machine learning techniques to automatically
categorize user review needs, concluding that AUR -BoW
with Bagging achieves the best classification results. Using
semi-supervised and unsupervised machine learning methods,
requirements can also be accurately identified as FRs and
NFRs.
 Additionally, a semi-supervised classification algorithm
can be utilized to automatically extract the FR and NFRs from
the SRS. In comparison to supervised techniques, semi-
supervised techniques produce superior outcomes because
they use only a little amount of labeled data. In the former, all
data sets must be labeled to facilitate classification. One such
example is the app store, where requirements are identified as
functional or non-functional using a self-labeling algorithm as

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

217

part of a semi-supervised classification technique [29]. Semi-
supervised classification approaches to aid in appropriately
classifying requirements. Additionally, it will be enhanced in
the future through the use of unsupervised learning
approaches.

2.1 Requirement Pre-processing
SRS is composed of massive amounts of data of various types,
all of which are heterogeneous by nature and include
inconsistent values. Pre-processing is a critical step that must
be accomplished prior to utilizing the data for model training.
Tokenization, stop words removal, error correction,
normalization, and vectorization are the primary pre-
processing stages [30,32]. Uysal et al. [31] tested the
effectiveness of a mixture of pre-processing approaches on
two domains, e-mail, and news, in two distinct languages. The
results indicate that depending on the domain and language
investigated, selecting optimal combinations of pre-
processing activities greatly enhances classification accuracy.
It is self-evident that pre-processing results in cleaner, more
manageable data sets, which are required for any business
organization to gain significant insights.

2.2 Feature Extraction
The feature extraction procedure converts text into feature
vectors using NLP pre-processing techniques. It enhances the
learning algorithm's accuracy and speed. Therefore, this
section discusses the various feature extraction strategies and
their limitations. Using the vector space approach to choose
features decreases to feature space dimensions [33]. With a
predetermined keyword set, feature extraction techniques
such as TF-IDF, Bag of Words, and Word2Vec generate the
weights of the words in the text [34]. One hot encoding
technique transforms text into a vector by building a
vocabulary. However, due to its memory requirements, it
cannot collect contextual information [35].
 The BoW is a simple and effective feature extraction
technique. In BoW, texts are represented as a bag of words by
counting the number of occurrences of each instance or word
in the bag, regardless of sequence or grammar. Bow assigns
a value to each feature in the document, giving them equal
weight. The model is also influenced by recurring elements
rather than the document's relevance. But its non-zero
dimensions and big vocabulary size lead to a high sparse and
dimensional feature vector [36,37]. TFIDF is determined by
multiplying the term and inverse document frequencies,
according to Qaisier et al. [38]. Terms having a high TF-IDF
weight are deemed to be more significant than those with a
lower TF-IDF score. Though TF-IDF is the most well-known
and widely used formula for generating a vector descriptor
with several normalized forms, it has certain disadvantages.
TFIDF is unconcerned about a term's position in the text, its
meaning, or its co-occurrences with other texts in the
document. To address the limitations of TF-IDF, an extended
form of Fuzzy based TF-IDF (FTF-IDF) is introduced in
2019. FTF-IDF is a vector representation in which the TF-IDF
components are supplied to the Fuzzy Inference System as
inputs (FIS). Following the defuzzification stage, weight
terms are created as crisp outputs. FTF-IDF assigns semantic
meanings to the documents' terms [39]. However, it does not
attempt to investigate the co-occurrences of other texts inside
the documents.
 In the same year, Lakshmi et al. [40] introduced term
weighting approaches to represent text documents using Term
Frequency - Ranking of Term Frequency (TF-RTF) and Term
Frequency - Ranking of fuzzy logic with the semantic

relationship of terms (TF-RFST). It outperforms word count,
Term Frequency-Inverse Document Frequency (TF-IDF),
Term Frequency-Inverse Corpus Frequency (TF- ICF), Multi-
Aspect TF (MATF), BM25 in terms of accuracy, recall, and
F1 measure. However, it does not focus on the syntax of the
phrases. Also, Ricardo et al. [41] started YAKE without a
trained huge corpus. It supports many languages and
documents of any length. But it can't find explicitly assigned
keywords in the text. Okapi BM25 is a ranking function that
estimates document relevance to a search query regardless of
document proximity. Using Twitter data, Kadhim et al. [42]
found that TF-IDF outperforms BM25 in terms of F1
measure. A large corpus cannot use BM25.
 Since the weighting process is simply a linear
transformation of feature vectors, adopting a weighting
strategy is not required. In a nutshell, researchers can utilize
any of the text feature extraction strategies or a hybrid of
techniques based on the requirements of their study, as each
method has its pros and cons [43].

2. 3 Software Requirement Classification
The sub-section consists of various classification techniques
suggested by the researchers to classify the requirements
automatically. In 2019, Rahman et al. [44] used a variety of
machine learning approaches to completely extract NFR from
the SRS document. According to the statistical study, the
SVM classifier produces the best results with a precision of
0.66, a recall of 0.61, and an accuracy of 0.76. The trials used
the well-known PROMISE dataset, which exhibits an
imbalanced distribution of FRs and NFRs. Lima et al. [45]
developed the PROMISE exp repository by expanding the
PROMISE dataset. Once more, Edna et al. [46] conducted a
comparative analysis of various machine learning algorithms
such as Support Vector Machine (SVM), KNN (K Nearest
Neighbour), Decision Tree, Multinomial Naive Bayes
(MNB), and Logistic Regression (LR) to determine which
algorithm is the best fit for automatically classifying
requirements using PROMISE exp. The results indicate that
the combination of TF-IDF with LR produces the best
performance measures, with an F-measure of 91% for binary
classification, 74% for 11-granularity classification, and 78%
for 12-granularity classification. Before conducting any
experimental analysis, researchers must verify whether the
dataset being used is balanced or unbalanced because an
unbalanced dataset leads to poor automatic classification of
requirements.
 Fuzzy Rough Set (FRS) is a sophisticated mathematical
technique for handling uncertain data. The Fuzzy Rough Set
based on Robust Nearest Neighbor (FRS-RNN) was proposed
by Behera et al. [47]. Documents are first extracted using a
modified CNN, then categorized using FRS-RNN. It
outperforms SVM, Naive Bayes, DNN, and CNN. However,
FRS-RNN hyperparameter tuning takes longer than other
machine learning methods. An NFR sentence can have
multiple classes. In 2019, Fuzzy Similarity KNN
(FSKNN) was proposed for multi-label requirement
categorization based on ISO/lEe 25010. On the other hand,
the fuzzy similarity measure technique is employed to obtain
a training pattern. The training data search set is utilized to
find the K nearest neighbor. A maximum a posteriori (MAP)
estimate will be used to categorize a test document [49]. A
semi-supervised classification strategy was employed to
classify the FR and NFR contained in the reviews on the APP
store. The self-labeling algorithm assigns labels to the
unlabelled data and classifies future reviews that aren't yet

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

218

seen. The findings, however, have not been empirically tested
[49].
 In the field of RE, semantic information is extremely
important. To create higher-quality semantic-based SRS,
software engineers apply effective requirement classification
approaches. For sharing and characterizing the classifications
of requirements, a Requirement Classification Ontology
(RCO) has been created. It is used to verify the semantic
correctness of the RE process, maintaining consistency
between the requirements [50]. In comparison to fuzzy rule
mechanisms, machine learning approaches play a significant
role in classifying requirements like FRs, NFRs, quality
requirements, security requirements, legal requirements, and
so on, according to various studies [51,52,53]. In 2020,
Manuel et al. [54] found that Naive Bayes, K Nearest
Neighbor, J48, and Natural Language Processing methods are
the most frequently used classification algorithms. Academic
databases and user reviews are the most popular training
datasets.
 Categorizing requirements by business organizational
needs will enhance transparency in the RE process, promoting
requirement fulfillment and finishing software-intensive
projects. Contrary to popular belief, no research has been
done to address the issues of extracting data-intensive system
needs or to define criteria for categorizing requirements based
on interactions. So, considering the technology's utility in
software requirement classification, a new framework based
on the BABOK classification schema [11] is established.
Limiting the criteria to transition type, in particular, allows
the engineers to focus on what the DIA developers care about
while focusing on the ways to achieve it. To our knowledge,
none of the existing techniques substantiate the resulting
requirement categories. This section's literature review
emphasized the significance of semantic analysis search for
identifying and retrieving data-intensive system
requirements. Additionally, it demonstrated the inability of
existing methodologies to produce satisfactory results with
diverse datasets. Therefore, the proposed approach introduces
a novel framework WV-FAISS for categorizing requirements
and validating the categorized requirements.

3 Classification Problem – Revisited

Based on the BABOK classification schema [11], the
classification problem is revisited as shown in Fig.2 and is
applied to PURE [12], WARC [13] datasets, and one banking
dataset obtained from the private sector. The PURE dataset
consists of 79 SRS with 34,268 sentences. WARC dataset,
web archive tool comprising of 89 SRS with at least 21,456
sentences. The private dataset consists of 1512 requirements.
We have selected 6876 requirements in total from the dataset
and classified them as BR, STR, SR, and TRs.
 Each dataset was individually labeled by two authors. The
taggers then convened reconciliation meetings to resolve
tagging disagreements. If the taggers were unable to agree on
a final tag, a third author was consulted. The authors resolved
all disagreements. Krippendorff's alpha (α) metric is a
reliability coefficient developed to quantify the agreement
between observers, coders, judges, or measuring equipment
when making distinctions or assigning numerical values to
normally unstructured events [55]. Table I shows the value of
Krippendorff's alpha (α) for the tagged dataset. On average, α
> 0.8 means the perfect agreement of the dataset by the raters.
 The output of the tagging procedure following the
reconciliation sessions are summarised in Table II and Fig.2.

The datasets are sorted by the number of rows in each
requirement. As previously stated, the taggers assigned the
tags BR, STR, SR, and TR. Using these four identifiers, we
next determined whether the row contains only BR, STR, SR,
or TR. Following that, the reconciled classification is used to
train and test the classifiers.

Table 1. Krippendorff’s alpha (α) for the datasets

Data
set

Numb
er of
Sente
nces

Business
Require
ments
(BR)

Stakehol
der
Require
ments
(STR)

Solution
Require
ments
(SR)

Transitio
n
Require
ments
(TR)

PUR
E
(Data
set 1)

4352 0.79 0.81 0.86 0.81

WA
RC
(Data
set 2)

695 0.84 0.83 0.78 0.89

Bank
ing
(Data
set 3)

1829 0.80 8.87 0.81 0.84

Table 2. Overall Tagged Dataset

Data
set

Numb
er of
Sente
nces

Business
Require
ments
(BR)

Stakehol
der
Require
ments
(STR)

Solution
Require
ments
(SR)

Transitio
n
Require
ments
(TR)

PUR
E
(Data
set 1)

4,352 452 1,089 1,826 986

WA
RC
(Data
set 2)

695 97 187 278 133

Bank
ing
(Data
set 3)

1,829 251 479 582 517

Total 6,876 800 1,755 2,686 1,636

Fig. 2 Distribution of Requirements over the datasets

 Generally, there is some degree of imbalance between
classes in any real data set. If the level of imbalance is pretty
modest, there should be no impact on the performance of the
knn classifier. As illustrated in Fig. 2, there is a considerable
degree of imbalance between requirement categories in our
dataset (classes). This is a frequent occurrence in
requirements categorization. This issue prompted us to
employ a variety of strategies for balancing the dataset to
produce trustworthy classification results. The re-sample

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Business Requirements
(BR)

Stakeholder
Requirements (STR)

Solution Requirements
(SR)

Transition Requirements
(TR)

452

1,089

1,826

986

97
187

278
133

251

479
582

517

PURE WARC Banking

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

219

technique is one of the most often used techniques for text
instance balance. This strategy is based on over-sampling
minority groups and under-sampling majority groups. To
generate its synthetic data, this technique used the SMOTE
strategy, which is based on the concept of nearest neighbors.
SMOTE provides synthetic samples and instances for
minority classes. This inevitably results in the creation of
additional data that is identical to what we already have,
without adding any diversity to our dataset. While under-
sampling procedures are achieved by randomly deleting a
percentage of instances. Following the balancing task, the
dataset became adequately balanced across categories, as
illustrated in Fig. 3.

Fig. 3 Distribution of Balanced Datasets to categories

4 Implementation

The Proposed design is shown in Fig. 4 which describes the
four-phase implementation process. It starts from gathering
the requirements from the stakeholders, business analysts,
and later on, with the final approval of requirement analyst
SRS is documented. In the second phase, SRS is given as an
input for document pre-processing, then the features are
extracted into high dimensional vectors using semantic
embedding Word2Vec. Following that, the vectors that were
extracted semantically are indexed using FaSS. The query
vector is then used to look for the most similar vectors within
the index, and lastly, similar documents (requirements) of
various classes are obtained.

4.1 Requirement Elicitation
Requirement elicitation is used during the RE phase to elicit
requirements for creating software-intensive projects from
users, consumers, and other stakeholders. The requirements
for DIAs should be identified early in the software life cycle.
Conventional RE methods are incapable of meeting the
organization’s needs for two primary reasons. To begin, it is
primarily concerned with generic user requirements and
provides no real insight into the features provided by big data
that contribute to a more effective business intelligence
solution. Second, the massive volume of data generated daily
by various systems increases demand for various types of
consumption. As a result, business analysts are included in the
requirement elicitation process for DIAs to give business
intelligence solutions to organizations.
 During the framework’s early phase, a form was created
to collect and document requirements from diverse
stakeholders. The stakeholder form used to collect
requirements is depicted in Figure 5. The form captures
various details about a requirement, such as a stakeholder’s
name, their role, the purpose of the requirement, the data

required for the requirement, the stakeholder’s status, whether
primary or secondary, the mode of interaction when entering
the requirement, and the requirement’s description. As
mentioned earlier, one dataset (banking) obtained from the
private sector is gathered using the stakeholder form.

Fig. 4 Proposed Framework of Requirement Classification using WV-
FAISS

Fig. 5. Stakeholder Form

 Requirement analyst determines the gap between what
customers require and what the project stakeholders require,
validates, and documents those requirements. During the
analysis phase, the analyst classifies the requirements
received via stakeholder form as stable or volatile in terms of
their priority and feasibility [56]. The sample of requirements
collected for the banking dataset is approved by the
requirement analyst and is shown in Fig.6.

Fig. 6. Sample of Requirements Approved by Requirement Analyst

0

200

400

600

800

1000

1200

1400

PURE WARC Banking

Business Requirements (BR) Stakeholder Requirements (STR) Solution Requirements (SR) Transition Requirements (TR)

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

220

4.2 Requirement Pre-Processing
Requirement Pre-Processing is the second stage of the
classification process. It immediately enhances model
performance by reducing noise or ambiguous data taken from
various sources. A series of actions are done to standardize
textual data so that it can be used as an input by analytics
systems and apps. Numerous pre-processing techniques such
as stop word removal, tokenization, stemming, and
lemmatization is available to help categorize requirement
documents. The SRS text has been tokenized to make it more
meaningful. Predefined stop words are eliminated after the

conversion to meaningful tokens. Occasionally, even stop
words can be defined by the user according to their intended
usage. Eliminating such terms from the corpus decreases the
dimension of the term space, which improves the model’s
performance. Stemming is then used to determine the origin
of a token within the corpus. This technique eliminates
numerous suffixes, thus lowering the corpus tokens to save
time and memory. Finally, lemmatization takes into account
the morphological analysis of the tokens or words, reducing
noise and accelerating the user’s task [57, 58].

Table 3. Corpus Pre-Processing

RID Requirement Description Tokens
1 The system shall have provision for the users to login

with authentication
['user', 'login', 'authentication']

2 The system shall have provision to accept the deposit
money of the customers

['accept', 'deposit', 'money', 'customer']

3 The system shall have provision to request customers
to maintain sufficient balance

['request', 'customer', 'maintain', 'sufficient', 'balance']

4 The system shall have provision to open an account for
the customers

['open', 'account', 'customer']

5 The system shall have provision to submit customers
KYC forms

['submit', 'customer', 'kyc', 'form']

6 The system shall have provision to submit income
statements of the customers

['submit', 'income', 'statement', 'customer']

7 The system shall have provision to set transaction
limits for the transactions by the customers

['set', 'transaction', 'limit', 'transaction', 'customer']

8 The system shall have provision for the customers to
invest shares

['customer', 'invest', 'share']

9 The system shall have provision for the users to pay
automated bill payments

['user', 'pay', 'automated', 'bill', 'payment']

10 The system shall have provision for the users to pay
taxes

['user', 'pay', 'tax']

11 The system shall have provision for the users to
recharge the data card

['user', 'recharge', 'data', 'card']

12 The system shall have provision for the customers to
pay for travel through UPI

['customer', 'pay', 'travel', 'upi']

13 The system shall have provision for the users to pay
due (loan)

['user', 'pay', 'due', 'loan']

14 The system shall have provision for the users to pay
service charges

['user', 'pay', 'service', 'charge']

15 The system shall have provision for the users to set the
ATM, Mobile Pin, Net Banking transaction pin

['user', 'set', 'atm', 'mobile', 'pin', 'net', 'banking', 'transaction', 'pin']

16 The system shall have provision for the customers to
calculate EMI for loan

['customer', 'calculate', 'emi', 'loan']

17 The system shall have provision for the customers to
check the account balance of their account

['customer', 'check', 'account', 'balance', 'account']

18 The system shall have provision for the users to
withdraw the amount from their account

['user', 'withdraw', 'amount', 'account']

19 The system shall have provision for the customers to
view their weekly, monthly transaction details

['customer', 'view', 'weekly', 'monthly', 'transaction', 'detail']

20 The system shall have provision for the customers to
submit their details

['customer', 'submit', 'personal', 'detail']

 All requirements in the corpus have gone through a pre-
processing step. Table 3 shows the requirements in the corpus
before the pre-processing and after pre-processing. In this
paper, Spacy, a free, open-source library for NLP is being
used to process and understand a large volume of text. It
performs the pre-processing steps and provides the fastest and
more accurate syntactic analysis of any NLP released to date
[59]. For example, the requirement specified in the second
row of table 3 after pre-processing is converted into tokens.

4.3 Feature Extraction
The corpus after wrangling, cleaning up, and standardizing
the textual requirements into a form (i.e., tokens) is taken up

as an input for the feature extraction process. This stage
converts the pre-processed corpus into machine-learnable
numerical features representing the information contained in
the requirements. Since the actual text is extremely complex
and unstructured, each unique word or token is viewed as a
distinct dimension, making classification algorithms difficult
to apply. Word2Vec is capable of identifying correlations
between words, both syntactic and semantic. The embedding
vector is compact and versatile, and because it is
unsupervised, it requires less human work to tag the data [60].
It accepts as input a huge corpus of tokens generated from the
second phase of the normalization procedure shown in Table
3 and generates a vector space of unique tokens. Words in the

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

221

vector space that occur in familiar settings in the corpus are
clustered together. The sample of semantic vectors obtained
from the tokens is depicted in Fig. 7.

Fig. 7. Sample of semantic embedded vectors generated using
Word2Vec

 Spacy [59] parses full blocks of text and assigns word
vectors from the loaded models seamlessly in Fig. 6.
Word2vec enhances the quality of features by taking into
account the contextual semantics of words in a text, hence
increasing the accuracy of machine learning and requirement
categorization.

4.4 Requirements Discovery
Requirement discovery is the final phase of the
implementation process. In it, the semantically extracted
vectors are indexed in memory. After converting the query set
to a vector, it is utilized to find the most similar vectors within
the index, and finally, similar requirements are retrieved using
Fast Similarity Search (FaSS). FaSS compares the similarity
values of a query vector to term vectors and delivers the
matrices that fulfill the query conditions. The datasets
examined in this article are textual. As it contains textual data,
an inverted index can be used to swiftly locate documents that
are similar to the query. Owing to the inverted index,
considerable space is conserved. To begin, an inverted index
is a built-in memory, assuming that the dataset is static and
fits in memory. Let ν denote the input dataset's vocabulary,
that is, the collection of different terms contained within the
source set of documents Ɗin. The input data set £ is a
collection of distinct term-document pairs (t, d) that appear in
the entire dataset, with t ∈ ν and d ∈ Ɗin. The inverted index
is stored in an array of size |£|. Once the set £ is in memory,
each pair is inspected in parallel, with the result that each time
a word is visited, the number of documents in which it occurs
(document frequency - df) is increased and put in the array df

of size | ν |. On the df array, a parallel prefix-sum is performed
by tracing each value to the sum of the phrases preceding it
and saving the outcomes in the indexing array. Then, each
value of the index array refers to the location of the matching
initial element in the inverted index, which will be used to
store all (t, d) pairs in the order specified by the term. Then,
given a query q, the proximity between q and Ɗin is
determined using the cosine distance metric, and the top k
documents that are closest to the query are retrieved. By
selecting a subset of documents with a high degree of
correlation to the query, a threshold can be established to
eliminate any possibilities with a similarity value less than it.
Thus WV-FaSS is a very fast and scalable tool for computing
the top k nearest in high dimensional and sparse data.

Fig. 8. Word Cloud of the Query Set

 Fig.8 illustrates the word cloud of the query set created to
retrieve the similar requirements matched to it. The word
cloud of the query set is based on the banking (Dataset 3)
obtained from the private sector. A threshold value of greater
than 0.75 is set to retrieve the most similar documents
(requirements) resulting from the proposed WV-FaSS.
Results obtained using dataset 3 are presented in Table 4, 5,
6, and 7 respectively. Table 4, 5, 6, and 7 shows the top
retrieved documents of BABOK classification schema – BR,
STR, SR, and TR with a similarity score. Results obtained
using benchmark datasets are presented in section 5. As the
proposed methodology mainly focuses on the retrieval of
transition requirements Table 4 produces the top 15
documents retrieved with a similarity score greater than 0.75.
Tables 5, 6, and 7 illustrate the top 5 documents retrieved for
each category with a similarity score greater than 0.75
respectively.

Table 4. Top 15 Documents Retrieved for Transition Requirement Type with Threshold value > 0.75

S. No RID Requirement Description Requirement Type Similarity Score
1. 53 The system shall have provision to accept deposits from

customers
Transition 0.95782

2. 11 The system shall have provision to accept the deposit
money of the customers

Transition 0.95216

3. 103 The system shall have provision to Invest capital Transition 0.94384
4. 18 The system shall have provision for the customers to

invest shares
Transition 0.92737

5. 20 The system shall have provision for the users to pay taxes Transition 0.89454
6. 24 The system shall have provision for the users to pay

service charges
Transition 0.89127

7. 11 The system shall have provision to accept the deposit
money of the customers

Transition 0.84769

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

222

S. No RID Requirement Description Requirement Type Similarity Score
8. 19 The system shall have provision for the users to pay

automated bill payments
Transition 0.84128

9. 22 The system shall have provision for the customers to pay
for travel through UPI

Transition 0.83179

10. 53 The system shall have provision to accept deposits from
customers

Transition 0.81059

11. 11 The system shall have provision to accept the deposit
money of the customers

Transition 0.80456

12. 68 The system shall have provision for the staff to update
the system software

Transition 0.79854

13. 104 The system shall have provision to Observe the stock
exchange market

Transition 0.77826

14. 73 The system shall have provision for the staff to Exchange
currency with other banks in case of cash shortage

Transition 0.76891

15. 70 The system shall have provision for the staff to Link
account details with Aadhar

Transition 0.75697

Table 5. Top 5 Documents Retrieved for Solution Requirement Type with Threshold value > 0.75

S. No RID Requirement Description Requirement Type Similarity Score
1. 48 The system shall have provision for the users to login

with authentication
Solution 0.98721

2. 137 The system shall have provision to view billing details Solution 0.96745
3. 107 The system shall have provision to Check the financial

statement of a customer
Solution 0.95781

4. 89 The system shall have provision to check for locker
facility

Solution 0.89745

5. 54 The system shall have provision for the customers to
submit their details

Solution 0.85478

Table 6. Top 5 Documents Retrieved for Stakeholder Requirement Type with Threshold value > 0.75

S. No RID Requirement Description Requirement Type Similarity Score
1. 39 The system shall have provision to get shares details in

the stock market
Stakeholder 0.97215

2. 65 The system shall have provision to set the Regulation of
foreign exchange

Stakeholder 0.94578

3. 92 The system shall have provision to set the Regulation of
money

Stakeholder 0.92147

4. 104 The system shall have provision to Monitor Rotation of
cash

Stakeholder 0.87458

5. 2 The system shall have provision to Limit the financial,
legal, and reputational risks

Stakeholder 0.81726

Table 7. Top 5 Documents Retrieved for Solution Requirement Type with Threshold value > 0.75

S. No RID Requirement Description Requirement Type Similarity Score
1. 47 The system shall have provision to view the response

time for the customer queries
Business 0.97215

2. 23 The system shall have provision to check the monthly
transactions bills for customers feedback and responses

Business 0.94578

3. 73 The system shall have provision to monitor the cash flow
per day, per week

Business 0.92147

4. 99 The system shall have provision to check whether the
customer receives the banking product services in time

Business 0.87458

5. 81 The system shall have to evaluate the risk report
documentation concerning loan approvals

Business 0.81726

 Table 8 and Fig. 9 depict the distribution of sample
documents retrieved for a few queries. For example, the query
“Get” retrieves 15 documents and queries “Deposit”,
“update”, “check” and “display” retrieve 25, 18, 30, and 8
documents respectively.

Table 8. Sample Documents Retrieved for the Query set

S. No Query No of Documents
Retrieved

1. Get 15

S. No Query No of Documents
Retrieved

2. Deposit 25
3. Update 18
4. Check 30
5. Display 8

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

223

Fig. 9. Distribution of the Sample Documents Retrieved for Few
Queries.

Proposed Algorithm WV-FaSS
Input: let f represent the stakeholder form, SRS be the
Software Requirement Specification, i be the ith requirement
in SRS
Output: let BR, STR, SR, and TR represent the Business
Requirement, Stakeholder Requirement, Solution
Requirement, Transition Requirement, respectively.
Data: Data set (x)
Begin
Generate a stakeholder form f
foreach f in the sequence do

Get the requirements ri from s € S where S=
{Primary Stakeholder, Secondary Stakeholder}

Requirement Analyst Form ß Save ri
RID ß Assign ri // RID stands for Requirement ID
if ri is feasible and approved

add ri to SRS
else

revert to stakeholders
 endif
endfor
Function Preprocessing (SRS, Feature Vectors)
Parse all the input requirements ri where i = 1,2,3…. n
foreach requirement ri do
 Tokenize ß ri

 Store the Tokens as array
 Create a customized stopword list
 foreach T from ri

 compare T and customized stopword list
 if T = customized stopword list
 remove T from ri

 else
 store the Tokens
 Remove suffixes from the tokens
 Siß Store tokens
 endfor
endfor
 Function FeatureExtraction (Si, WV)
Let Si be the tokens in corpus
Read the model word2vec
Set the parameters size =300, window = 2, min_count = 20,
negative = 20, alpha = 0.03
foreach Si in the corpus do
 Build the vocabulary table v with d be the dimension of
word vectors
 Train the model
 Return word vectors wv for the vectors Si in the corpus
endfor
Function Query Processing (wv, QS, ExD)

Let QSi, be the Query Set where i = 1, 2…n, RD represent the
requirement documents from SRS, ExD represent the
extracted requirement documents
Create Query_Set (QS)
Create query vector qv € QS
foreach query vector qv do
 compute distances between qv and WV
 sort the computed distances
 select the k-nearest vectors concerning k small distances
(SimS)

if qv = Si in Corpus
 Retrieve the documents (RDi) with SimS

else
 Return no match
Assign ExD ß RDi
endfor
end

5 Experimental Results

The experimental investigations were conducted on an
Anaconda platform utilizing the Python programming
language [62]. A Microsoft Windows Server 2012 R2
communication system was used in conjunction with an Intel
Xeon E5-2630 2.20 CPU and 64 GB of memory. A
comparative evaluation of several approaches is performed in
terms of precision, recall, and F1 measure on the benchmark
datasets PURE and WARC. The results demonstrate that,
across all benchmark datasets (PURE, WARC), the proposed
approach WV- FaSS consistently outperforms the
competition in terms of precision, recall, and F1 measure
compared to TF-FaSS (Term Frequency- Fast Similarity
Search) [61], Question Bank Similarity Searching System
(QB3S) [63], Rider Spider Monkey Optimization Algorithm
(RSOA) [64], Document Ranking Optimization (DROPT)
[65], Fuzzy Logic IR (Information Retrieval) [66]
respectively.

5.1 Evaluation Metrics
Evaluation metrics are mainly used to evaluate a model's
performance. The performance of the proposed model WV-
FaSS is validated using mathematical methods that compare
the model's predictions to the database's actual values.
Precision is defined as the proportion of retrieved documents
that are relevant to the user's information need. Precision can
be formulated as in equation 1.

𝑃 = |{#$%$&'()	+,-./$()0}∩{#$)#3$&$+	+,-./$()0}|

|{#$)#$3&$+	+,-./$()0}|
 (1)

 A Recall is the proportion of documents that are
successfully retrieved relevant to the query. Recall can be
formulated as in equation 2.

𝑅 =	 |{#$%$&'()	+,-./$()0}∩{#$)#3$&$+	+,-./$()0}

|{#$%$&'()	+,-./$()0}|
 (2)

 F – measure is the weighted harmonic mean of precision
and recall. F1 score can be formulated as in equation 3.

𝐹 = 2 ∗	 (5∗7)

(597)
 (3)

0

5

10

15

20

25

30

Get

Deposit

Update

Check

Display

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

224

Table 9. Precision, Recall, and F – measure Comparison
S.
No

Algorithm Precision Recall F -
measure

1. WV-FaSS 0.91 0.89 0.9
2. TF-FaSS 0.89 0.86 0.87
3. QB3S 0.78 0.76 0.77
4. RSOA 0.82 0.81 0.81
5. DROPT 0.84 0.83 0.83
6. Fuzzy Logic

IR
0.79 0.78 0.8

 Table 9 shows the weighted average scores where the
proposed WV-FaSS depicts the highest precision, recall, and
F1 measures compared to other state of art approaches like
TF-FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR. Fig.
10, 11, and 12 illustrates the comparison of weighted average
scores.

Fig. 10. Comparison of Precision Scores

5.2 Analysis of Computation Time
Computation time is measured to process the SRS
requirements concerning the query set. It is the total time
spent on the calculating process for the user input query.
Seconds are used to denote the computing time (s) and are
expressed in equation 4.

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒 =
	3 (𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒	𝑁	𝑞𝑢𝑒𝑟𝑖𝑒𝑠):

(;< (4)

Where,
N – Total number of queries
Computing time N queries – Time consumed for computing
“N” queries

Fig. 11. Comparison of Recall Scores

Fig. 12. Comparison of F1 Scores

Table 10. Analysis of Computation Time

Number of
queries

Computation Time (s)
WV-FaSS TF-FaSS QB3S RSOA DROPT Fuzzy Logic

IR
10 13 16 21 29 18 28
20 29 34 38 41 48 52
30 45 53 59 61 58 77
40 68 89 91 98 109 98
50 81 109 111 128 137 147
60 101 121 129 157 168 185
70 119 148 153 189 208 218
80 134 167 176 211 239 245
90 158 194 199 238 257 269
100 185 209 212 259 287 297

 Table 10 compares the computation time of the proposed
WV-FaSS to that of other existing approaches such as TF-
FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR. The
experimental procedure considers a variable number of query
ranges. The queries in the range of 10 to 100 are considered
from the SRS. When the number of queries is between 10 and
50, the computational time for the proposed WS-FaSS
technique is between 13 and 84 seconds, whereas the existing
TF-FaSS, QB3S, RSOA, DROPT, and Fuzzy Logic IR
techniques take between 16 and 109 seconds, 29 to 128

seconds, 18 to 137 seconds, and 28 to 147 seconds,
respectively. The computation time analysis reveals that when
the number of queries is small (less than 50), the proposed
WV-FaSS technique minimizes computation time
significantly; however, when the number of queries is large
(greater than 60), the proposed WV-FaSS technique achieves
a large deviation in computation time and significantly
outperformed the existing techniques.

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

225

Fig. 13. Comparison of Computation Time

 Fig. 13 describes the computation time comparison along
with queries in the range of 50-100. From the analysis, it is
observed that the lower computation time is attained for the
WV-FaSS technique while compared with the existing
techniques. On the whole, TF-FaSS outperforms well
compared to DROPT, QB3S, RSOA, and Fuzzy Logic IR.
However, 18.15% of computation time is minimized using the
proposed WV-FaSS compared to TF-FaSS.

6 Threat to Validity

This section summarises the major constraints and threats to
the validity of the experiments done. Although every effort
has been made to ensure that the outcome was not impacted
by adverse conditions, there are a few aspects to consider
before recreating these experiments:

Ø The primary threat is that dataset annotation was
performed manually, implying some degree of
objectivity and reliability. To mitigate this danger, a
deliberate process was used to establish the ground
truth. A guideline for annotation is created and
many trial runs are undertaken, followed by a
reconciliation of any discrepancies. Finally,
assessed the annotation's quality using inter-rater
agreement metrics.

Ø Also, concerns about reliability pertain to the extent
to which the data and analysis are dependent on the
researchers. In theory, if another researcher repeats
the same study later, the results should be identical.
All findings in this study were derived by at least
two researchers and then reviewed by at least three
additional researchers. As a result, this threat has
been diminished.

Ø The framework is intended to be independent of the
context in which it is implemented. However,
because it has not been tested in a multitude of
environments, it is possible that some unique
restrictions have not been taken into consideration.
Precision, recall, and F1 metrics are utilized to
assess the effectiveness of requirement extraction
and classification approaches to reduce the threat.

 To recapitulate, the researchers claim that the risks to the
results' validity have been mitigated, though the inferences
should not be applied to all businesses.

7 Conclusion

The research findings indicate that it is critical to properly
identify data-intensive requirements in SRS to ensure the
successful development of software-intensive projects. The
novelty of this paper lies in the retrieval of transition
requirements, specifically for DIAs. The retrieval of pertinent
data enables the development of significant insights into
business intelligence difficulties. Vectorizing requirements
documents using word embeddings enables semantic analysis
of the texts. Along with Word2Vec, using a fast similarity (k
-NN) search, it retrieved the requirements independently as
business requirements, stakeholder requirements, solution
requirements, and transition requirements. Additionally, it
evaluated the extracted documents' impact by comparing their
performance to metrics derived from a comparison of the
proposed WV-FaSS to state-of-the-art methodologies using
benchmark datasets. Precision, recall, and F1 have values of
0.91, 0.90, and 0.90, respectively. As a result, retrieval of
data-intensive requirements enables developers to more
efficiently capture their initiatives by eliminating rework. The
work is innovative since it does not compare the query
document to all training documents. Rather than, an inverted
index is utilized to discover documents that share vectors with
the query vectors rapidly. Also, compared to existing
strategies, the suggested WV-FaSS saves 18.15 percent of
computing time.

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License.

References

1. Wang P. Eliciting big data requirement from big data itself: A task-
directed approach. 6th International Workshop on Software Mining
(Software Mining). 2017

2. Palomares C, Quer C, Franch X. Requirements reuse and
requirement patterns: a state of the practice survey. Empirical
Software Engineering. 2017; 22:2719–2762.

3. Robinson WN, Pawlowski SD, Volkov V. Requirements
Interaction Management. ACM Computing Surveys (CSUR).
2003;35(2):132–190.

4. Meth H, Brhel M, Maedche A. The state of the art in automated
requirements elicitation. Information and Software Technology.
2013; 55:1695–1709.

5. Pohl K. Rocky Nook, Inc; 2016.
6. Li C. Automatically classifying user requests in crowdsourcing

requirements engineering. Journal of Systems and Software. 2018;
138:108–123.

7. Madhavji NH, Miranskyy A, Kontogiannis K. Big picture of big data
software engineering: with example research challenges. IEEE/ACM
1st International Workshop on Big Data Software Engineering. 2015.

8. Sodagari E, Keyvanpour M. Challenges Classification of Software
Requirements In- teraction Management Using Search-Based
Methods. 5th International Conference on Web Research (ICWR).
2019.

9. Binkhonain M, Zhao L. A review of machine learning algorithms for
identification and classification of non-functional requirements.
Expert Systems with Applications: X. 2019; 1:100001–100001.

10. Merugu R, Ramesh SR, Chinnam. Automated cloud service-based
quality requirement classification for software requirement
specification. Evolutionary Intelligence. 2019; p. 1–6.

11. Hailes, Jarett. Business Analysis Based on BABOK® Guide Version
3 Pocket Guide. Van Haren, 2015.

12. Ferrari, Alessio, Giorgio Oronzo Spagnolo, and Stefania Gnesi.
"Pure: A dataset of public requirements documents." 2017 IEEE 25th

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

226

International Requirements Engineering Conference (RE). IEEE,
2017.

13. Hayes, Jane Huffman, Jared Payne, and Mallory Leppelmeier.
"Toward Improved Artificial Intelligence in Requirements
Engineering: Metadata for Tracing Datasets." 2019 IEEE 27th
International Requirements Engineering Conference Workshops
(REW). IEEE, 2019.

14. Gupta, Varun. "Requirement Engineering Challenges for Social
Sector Software Development: Insights from Multiple Case
Studies." Digital Government: Research and Practice 2.4 (2021): 1-
13.

15. V. Vliet, Software Engineering: Principles and Practices. John Wiley
& Sons, West Sussex, England, 2000.

16. N. Alhindawi, O. M. Al-Hazaimeh, R. Malkawi, and J. Alsakran, "A
Topic Modeling Based Solution for Confirming and Assessing
Software Documentation Quality," (IJACSA) International Journal
of Advanced Computer Science and Applications, vol. 7, p. 7, 2016.

17. A. Aguilar, A. Zaldívar-Colado, C. Tripp-Barba, S. Misra, R.Bernal,
and A. Ocegueda, "An Analysis of Techniques and Tools for
Requirements Elicitation in Model-Driven Web Engineering
Methods," in Computational Science and Its Applications -- ICCSA
2015: 15th International Conference, Banff, AB, Canada, June 22-
25, 2015,

18. N. Alhindawi, J. Alsakran, A. Rodan, and H. Faris, "A Survey of
Concepts Location Enhancement for Program Comprehension and
Maintenance," Journal of Software Engineering and Applications,
Vol.07No.05, p. 9, 2014.

19. Alsakran, N. Alhindawi, and L. Alnemer, "Parallel coordinates
metrics for classification visualization," in 2016 7th International
Conference on Information and Communication Systems (ICICS),
2016, pp. 7-12.

20. O. Meqdadi, N. Alhindawi, M. L. Collard, and J. I. Maletic,
"Towards Understanding Large-Scale Adaptive Changes from
Version Histories," in 2013 IEEE International Conference on
Software Maintenance, 2013, pp. 416-419.

21. N. Alhindawi, N. Dragan, M. L. Collard, and J. I. Maletic,
"Improving Feature Location by Enhancing Source Code with
Stereotypes," in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 300-309.

22. H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi,
"Hybrid SMOTE-Ensemble Approach for Software Defect
Prediction," in Software Engineering Trends and Techniques in
Intelligent Systems, Cham, 2017, pp. 355-366.

23. L. Chung and J. C. P. Leite, "On Non-Functional Requirements in
Software Engineering," in Conceptual Modeling: Foundations and
Applications, T. B. Alexander, K. C. Vinay, G. Paolo, and S. Y. Eric,
Eds., ed: Springer-Verlag, 2009, pp. 363-379.

24. R. Sindhgatta and S. Thonse, "Functional and non-functional
requirements specification for enterprise applications," presented at
the Proceedings of the 6th international conference on Product
Focused Software Process Improvement, Oulu, Finland, 2005.

25. Slankas J, Williams L. Automated extraction of non-functional
requirements in available documentation. In: 2013 1st International
Workshop on Natural Language Analysis in Software Engineering
(NaturaLiSE); 2013. p. 9–16.

26. Jindal R, Malhotra R, Jain A. Automated classification of security
requirements. In: 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI); 2016. p.
2027–2033.

27. Lu M, Liang P. Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews. In the Proc.
21st International Conference on Evaluation and Assessment in
Software Engineering; 2017. p. 344–353.

28. Kurtanovic ́Z, Maalej W. Automatically Classifying Functional and
Non-functional Requirements Using Supervised Machine
Learning. In: IEEE 25th International Requirements Engineering
Conference (RE); 2017. p. 490–495.

29. Deocadez R, Harrison R, Rodriguez D. Automatically Classifying
Requirements from App Stores: A Preliminary Study. In: IEEE
25th International Requirements Engineering Conference
Workshops (REW); 2017. p. 367–371.

30. Kashina M, Lenivtceva ID, Kopanitsa GD. Preprocessing of
unstructured medical data: the impact of each preprocessing stage
on classification. Procedia Computer Science. 2020; 178:284–290.

31. Uysal AK, Gunal S. The impact of preprocessing on text
classification. Information Processing & Management.
2014;50(1):104–112.

32. Anandarajan M, Hill C, Nolan TT, Preprocessing. Practical Text

Analytics. Springer; 2019. p. 45–59.
33. Liang H, Sun X, Sun Y, Gao Y. Text feature extraction based on

deep learning: a review. EURASIP journal on wireless
communications and networking. 2017;(1):1– 12.

34. Dzisevic R, Sesok D. Text Classification Using Different Feature
Extraction Ap- proaches. 2019 Open Conference of Electrical,
Electronic and Information Sciences (eStream). 2019; p. 1–4.

35. Canedo ED, Mendes B. Software Requirements Classification
Using Machine Learning Algorithms. Entropy. 2020;22(9):1057–
1057.

36. Qader WA, Ameen MM, Ahmed BI. An Overview of Bag of Words;
Importance, Im- plementation, Applications, and Challenges. 2019
International Engineering Con- ference (IEC). 2019; p. 200–204.

37. Lu M, Liang P. Automatic classification of non-functional
requirements from aug- mented app user reviews. Proceedings of
the 21st International Conference on Eval- uation and Assessment
in Software Engineering. 2017; p. 344–353.

38. Qaiser S, Ali R. Text mining: use of TF-IDF to examine the
relevance of words to documents. International Journal of
Computer Applications. 2018;181(1):25–29.

39. Bounabi M, Moutaouakil KE, Satori K. Text classification using
Fuzzy TF-IDF and Machine Learning Models. Proceedings of the
4th International Conference on Big Data and Internet of Things.
2019; p. 1–6.

40. Lakshmi R, Baskar S. Novel term weighting schemes for document
representation based on ranking of terms and Fuzzy logic with
semantic relationship of terms. Expert Systems with Applications.
2019; 137:493–503.

41. Campos R, Mangaravite V, Pasquali A, Jorge A, Nunes C, Jatowt
A. YAKE! Key- word extraction from single documents using
multiple local features. Information Sciences. 2020; 509:257–289.

42. Kadhim A. Term weighting for feature extraction on Twitter: A
comparison be- tween BM25 and TF-IDF. 2019 International
Conference on Advanced Science and Engineering (ICOASE).
2019; p. 124–128.

43. Walkowiak T, Datko S, Maciejewski H. Bag-of-words, bag-of-
topics and word-to- vec based subject classification of text
documents in polish-a comparative study. In: International
Conference on Dependability and Complex Systems. Springer;
2018. p. 526–535.

44. Haque MA, Rahman MA, Siddik MS. Non-Functional
Requirements Classification with Feature Extraction and Machine
Learning: An Empirical Study. 2019 1st Inter- national Conference
on Advances in Science, Engineering and Robotics Technology
(ICASERT). 2019; p. 1–5.

45. Lima M, Valle V, Costa E, Lira F, Gadelha B. Software Engineering
Repositories: Expanding the PROMISE Database. XXXIII
Brazilian Symposium on Software Engineering. 2020; p. 427–436.

46. Canedo ED, Mendes B. Software Requirements Classification
Using Machine Learning Algorithms. Entropy. 2020;22(9):1057–
1057.

47. Behera B, Kumaravelan G. Text document classification using fuzzy
rough set based on robust nearest neighbor (FRS-RNN). Soft
Computing. 2020; p. 1–9.

48. Raharja IMS, Siahaan DO. Classification of non-functional
requirements using fuzzy similarity knn based on iso/iec 25010.
2019 12th International Conference on Information &
Communication Technology and System (ICTS). 2019; p. 264–
269.

49. Deocadez R, Harrison R, Rodriguez D. Automatically classifying
requirements from app stores: A preliminary study. 2017 IEEE 25th
International Requirements Engineering Conference Workshops
(REW). 2017; p. 367–371

50. Alrumaih H, Mirza A, Alsalamah H. Domain ontology for
requirements classification in requirements engineering context.
IEEE Access. 2020; 8:89899–89908.

51. Deocadez R, Harrison R, Rodriguez D. Automatically classifying
requirements from app stores: A preliminary study. 2017 IEEE 25th
International Requirements Engineering Conference Workshops
(REW). 2017; p. 367–371.

52. Sainani A, Anish PR, Joshi V, Ghaisas S. Extracting and
Classifying Requirements from Software Engineering Contracts.
2020 IEEE 28th International Requirements Engineering
Conference (RE). 2020; p. 147–157.

53. Jindal R, Malhotra R, Jain A. Automated classification of security
requirements. 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). 2016; p.
2027–2033.

Renita Raymond and S. Margret Anouncia/Journal of Engineering Science and Technology Review 15 (2) (2022) 215 - 227

227

54. Perez-Verdejo JM, Sánchez-García AJ, Ocharán-Hernández JO. A
Systematic Lit- erature Review on Machine Learning for Automated
Requirements Classification. 2020 8th International Conference in
Software Engineering Research and Innovation (CONISOFT). 2020;
p. 21–28.

55. Krippendorff, Klaus. "Computing Krippendorff's alpha-reliability."
(2011).

56. Lim SL, Finkelstein. A, anticipating change in requirements
engineering. In: Re- lating Software Requirements and
Architectures. Springer; 2011. p. 17–34.

57. Virmani D, Taneja S. A text preprocessing approach for efficacious
information retrieval. In: Smart Innovations in Communication and
Computational Sciences. Springer; 2019. p. 13–22.

58. Sarkar D., Text Analytics with Python, Apress, Second Edition,
2016.

59. Srinivasa-Desikan. Packt Publishing Ltd; 2019.
60. Ma, Long, and Yanqing Zhang. "Using Word2Vec to process big text

data." 2015 IEEE International Conference on Big Data (Big Data).
IEEE, 2015.

61. Amorim, Leonardo Afonso, et al. "A fast similarity search knn for
textual datasets." 2018 Symposium on High Performance Computing
Systems (WSCAD). IEEE, 2018.

62. Kadiyala, Akhil, and Ashok Kumar. "Applications of python to
evaluate environmental data science problems." Environmental
Progress & Sustainable Energy 36.6 (2017): 1580-1586.

63. Mia, Md Raihan, and Abu Sayed Md Latiful Hoque. "Question bank
similarity searching system (qb3s) using nlp and information
retrieval technique." 2019 1st International Conference on Advances
in Science, Engineering and Robotics Technology (ICASERT). IEEE,
2019.

64. Rahul, Kumar. "Rider Optimization Algorithm (ROA): An
optimization solution for engineering problem." Turkish Journal of
Computer and Mathematics Education (TURCOMAT) 12.12 (2021):
3197-3201.

65. Agbele, Kehinde K., et al. "Algorithm for information retrieval
optimization." 2016 IEEE 7th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON).
IEEE, 2016.

66. Gupta, Yogesh, Ashish Saini, and A. K. Saxena. "A new fuzzy logic
based ranking function for efficient information retrieval
system." Expert Systems with Applications 42.3 (2015): 1223-1234.

