

Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

Research Article

Model-based Software Defect Prediction from Software Quality Characterized Code

Features by using Stacking Ensemble Learning

P. Suresh Kumar1, Janmenjoy Nayak2,* and H. S. Behera3

1Dept. of IT, Aditya Institute of Technology and Management (AITAM), Tekkali, AP-532201.
2Department of Computer Science, Maharaja Sriram Chandra BhanjaDeo University, Baripada, Odisha-757003, India

3Department of IT, Veer Surendra Sai University of Technology, Burla, Odisha, India

Received 15 November 2021; Accepted 7 June 2022

Abstract

Software defect prediction (SDP) is critical in guaranteeing software cost reduction and quality improvement while
building a software system. Thus, software defect prediction in the early stages is an essential intrigue in the software
engineering discipline. We proposed a stacking ensemble learning method to improve SDP performance based on
software quality-defined code characteristics. Stacking combines the base classifiers by using a meta-classifier that learns
base-classifiers output. It has certain advantages, such as easy implementation and combining classifiers by investigating
various inducers. The proposed method's performance has been evaluated and compared with different Machine Learning
(ML) classifiers on ivy2.0, tomcat, and velocity1.6 datasets available in PROMISE. The experimental findings revealed
that the proposed approach has better prediction recall, accuracy, precision, AUC-ROC, and f-measure.

Keywords: Ensemble learning, Machine Learning, Software Defect Prediction, Stacking.
__

1 Introduction

In the present day, modern software systems are enormous
and more intricate, leading to defects in the software. A
defect can be considered a divergence from the requirement
that affects the reliability and leads to failure or unforeseen
results. Many activities have been employed, such as code
review and testing, to improve the software's quality norms.
However, such types of activities cost the financial plan. The
number of defects increases in direct proportion to the
software's complexity [1][2]. Software managers are
concentrating on the modules with the most defects to
enhance software quality. This is the rationale software
defect prediction came into the scenario. SDP will create
models to detect flaws in software components. Primarily, it
will give ranks to the modules according to the severity of
the modules. So, software managers focus and investigate
those modules, which have several defects. By this, software
engineers can test only on defect modules. The above-said
process reduces software engineers, cost, and time to reduce
the project's entire expense [3][4].
 In SDP, classification and regression are popular
methods. The main objective of regression SDP is to
determine the overall number of faults in a given module. In
the literature study, there are many regression models in
SDP [1][5][6][7]. With classification, it will determine if the
module is defect-free or defect-prone. In both cases,
machine learning plays an important role. Machine learning
algorithms, in particular Support Vector Machine (SVM)
[8], Naïve Bayes (NB) [9], K-Nearest Neighbor (KNN) [10],
Neural Networks (NN) [11], and Random Forest (RF) [12],
is used to predict whether the module is defect-free or
defect-prone.

 Sometimes machine learning algorithms are not
performed well in classification because of their limitations,
such as lack of considerable data to train, data imbalance,
and biases in the data. The primary goal of this study is to
make use of the benefits of these machine learning
algorithms while avoiding the drawbacks of ML by using EL
techniques. Ensemble learning combines multiple base
classifiers so that every classifier's better features will
increase accuracy. Ensemble learning increases performance
by using various base classifiers to reduce their variance and
stop bias error rate.
 This work presented an ensemble learning method called
the stacking approach for identifying defect-free or defect-
prone at the modular level using PROMISE datasets ivy2.0,
tomcat, and velocity1.6. The performance of the proposed
method stacking classifier has been validated by comparing
several ML approaches GNB, SGD, KNN, MLP, DT, SVM,
QDA, RF, LR, and LDA. The remaining sections of the
paper are organized as follows: The literature review on SDP
using different machine learning techniques and the
proposed approach is presented in Section 2. The proposed
technique's background and algorithm have been presented
in Section 3. The experimental data and parameter setup for
all of the methods are detailed in Section 4. Section 5
discusses several findings in the case of ivy2.0, tomcat, and
velocity1.6. The conclusion is addressed in Section 6, along
with future directions.

2 Literature Study

This section discusses the literature on ML and EL
algorithms in SDP.

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

r

*E-mail address: jnayak@ieee.org
ISSN: 1791-2377 © 2022 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.152.17

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 138

2.1 K-nearest neighbor algorithm
KNN is also called an instance-based classifier. KNN is a
supervised machine learning (SML) technique that can
classify and predict data. Its fundamental idea is to group
similar things in proximity. It is based on the minimum
distance between the query instance and the training sample
to determine the number of neighbors.
 Turabieh, Mafarja, and Li, 2019[13] proposed a layered
recurrent neural network by selecting features with several
techniques such as binary ant colony optimization, binary
particle swarm, binary genetic algorithm, and binary ant
colony. The PROMISE repository is used for
experimentation by nineteen projects. The performance of
the proposed approach is compared with various ML
algorithms such as Naïve Bayes, decision tree, artificial
neural networks, k-nearest neighbors, and logistic regression
by considering the ROC-AUC. The outcomes demonstrate
the proposed approach's superiority.
 Wahono and Suryana, 2013[14] investigated two
techniques, particle swarm optimization, for selecting
features and bagging classifiers to deal with data imbalance
and classification. The proposed approach's performance is
compared with various techniques such as LDA, Naïve
Bayes, k-nearest neighbors, k*, backpropagation, SVM,
LibSVM by considering the NASA repository dataset c4.5,
CART, and random forest. From the results, they have
witnessed a significant improvement in prediction
performance.
 Balogun et al., 2018[15] evaluated many individual
techniques such as DT, SVM, k-NN, MLP, and various
ensembles such as Bagging, boosting, stacking, voting
classifiers for software defect prediction. Performance
validation is done by the analytic network process using 11
SDP datasets. Among all classifiers, stacking and voting
performed well.

2.2 Support vector machine
The SVM is useful in both regression and classification.
SVM's main aim is to create a hyperplane within n-
dimensional space that will categorize data points while
maximizing the distance between the two classes.
 Elish and Elish, 2008 [8] investigated the support vector
machine's performance in SDP. They compared the
prediction performance using various machine learning
algorithms with four NASA datasets such as KC1, PC1,
KC3, and CM1. They concluded that the Support vector
machine's performance is better than various machine
learning models.
 Shuai et al., 2013[16] proposed the cost-sensitive
support vector machine (CSSVM) and genetic algorithm
CSSVM (GA-CSSVM). In GA-CSSVM, the support vector
machine is optimized with the genetic algorithm. They used
geometric fitness function and enhanced the performance of
GA-CSSVM. Moreover, they validated the performance
using AUC values using the various dataset of MDP by
NASA.
 Yan, Chen and Guo, 2010 [5] proposed a novel fuzzy
support vector regressors method. They used fuzzification to
handle imbalance data and compared the proposed method
with a fuzzy support vector repressor using MIS, RS-DIMU
dataset. They discovered that the proposed methodology has
a low mean square error and is more accurate.

2.3 Random Forest
It's a Supervised Machine Learning (SML) technique that
can be used for both classification and regression. As the

name implies, it has several decision trees that operate as a
group. Every individual tree gives its prediction accuracy.
From these accuracies, it selects the best accuracy based on
voting. Magal. R and Gracia Jacob, 2015 [17] enhanced the
random forest approach by using a feature selection
algorithm based on the correlation among features to choose
the best features from the datasets PC1, PC2, PC3, and PC4.
They investigated the proposed method's computational
framework and found it better than the traditional random
forest method.
 Kakkar and Jain, 2016[18] built a framework by utilizing
attribute selection on different classifiers such as a random
tree, KStar, IBk, LWL, and random forest on NASA-MDP
datasets. They concluded that LWL performed well
compared to other techniques with ten cross-fold validation
accuracy and ROC curve.

2.4 Decision Tree
In machine learning, decision trees are the most frequently
utilized classification and regression methods. This is a
similar tree structure, with an internal node representing an
attribute, a branch representing the result, and a leaf node
holding the class's label. The decisions are established up of
the route from the root node to the leaf.
 Rathore and Kumar, 2016 [6] demonstrated the decision
tree regressor's capability to forecast the defects in two
situations, such as intra-release and inter-release prediction.
They carry the experimental study by five open-source
projects with various releases provided by the PROMISE
repository. They test the performance using absolute error,
relative error, the goodness-of-fit measure, and prediction at
level l. The proposed decision tree regressor performed well
in both scenarios.
 Babu et al., 2019 [19] analyzed various performances of
ML methods such as decision trees, naïve Bayes, artificial
neural networks, and linear classifiers in SDP. They utilized
the Keel tool to evaluate them using k-fold cross-validation
on the PROMISE repository datasets and found that other
machine learning methods dominated the linear classifier.
 Chug and Dhall, 2013[20] experimented with
classification algorithms such as decision tree (J48), Naïve
Bayes, and random forest. The performance is evaluated on
the datasets from NASA by considering the measures such
as ROC, RAE, precision, MAE, etc., and concluded that the
random forest method outperformed compared to various
classification models.

2.5 Neural networks
Several studies based on neural networks for effective SDP
can be found in the literature. Kanmani et al., 2007 [21]
proposed two variant neural networks, probabilistic and
backpropagation neural networks, to predict software
defects. They compared these networks with statistical
approaches and validated using various metrics such as
completeness, effectiveness, and efficiency percentages
using the datasets PC1-PC6. As compared to other methods,
the probabilistic neural network is robust, and this
outperformed well.
 Li et al., 2017[22] investigated software defect
prediction through convolutional neural networks (DP-
CNN). Deep learning has utilized to generate effective
features, and the numerical vectors have been sent to CNN
to learn structural features. Finally, conventional features are
blended with newly learned features. They have considered
various datasets such as jedit, camel, lucene, xalan, synapse,

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 139

poi, and xerces for experimentation. In terms of f-measure,
the proposed approach performs substantially better.
 Manjula and Florence, 2019 [23] proposed a hybrid
method; features have been selected using a genetic
algorithm, and a deep neural network is utilized for
classification. They enhanced the genetic algorithm
performance by changing the design of the chromosome and
fitness function. In the same way, they adopted an auto-
encoder to improvise the DNN. Experimentation was carried
by using the PROMISE repository, and the performance is
verified by various measures such as specificity, recall,
precision, f-score, sensitivity, accuracy, and recall.
 Zhao et al., 2019 [24] presented a Siamese dense neural
network for learning similarity features and distance metrics.
They utilized the cosine-proximity contract loss function.
Using NASA's MDP measurements, they compared the
proposed method to several conventional SDP methods. PD,
PF, f-measure, MCC, and AUC are used to assess
performance. The simulation results concluded that SDNN is
stable and outperformed well compared to all the baseline
models.

2.6 Logistic regression
It's an SML method that predicts a dependent variable's
probability. It falls under two categories: a binary logistic
regression model, where the possible values are 0 and 1, and
multinomial logistic regression, where the dependent
variable may have 3 or more unordered types.
 Panichella, Oliveto and De Lucia, 2014 [25] came up
with a novel approach Combined DEfect Predictors
(CODEP), as an efficient defect prediction model. They
experimented on ten open-source projects and used TPR,
FPR, precision, and recall to verify the results. The results
concluded that the proposed method is significantly superior
to standalone applications such as LR, RBFN, ADtree, DT,
multi-layer perceptron, and Bayes net.
 Zhang et al., 2016 [26] analyzed unsupervised
classifiers' performance and supervised classifiers using 26
projects extracted from AEEM, NASA, and PROMISE
repository. The connectivity-based classifier is proposed
using spectral clustering, and the proposed method obtained
better accuracy among logistic regression, naïve Bayes,
random forest, logistic model tree, decision tree, and some
clustering algorithms.

2.7 Ensemble learning
Ensemble learning is an ML technique that combines several
basic classifier models to produce a more accurate prediction
model. It is mainly used to enhance classification
performance, prediction, and function approximation
performance. Bagging, stacking, voting, and boosting are
examples of ensemble learning methods.
 Alsaeedi and Khan, 2019 [27] evaluated different
supervised machine learning techniques and ensemble
approaches on 10 NASA Datasets. They utilized SMOTE to
deal with the skewed data and evaluated the results using
accuracy, f-score, and AUC-ROC. They noticed that
bagging, ada-boost, and random forest worked well.
 Kaur and Kaur, 2014[28] evaluated bagging, boosting,
and random forest using several base learning classifiers and
experimented with datasets from the PROMISE repository.
Proposed ensemble learning methods such as Bagging,
boosting, and the random forest outperformed basic
classifiers considerably in AUC.
 Sayed and Ramadan, 2018 [29] utilized re-sampling
techniques to handle the imbalance dataset and simulated

using various ensemble learners such as boosting, bagging
and random forest. They have utilized 8 base learners and
tested on 7 datasets from the PROMISE repository. After
comparing performance, they found that ensemble learning
methods outperformed ML algorithms.
 Laradji, Alshayeb, and Ghouti (2015) [30] integrated
feature selection and EL methods to enhance software defect
prediction performance. They experimented with various
feature selection techniques and observed correlation-based
forward selection to select features to produce better AUC.
The enhanced version APE with greedy forward selection
attained better performance using various NASA and
PROMISE repository datasets.

3 Proposed Method

The framework of this proposed research is an integration of
several independent methods (Figure 1). Data collection is
collected from PROMISE repository, data preprocessing has
been done based on correlation-based feature selection, and
then the data has been supplied in an 80:20 split for training
and testing.

3.1 Stacking Classifier
Stacking is a supervised ML technique for combining a set
of predictions for binary classification, multi-classification,
and regression. Stacking is also called a stacked regression
[31] or super learner [32] developed in the year 1992 [33].
Though it was introduced many years ago, bagging and
boosting are utilized widely compared to staking, which is
difficult to examine theoretically. Stacking differs from
bagging and boosting in these it utilizes the same kind of
base learner while bagging and boosting use distinct types of
base learners. It involves second-level training called meta-
learner that will find optimal prediction from the
combination of base learners. Base-level learners are
generated by applying various learning algorithms to a stated
dataset[34].

Algorithm: Stacking Classifier

Input: Data for training 𝐷𝑆 = {𝑥! , 𝑦!}!"#$
Output: Ensemble Classifier H
Level 1: Learning algorithm at the base level classifier
for𝑙 = 1 to 𝐿do
learn ℎ% based on 𝐷𝑆
end for
Level 2: Creating various datasets for predictions
for𝑖 = 1 to 𝑚do
𝐷𝑆& = {𝑥!', 𝑦!},	where,𝑥!' = {ℎ#(𝑥!), … , ℎ((𝑥!)}
end for
Level 3: meta-classifier learning
learn 𝐻 based on𝐷𝑆&
return 𝐻

 Considered features 𝑋 = {𝑥! ∈ 𝑅$}, set of class labels
𝑌 = {𝑦! ∈ 𝑁} and data for training is given as		𝐷𝑆 =
{𝑥! , 𝑦!}!"#$, here the learning model is M on the training data
𝐷𝑆. In the first level, learning is performed on the original
training dataset with distributed weights, and learning

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 140

parameters have tuned on the base classifier. At the second
level, new datasets are created and predicted the labels from
the output of first-level classifiers that are considered as new

features. In place of using predicted labels, we can use
probability estimators of the said first-level classifiers.

Fig.1. The framework of the Proposed Stacking classifier.

4 Experimental setup

This section discussed the datasets considered for
experimentation, performance measures considered to
evaluate the model, and experimental setups such as
hardware and software setup for the working environment
and parameter setting of the various machine learning
models.

4.1 Empirical data
Experimentation is carried out in this article using open-
source software code measurements. The PROMISE
repository contains 44 datasets associated with 13 different
software projects [35]. These are developed using object-
oriented programming: java, and every feature in the dataset
represents a java class. The experiment is conducted using
datasets ivy2.0, tomcat, and velocity1.6. Table 1. shows the
descriptive analysis of these datasets, containing 20 features

of software metrics [36]. A software class is deemed defect-
prone if it has one or more defects. Otherwise, it is free of
defects [37].
4.2 Performance measure
This section described various classifiers used to validate the
performance, such as precision, recall, accuracy, AUC-ROC,
and f1-score. AUC obtains a superior assessment in all
classifications because it is unaffected by changes in data
distributions. [38]. Therefore, we used AUC as one of the
main metrics to assess the proposed approach. The confusion
matrix, also known as the error matrix, is used to compute
the AUC based on the trade-off between false positive and
true negative rates. It is a combination of various predicted
and actual values. The confusion matrix for the two classes
is as shown in Table 2. It is very useful in calculating
several evaluating factors such as recall, true positive rate
(TPR), false-positive rate (FPR), precision, f1-score, AUC,
etc. [39].

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 141

Table 1. Dataset statistics.
Dataset Corpus Defective Ratio #Modules #Defective

Modules
Ivy2.0 ck 11.363636 352 40
Tomcat ck 8.97439 858 77
Velocity1.6 ck 34.061135 229 78

Table 2. Confusion matrix.

Actual Label Predicted Label
Defect-Free Defect-Prone

Defect-Free TP FN
Defect-Prone FP TN

TP: True Positive; TN: True Negative;
FP: False Positive; FN: False Negative

4.3 Simulation environment and parameter setup
This study examined an ensemble learning approach
stacking classifier and various ML approaches such as SGD,
SVC, KNN, QDA, RF, DT, LR, GNB, MLP, and LDA with
ivy2.0, tomcat, velocity1.6 that are available at PROMISE
repository. On the Windows 10 operating system, we
utilized an Intel i5 CPU with 6 GB RAM. The proposed
approach and several ML algorithms are implemented using
Scikit-learn, an open-source machine learning library based
on python. We explored the dataset features using a
correlation matrix to find the relation among features and
feature distribution. Table 3 shows each classifier's distinct
parameter setting with respective datasets ivy2.0, tomcat,
and velocity1.6.

Table 3. Proposed method parameters in Jedit4.0, camel1.4, Ant1.7, ivy2.0, tomcat, and velocity1.6.
Techniques Parameter Setting

Ivy2.0 Tomcat Velocity1.6
Stacking Classifiers :

[KNeighborsClassifier(
‘n_neighbors’ = 50, ‘algorithm’ =
'kd_tree', ‘weights’ = 'distance'),
RandomForestClassifier(
‘random_state’=1), GaussianNB()]

Classifiers : [KNeighborsClassifier(
‘algorithm’='kd_tree'
‘n_neighbors’=15,),
RandomForestClassifier(
‘random_state’=1), GaussianNB()]

Classifiers : [DecisionTreeClassifier(
‘criterion’='entropy', ‘max_depth’=7,
‘random_state’=2 ‘splitter’='best',),
RandomForestClassifier(
‘random_state’=1),
BaggingClassifier(DecisionTreeClassifier(),
‘n_estimators’ = 400, ‘random_state’ = 1)]

‘meta_classifier’ :
LogisticRegression(),

‘meta_classifier’ :
LogisticRegression(),

‘meta_classifier’ : LogisticRegression(),

‘use_probas’ : ‘True’, ‘use_clones’
: ‘False’

‘use_probas’ : ‘True’, ‘use_clones’ :
‘False’

‘use_probas’ : ‘True’, ‘use_clones’ : ‘False’

5 Result analysis

This segment portrayed the outcomes gained on ivy2.0,
tomcat, velocity1.6 software metrics from the PROMISE
repository with stacking. The proposed Stacking has been
compared against several ML techniques such as KNN,
SVM, LR, RF, MLP, SGD, GNB, LDA, DT, and QDA.
Evaluation metrics such as confusion matrix, TP, FN, FP,
TN, FPR, TPR, TNR, Accuracy, Precision, Recall, F1-score,
and AUC-ROC have been considered to compare the
models. We partition the rest of the segment into three cases
for ivy2.0, tomcat, and velocity1.6 separately.
5.1 Test case 1: ivy2.0 dataset
In this case, the ivy2.0 dataset from the PROMISE
repository is considered for experimentation. The dataset has
352 modules. From these, 88 percent are defect-free
modules, and 12 percent are defect-prone modules
represented in Figure 2. Descriptive statistics of the dataset
has presented in Table 4.
 The feature distribution is important for understanding
the dataset's features. From the feature distribution, we can
determine the data's possible temporal range and
occurrences. Figure 3 depicts the ivy2.0 dataset's feature
distribution. The feature distribution plots show that the
metrics 'lcom3', 'cam', 'dam' is normally distributed features
that imply these features are distributed at the same interval
and may improve the classification accuracy. Features such
as 'ca', 'npm', 'wmc', 'dit', 'cbo', 'rfc', 'loc', 'mfa', 'amc',
'avg_ccare' partially skewed and leaving the rest features
'lcom', 'moa', 'noc', 'ic', 'cbm', 'max_cc' are fully skewed.
Ordinarily normal distributed features are extremely
valuable in getting good accuracy than the partially skewed
and fully skewed features.

Fig. 2. Class distribution of the ivy2.0 dataset.

 Proposed method Stacking contrasted with diverse ML
techniques such as KNN, SVM, LR, RF, MLP, SGD, GNB,
LDA, DT, and QDA. The confusion matrix of the proposed
method over ivy2.0 is as shown in Figure 4.

Fig. 4. Confusion matrix for ivy2.0 dataset on proposed method
stacking classifier

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 142

Fig.3. Feature distribution of ivy2.0 dataset.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 143

Table 4. Description of the dataset - ivy2.0.
MEAN STD MIN 25% 50% 75% MAX

WMC 11.284091 15.148232 1 3 6 13 157
DIT 1.792614 1.244773 1 1 1 2 6
NOC 0.369318 1.318279 0 0 0 0 17
CBO 13.232955 16.571085 1 5 8 16 150
RFC 34.036932 44.679566 1 6 19 40 312
LCOM 131.579545 712.192029 0 0 6 45.25 11794
CA 6.880682 13.938917 0 1 3 6 147
CE 5.164773 8.931273 0 1 2 5 75
NPM 9.036932 12.636099 0 2 5 11 142
LCOM3 1.059352 0.660123 0 0.625 0.85 2 2
LOC 249.34375 428.259698 1 20 85.5 267 2894
DAM 0.616224 0.45994 0 0 1 1 1
MOA 0.715909 1.441737 0 0 0 1 12
MFA 0.290908 0.385164 0 0 0 0.670918 1
CAM 0.490831 0.254585 0.055223 0.299074 0.444444 0.666667 1
IC 0.357955 0.733601 0 0 0 0.25 4
CBM 0.636364 1.781077 0 0 0 0.25 18
AMC 18.489722 27.032755 0 4.666667 10.388199 21.434615 203.5
MAX_CC 3.1875 3.848123 0 1 2 4 29
AVG_CC 1.214294 0.816136 0 0.8 1 1.446925 6.5
DEFECTS 0.113636 0.317821 0 0 0 0 1

 From the insights acquired from the confusion matrix,
we figured different classification measures of the proposed
technique and different machine learning strategies are
presented in Table 5.
 The proposed technique stacking classifier obtained
97.44 percentage, which is better contrasted with other
standard machine learning algorithms. Other than the
proposed technique, methods such as decision tree, random
forest, quadratic discriminant analysis, linear regression, and
support vector machine performed well with accuracy 94.6,
93.46, 92.61, 90.62, 90.05 individually. Out of 352 modules,
312 are properly classified as defect-free modules based on
the findings of the proposed approach. 31 defect-prone
modules have been properly identified as defect-prone. Next,
the true positive rate is that the pace of positive examples is
correctly classified, the TPR value of the stacking classifier
is 0.77, and the remaining are in the middle of 0.01 to 0.6.

 The stacking classifier and random forest are better
regarding false positive rate and precision. All methods
performed well w.r.t. the true negative rate. The stacking
classifier beat well on account of f-measure and ROC-AUC.
By considering all the performance measures, the proposed
method stacking classifier is superior to the other machine
learning models with stable results.
 Comparative analysis of the proposed stacking and
several ML techniques concerning the FPR, TPR, TNR,
Accuracy, Precision, Recall, F1-score, and AUC-ROC on
ivy2.0 is represented graphically in Figure 5.
 The suggested technique's AUC-ROC curve, as well as
other ML approaches are plotted in the center of true
positive and false-positive rates, as shown in Figure 6 based
on the ivy2.0 dataset (i) through (xi).

Table 5. Statistical performance analysis on ivy2.0.

Prediction
Models

Performance Metrics

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC

KNN 88.92 4 309 3 36 0.009 0.1 0.99 0.571 0.17 0.545
SGD 87.215 7 300 12 33 0.038 0.175 0.961 0.368 0.237 0.568
RF 93.465 17 312 0 23 0 0.425 1 1 0.596 0.712
GNB 85.511 18 283 29 22 0.092 0.45 0.907 0.382 0.413 0.678
LR 90.625 13 306 6 27 0.019 0.325 0.98 0.684 0.44 0.652
DT 94.602 25 308 4 15 0.012 0.625 0.987 0.862 0.724 0.806
LDA 90.625 15 304 8 25 0.025 0.375 0.974 0.652 0.476 0.674
MLP 86.931 16 290 22 24 0.07 0.4 0.929 0.421 0.41 0.664
QDA 92.613 24 302 10 16 0.032 0.6 0.967 0.705 0.648 0.783
SVC 90.056 6 311 1 34 0.003 0.15 0.996 0.857 0.255 0.573
Stacking
(Proposed) 97.443 31 312 0 9 0 0.775 1 1 0.873 0.887

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 144

Fig. 5. Comparison of prediction results from various classifiers on ivy2.0 dataset.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 145

(vii)

(viii)

(ix)

(x)

(xi)

Fig. 6. AUC-ROC curve of various classifier: i) KNN, ii) SGD, iii) RF,
iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP, ix) QDA, x) SVM, and
xi) stacking on ivy2.0.

5.2 Test case 2: Tomcat dataset
Here, an experimental study is conducted by the tomcat
dataset from the PROMISE repository. Tomcat has 858
instances; among these, 91 percent of modules are defect-
free modules, and the remaining 8 percent are defect-prone
modules. The graphical portrayal of defect-free and defect-
prone modules is shown in Figure 7. The investigations on
the dataset's insights, such as mean, min, max, standard
deviation, etc., are presented in Table 6.

Fig. 7. Class distribution of the tomcat dataset.

 Feature distribution gives us a better overview of the
data, and it is shown in Figure 8. The features 'lcom3' and
'cam' are distributed normally; 'wmc', 'cbo', 'rfc', 'npm', 'dam',
'avg_cc' are skewed partially; and the remaining features 'ce',
'dit', 'noc','moa','mfa', 'lcom', 'ca', 'amc', 'loc', 'ic', 'cbm',
'max_cc' are skewed fully.
 The proposed method stacking classifier and different
machine learning algorithms have been experimented on the
tomcat dataset. The confusion matrix for the proposed
method is shown in Figure 9.

Fig. 9. Confusion matrix for tomcat dataset on proposed method
stacking classifier.

 From the confusion matrix, metrics such as true positive,
false positive, true negative, and false negative of the
proposed method are identified, and we figured the
performance measures such as TP, FN, FP, TN, FPR, TPR,
TNR, Accuracy, Precision, Recall, F1-score, and AUC-ROC
in Table.7.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 146

Table 6. Description of the dataset - tomcat.
MEAN STD MIN 25% 50% 75% MAX

WMC 12.95921 18.61893 0 3 7 14 252
DIT 1.687646 1.053022 1 1 1 2 6
NOC 0.363636 1.973732 0 0 0 0 31
CBO 7.573427 11.09689 0 2 4 9 109
RFC 33.47086 44.97656 0 7 17 39.75 511
LCOM 176.2762 1159.188 0 0 4 42 29258
CA 3.862471 8.90333 0 0 1 3 109
CE 0 0 0 0 0 0 0
NPM 10.77622 16.71321 0 2 5 12 231
LCOM3 1.086168 0.660434 0 0.625 0.871795 2 2
LOC 350.4359 644.839 0 25.25 112 373 7956
DAM 0.574051 0.471406 0 0 0.994048 1 1
MOA 0.944056 2.107749 0 0 0 1 24
MFA 0.293751 0.386574 0 0 0 0.666667 1
CAM 0.486463 0.253582 0 0.286667 0.444444 0.666667 1
IC 0.275058 0.578783 0 0 0 0 4
CBM 0.59324 1.74214 0 0 0 0 19
AMC 25.57757 46.64224 0 4.5 14.79048 29.96563 894.5
MAX_CC 4.271562 6.954404 0 1 1 5 95
AVG_CC 1.250478 1.002395 0 0.723225 1 1.5 10
DEFECTS 0.089744 0.285981 0 0 0 0 1

Table 7. Statistical performance analysis on tomcat.

Prediction
Models

Performance Metrics

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC

KNN 91.142 1 781 0 76 0 0.012 0 1 0.025 0.506
SGD 83.799 24 695 86 53 0.11 0.311 0.889 0.218 0.256 0.6
RF 93.24 19 781 0 58 0 0.246 0 1 0.395 0.623
GNB 91.142 1 781 0 76 0 0.012 0 1 0.025 0.506
LR 91.724 14 773 8 63 0.01 0.181 0.989 0.636 0.282 0.585
DT 92.307 11 781 0 66 0 0.142 0 1 0.25 0.571
LDA 91.491 22 763 18 55 0.023 0.285 0.976 0.55 0.376 0.631
MLP 85.547 47 687 94 30 0.12 0.61 0.879 0.333 0.43 0.745
QDA 88.578 18 742 39 59 0.049 0.233 0.95 0.315 0.268 0.591
SVC 91.375 3 781 0 74 0 0.038 1 1 0.075 0.519
Stacking
(Proposed) 97.902 60 780 1 17 0.001 0.779 0.998 0.983 0.869 0.888

 The outcomes show that the proposed model stacking
classifier outperformed well with accuracy 97.90, random
forest, decision tree with accuracy 93.24 and 92.30 percent
individually, and KNN, GNB, LR, and LDA have accuracy
with 91 percent. The performance of the stacking classifier
is significantly better than all the machine learning
algorithms regarding the true positive rate. The stacking
classifier, k-nearest neighbor, random forest, Gaussian naive
Bayes, decision trees, and support vector machine are better
in false-positive rate and precision. Performance of stacking
classifier, quadratic discriminant analysis, linear
discriminant analysis, and linear regression are remarkably
predominant in true negative rate. The stacking classifier is
strikingly one step better than both f-measure and ROC-
AUC. Considering all performance measures, it is evident
that the proposed technique stacking classifier dominated the
performance on a greater scale over the other machine
learning models. Figure 10. shows the predictions

Accuracy, Precision, Recall, F1-score, and AUC-ROC of the
proposed approach and different ML approaches on tomcat.

Fig. 10. Comparison of prediction results in various classifiers on the
tomcat dataset

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 147

Fig. 8. Feature distribution of tomcat dataset.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 148

 AUC-ROC curves of the suggested technique and
different ML approaches are plotted in the middle of true
positive rate and false-positive rates; those are presented
in Figure 11: (i) to (xi) on account of the tomcat dataset.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

Fig. 11. AUC-ROC curve of various classifier: i) KNN, ii) SGD, iii)
RF, iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP ix) QDA, x) SVM,
and xi) stacking on tomcat.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 149

5.3 Test case 3: velocity1.6 dataset
Here, object-oriented dataset velocity1.6 is examined for
experimentation. It has 229 modules that are 151 defect-free
modules and 78 defect-prone modules, presented graphically
in Figure 12. The dataset that consists of mean, standard
deviation, min, max, percentiles of 25, 50, and 75 are shown
in Table 12.

Fig. 12. Class distribution of the velocity1.6dataset.

Table 8. Description of the dataset – velocity1.6.

MEAN STD MIN 25% 50% 75% MAX
WMC 9.021834 14.13514 0 3 5 9 153
DIT 1.676856 0.888739 1 1 1 2 5
NOC 0.436681 2.754846 0 0 0 0 39
CBO 10.80786 1272.267 0 4 7 11 80
RFC 22.97817 27.36906 0 6 14 30 250
LCOM 80.34061 554.868 0 0 3 10 8092
CA 5.606987 11.17968 0 1 2 5 76
CE 5.982533 7.675985 0 1 4 8 61
NPM 7.218341 8.799193 0 3 5 7 50
LCOM3 1.232531 0.710674 0 0.625 0.956522 2 2
LOC 248.9607 1034.079 0 20 77 220 13175
DAM 0.432095 0.462687 0 0 0.166667 1 1
MOA 0.471616 1.145291 0 0 0 1 10
MFA 0.387857 0.411527 0 0 0 0.833333 1
CAM 0.465075 0.222449 0 0.333333 0.4375 0.541667 1
IC 0.31441 0.551563 0 0 0 1 2
CBM 0.489083 1.041302 0 0 0 1 9
AMC 19.60873 28.11434 0 4.333333 10.83333 26.66667 276
MAX_CC 3.9869 14.58925 0 1 1 4 209
AVG_CC 1.270836 1.855954 0 0.6667 1 1.3226 23
DEFECTS 0.340611 0.474953 0 0 0 1 1

 Figure 13 depicts the dataset velocity feature
distribution. The distribution of the features gives us a good
overview of the data. The feature 'cam' is normally
distributed; 'ce', 'cbo', 'rfc', 'lcom3','mfa', 'dam', 'amc' are
skewed partially; and the other features 'noc', 'wmc', 'dit',
'lcom', 'ca', 'npm', 'loc', 'moa', 'ic', 'max_cc', 'cbm', 'avg_cc'
are skewed fully. Normally distributed features play a
critical role in increasing the accuracy than partially skewed
features followed by fully skewed features.

 The proposed method stacking and different ML
techniques are tested with velocity1.6. The confusion matrix
of the proposed method is shown in Figure 14.
 Using confusion matrix estimates, we computed
performance metrics such as true positive rate, false-positive
rate, precision, true negative rate, f-measure, and ROC-AUC
are shown in Table 9.

Table 9. Statistical performance analysis on velocity1.6.

Prediction
Models

Performance Metrics

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC

KNN 77.292 28 149 2 50 0.013 0.358 0.986 0.933 0.518 0.672
SGD 65.938 14 137 14 64 0.092 0.179 0.907 0.5 0.264 0.543
RF 93.449 71 143 8 7 0.052 0.91 0.947 0.898 0.904 0.928
GNB 69.868 23 137 14 55 0.092 0.294 0.907 0.621 0.4 0.601
LR 78.602 42 138 13 36 0.086 0.538 0.913 0.763 0.631 0.726
DT 91.703 69 141 10 9 0.066 0.884 0.933 0.873 0.878 0.909
LDA 74.672 34 137 14 44 0.092 0.435 0.907 0.708 0.539 0.671
MLP 80.349 42 142 9 36 0.059 0.538 0.94 0.823 0.651 0.739
QDA 76.419 29 146 5 49 0.033 0.371 0.966 0.852 0.517 0.669
SVC 94.323 65 151 0 13 0 0.833 1 1 0.909 0.916
Stacking
(Proposed) 95.196 71 147 4 7 0.026 0.91 0.973 0.946 0.928 0.941

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 150

Fig. 13. Feature distribution of velocity1.6 dataset.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 151

Fig. 14. Confusion matrix for velocity1.6 dataset on proposed method
stacking classifier.

 The results show that the proposed ensemble learning
technique stacking outperformed various machine learning

methods on the velocity1.6 dataset. The proposed method's
performance in accuracy is 95.19% followed by SVM, RF,
and DT with accuracy 94.32, 93.44, and 91.70, respectively.
The stacking classifier and random forest are performed well
in terms of true positive rate. KNN, SVM, and stacking are
superior in false-positive rate and precision. SVM, KNN,
stacking, and quadratic discriminant analysis outperformed
well; besides, all other models performed well in terms of
true negative rate. The stacking classifier, SVM, and RF
performed well in f-measure and AUC-ROC. By considering
all measures, the proposed technique stacking outperformed
others, according to the results. The prediction performance
of various measures such as accuracy, true positive rate,
precision, true negative rate, f-measure, and ROC-AUC by
the proposed method and different machine learning
algorithms on velocity1.6 are shown in Figure 15.

Fig. 15. Comparison of prediction results in various classifiers on velocity1.6 dataset.

AUC- ROC curves of the proposed technique and different
ML methods are shown in Figure 16: (i) to (xi) in the
velocity1.6 dataset.

(i)

(ii)

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 152

(iii)

(iv

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

 Fig. 16. AUC-ROC curve of various classifier: i) KNN, ii) SGD,
iii) RF, iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP ix) QDA, x) SVM, and xi)
stacking on velocity1.6.

 Table 10 compares performance metric AUC values in
the cases of ivy2.0, tomcat, and velocity1.6 with previous
studies. In the case of ivy2.0 data, the proposed method's
AUC value is 0.887, and from the literature highest AUC
value is given by the Bayesian network with 0.846. Next in
tomcat data, the proposed method AUC value is 0.869, and
the highest AUC values from the literature are SC, NB, and
LR, having 0.8. In velocity1.6 data, the AUC value is 0.928
in the proposed method, and from the literature, MLP
performed well with 0.782. In all three cases, the proposed
methodology outperformed prior research and several well-
known ML models considerably.

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 153

Table 10. Previous studies in ivy2.0, tomcat, and velocity1.6
Dataset Various classifier performance in terms of AUC Ref
Ivy2.0 RF SC LMT NB [26]

-0.71 -0.7 -0.7 -0.68
AUC

LR DT NB RF MLP J48 SVM [37]
-0.774 -0.704 -0.769 -0.761 -0.697 -0.558 -0.534

AUC
Bayesian network [40]

-0.846
AUC

Bagging with [28]
NB MLP LR J48 SVM

-0.762 -0.686 -0.76 -0.782 -0.589
AUC

Boosting with
NB MLP LR J48 SVM

-0.65 -0.716 -0.65 -0.695 -0.698
AUC

Stacking Classifier Our Proposed
Method Accuracy: 97.443

AUC: 0.887
Tomcat SC RF NB LMT [26]

-0.8 -0.78 -0.8 -0.77
AUC

Bayesian network [40]
-0.766
AUC

LR DT NB RF MLP J48 SVM [37]
-0.747 -0.702 -0.799 -0.752 -0.762 -0.619 -0.5

AUC
Bagging with [28]

NB MLP LR SVM J48

-0.798 -0.663 -0.801 -0.517 -0.792
AUC

Boosting with
NB LR MLP SVM J48

-0.705 -0.705 -0.705 -0.77 -0.751
AUC

Stacking Classifier Our Proposed
Method Accuracy: 97.902

AUC: 0.869
Velocity1.6 Bayesian network [40]

-0.678
AUC

LR DT NB J48 MLP RF SVM [37]
-0.747 -0.679 -0.709 -0.665 -0.782 -0.785 -0.589

AUC
Bagging with [28]

LR NB MLP SVM J48

-0.767 -0.719 -0.583 -0.65 -0.761
AUC

Boosting with
NB LR MLP SVM J48

-0.752 -0.752 -0.751 -0.711 -0.768
AUC

Stacking Classifier Our Proposed
Method Accuracy: 95.196

AUC: 0.928

6 Conclusion

SDP at an early stage helps to maintain software quality
measures and improves software management procedures.
This paper focused on an ensemble learning technique called
stacking classifier and ML approaches such as SVC, SGD,
KNN, RF, QDA, DT, GNB, LR, LDA, and MLP for SDP.
The projects' software metrics are considered features;
training and testing are performed on these data and
extracted the input patterns provided by the datasets ivy2.0,
tomcat, and velocity1.6 from the PROMISE repository.
 Stacking classifier is an incredible machine learning
paradigm that has displayed efficacy in many applications.

Initially, all the attention has been on choosing the "best"
single classification model from different models, where the
proposed method can frame the combinations of models
utilizing level one data. By combining various base
classifiers, we achieved a low error rate through stacking.
 Extensive experimental work is carried out through three
cases, performance comparision has been done on the
proposed method and ML methods on ivy2.0 and obtained
the classification accuracy is 88.920, 87.215, 93.465, 85.511,
90.625, 94.602, 90.625, 86.931, 92.613, 90.056, and 97.443
for KNN, SGD, RF, GNB, LR, DT, LDA, MLP, QDA,
SVC, and proposed stacking classifier respectively.
Similarly, on the tomcat dataset,the achieved accuracies are

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 154

91.142, 83.799, 93.240, 91.142, 91.724, 92.307, 91.491,
85.547, 88.578, 91.375, and 97.902 for KNN, SGD, RF,
GNB, LR, DT, LDA, MLP, QDA, SVC, and proposed
stacking classifier respectively. Likewise, we experimented
with these models on the velocity1.6 dataset and obtained
accuracy are 77.292, 65.938, 93.449, 69.868, 78.602,
91.703, 74.672, 80.349, 76.419, 94.323, and 95.196 for
KNN, SGD, RF, GNB, LR, DT, LDA, MLP, QDA, SVC,
and proposed stacking classifier respectively. By utilizing an
ensemble learning technique stacking, attained improved
results over conventional machine learning algorithms.
Finally, we attained higher accuracy, precision, recall, and

AUC-ROC values using the proposed method. Further
analysis is encouraged with various feature selection
paradigm and optimization algorithms on the ensemble
classifiers in future work. Moreover, a deep learning-based
approach is to be developed to analyze the features and
prediction of software defects effectively.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution License.

References

1. T. Ravi Kumar, T. Srinivasa Rao, and S. Bathini, “A predictive
approach to estimate software defects density using weighted
artificial neural networks for the given software metrics,” Smart
Innov. Syst. Technol., vol. 105, pp. 449–457, 2019, doi:
10.1007/978-981-13-1927-3_48.

2. P. Suresh Kumar and H. S. Behera, “Role of Soft Computing
Techniques in Software Effort Estimation: An Analytical Study,” in
Computational Intelligence in Pattern Recognition, 2020, pp. 807–
831, doi: 10.1007/978-981-13-9042-5_70.

3. L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based
software defect prediction,” Neurocomputing, vol. 385, pp. 100–
110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

4. P. Suresh Kumar and H. S. Behera, “Estimating Software Effort
Using Neural Network: An Experimental Investigation,” in
Computational Intelligence in Pattern Recognition, 2020, vol.
1120, pp. 165–180, doi: 10.1007/978-981-15-2449-3_14.

5. Z. Yan, X. Chen, and P. Guo, “Software Defect Prediction Using
Fuzzy Support Vector Regression,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 6064 LNCS, no. PART
2, 2010, pp. 17–24.

6. S. S. Rathore and S. Kumar, “A Decision Tree Regression based
Approach for the Number of Software Faults Prediction,” ACM
SIGSOFT Softw. Eng. Notes, vol. 41, no. 1, pp. 1–6, 2016, doi:
10.1145/2853073.2853083.

7. S. S. Rathore and S. Kumar, “An empirical study of some software
fault prediction techniques for the number of faults prediction,” Soft
Comput., vol. 21, no. 24, pp. 7417–7434, Dec. 2017, doi:
10.1007/s00500-016-2284-x.

8. K. O. Elish and M. O. Elish, “Predicting defect-prone software
modules using support vector machines,” J. Syst. Softw., vol. 81,
no. 5, pp. 649–660, May 2008, doi: 10.1016/j.jss.2007.07.040.

9. T. Wang and W. Li, “Naive Bayes Software Defect Prediction
Model,” in 2010 International Conference on Computational
Intelligence and Software Engineering, Dec. 2010, no. 2006, pp. 1–
4, doi: 10.1109/CISE.2010.5677057.

10. H. Wang, T. M. Khoshgoftaar, and N. Seliya, “How many software
metrics should be selected for defect prediction?,” Proc. 24th Int.
Florida Artif. Intell. Res. Soc. FLAIRS - 24, no. Mi, pp. 69–74,
2011.

11. Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance analysis in
software fault prediction models,” Proc. - Int. Symp. Softw. Reliab.
Eng. ISSRE, pp. 99–108, 2009, doi: 10.1109/ISSRE.2009.13.

12. S. Aleem, L. F. Capretz, and F. Ahmed, “Benchmarking Machine
Learning Techniques for Software Defect Detection,” Int. J. Softw.
Eng. Appl., vol. 6, no. 3, pp. 11–23, May 2015, doi:
10.5121/ijsea.2015.6302.

13. H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection
algorithms with layered recurrent neural network for software fault
prediction,” Expert Syst. Appl., vol. 122, pp. 27–42, May 2019, doi:
10.1016/j.eswa.2018.12.033.

14. R. S. Wahono and N. Suryana, “Combining Particle Swarm
Optimization based Feature Selection and Bagging Technique for
Software Defect Prediction,” Int. J. Softw. Eng. Its Appl., vol. 7, no.
5, pp. 153–166, Sep. 2013, doi: 10.14257/ijseia.2013.7.5.16.

15. A. O. Balogun, A. O. Bajeh, V. A. Orie, and A. W. Yusuf-asaju,
“Software Defect Prediction Using Ensemble Learning: An ANP
Based Evaluation Method,” J. Eng. Technol., vol. 3, no. 2, pp. 50–
55, 2018.

16. B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang, “Software defect

prediction using dynamic support vector machine,” in Proceedings
- 9th International Conference on Computational Intelligence and
Security, CIS 2013, Dec. 2013, pp. 260–263, doi:
10.1109/CIS.2013.61.

17. K. Magal.R and S. Gracia Jacob, “Improved Random Forest
Algorithm for Software Defect Prediction through Data Mining
Techniques,” Int. J. Comput. Appl., vol. 117, no. 23, pp. 18–22,
2015, doi: 10.5120/20693-3582.

18. M. Kakkar and S. Jain, “Feature selection in software defect
prediction: A comparative study,” in 2016 6th International
Conference - Cloud System and Big Data Engineering
(Confluence), Jan. 2016, pp. 658–663, doi:
10.1109/CONFLUENCE.2016.7508200.

19. N. Babu, Himagiri, V. Vamshi Krishna, A. Anil Kumar, and M.
Ravi, “Software defect prediction analysis by using machine
learning algorithms.,” Int. J. Recent Technol. Eng., vol. 8, no. 2
Special Issue 11, pp. 3544–3546, 2019, doi:
10.35940/ijrte.B1438.0982S1119.

20. A. Chug and S. Dhall, “Software defect prediction using supervised
learning algorithm and unsupervised learning algorithm,” IET Conf.
Publ., vol. 2013, no. 647 CP, pp. 173–179, 2013, doi:
10.1049/cp.2013.2313.

21. S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P.
Thambidurai, “Object-oriented software fault prediction using
neural networks,” Inf. Softw. Technol., vol. 49, no. 5, pp. 483–492,
2007, doi: 10.1016/j.infsof.2006.07.005.

22. J. Li, P. He, J. Zhu, and M. R. Lyu, “Software Defect Prediction via
Convolutional Neural Network,” in 2017 International Conference
on Software Quality, Reliability and Security (QRS), Jul. 2017, pp.
318–328, doi: 10.1109/QRS.2017.42.

23. C. Manjula and L. Florence, “Deep neural network based hybrid
approach for software defect prediction using software metrics,”
Cluster Comput., vol. 22, no. S4, pp. 9847–9863, Jul. 2019, doi:
10.1007/s10586-018-1696-z.

24. L. Zhao, Z. Shang, L. Zhao, A. Qin, and Y. Y. Tang, “Siamese
Dense Neural Network for Software Defect Prediction With Small
Data,” IEEE Access, vol. 7, no. c, pp. 7663–7677, 2019, doi:
10.1109/ACCESS.2018.2889061.

25. A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’Union fait la force,” in 2014 Software
Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), Feb.
2014, pp. 164–173, doi: 10.1109/CSMR-WCRE.2014.6747166.

26. F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project
defect prediction using a connectivity-based unsupervised
classifier,” in Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16, 2016, vol. 14-22-May-, pp. 309–
320, doi: 10.1145/2884781.2884839.

27. A. Alsaeedi and M. Z. Khan, “Software Defect Prediction Using
Supervised Machine Learning and Ensemble Techniques: A
Comparative Study,” J. Softw. Eng. Appl., vol. 12, no. 05, pp. 85–
100, 2019, doi: 10.4236/jsea.2019.125007.

28. A. Kaur and K. Kaur, “Performance analysis of ensemble learning
for predicting defects in open source software,” in 2014
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Sep. 2014, pp. 219–
225, doi: 10.1109/ICACCI.2014.6968438.

29. A. Sayed and N. Ramadan, “Early Prediction of Software Defect
using Ensemble Learning: A Comparative Study,” Int. J. Comput.
Appl., vol. 179, no. 46, pp. 29–40, 2018, doi:

P. Suresh Kumar, Janmenjoy Nayak and H. S. Behera/Journal of Engineering Science and Technology Review 15 (2) (2022) 137 - 155

 155

10.5120/ijca2018917185.
30. I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect

prediction using ensemble learning on selected features,” Inf. Softw.
Technol., vol. 58, pp. 388–402, 2015, doi:
10.1016/j.infsof.2014.07.005.

31. L. Breiman, “Stacked regressions,” Mach. Learn., vol. 24, no. 1,
pp. 49–64, Jul. 1996, doi: 10.1007/BF00117832.

32. M. J. van der Laan, E. C. Polley, and A. E. Hubbard, “Super
Learner,” Stat. Appl. Genet. Mol. Biol., vol. 6, no. 1, Jan. 2007, doi:
10.2202/1544-6115.1309.

33. D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5,
no. 2, pp. 241–259, Jan. 1992, doi: 10.1016/S0893-6080(05)80023-
1.

34. G. Wang, J. Hao, J. Ma, and H. Jiang, “A comparative assessment
of ensemble learning for credit scoring,” Expert Syst. Appl., vol. 38,
no. 1, pp. 223–230, Jan. 2011, doi: 10.1016/j.eswa.2010.06.048.

35. O. T. Boetticher G, Menzies T, “PROMISE Repository of empirical
software engineering data.” http://promisedata.org/repository.

36. P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “Bootstrap
aggregation ensemble learning-based reliable approach for software
defect prediction by using characterized code feature,” Innov. Syst.
Softw. Eng., no. September 2019, pp. 1–22, May 2021, doi:

10.1007/s11334-021-00399-2.
37. A. Kaur and K. Kaur, “An Empirical Study of Robustness and

Stability of Machine Learning Classifiers in Software Defect
Prediction,” vol. 320, E.-S. M. El-Alfy, S. M. Thampi, H. Takagi,
S. Piramuthu, and T. Hanne, Eds. Cham: Springer International
Publishing, 2015, pp. 383–397.

38. B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the Impact
of Classification Techniques on the Performance of Defect
Prediction Models,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, May 2015, vol. 1, pp. 789–
800, doi: 10.1109/ICSE.2015.91.

39. P. S. Kumar, A. K. K, S. Mohapatra, B. Naik, J. Nayak, and M.
Mishra, “CatBoost Ensemble Approach for Diabetes Risk
Prediction at Early Stages,” in 2021 1st Odisha International
Conference on Electrical Power Engineering, Communication and
Computing Technology(ODICON), Jan. 2021, no. vi, pp. 1–6, doi:
10.1109/ODICON50556.2021.9428943.

40. A. Okutan and O. T. Yıldız, “Software defect prediction using
Bayesian networks,” Empir. Softw. Eng., vol. 19, no. 1, pp. 154–
181, Feb. 2014, doi: 10.1007/s10664-012-9218-8.

