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Abstract 
 
Software defect prediction (SDP) is critical in guaranteeing software cost reduction and quality improvement while 
building a software system. Thus, software defect prediction in the early stages is an essential intrigue in the software 
engineering discipline. We proposed a stacking ensemble learning method to improve SDP performance based on 
software quality-defined code characteristics. Stacking combines the base classifiers by using a meta-classifier that learns 
base-classifiers output. It has certain advantages, such as easy implementation and combining classifiers by investigating 
various inducers. The proposed method's performance has been evaluated and compared with different Machine Learning 
(ML) classifiers on ivy2.0, tomcat, and velocity1.6 datasets available in PROMISE. The experimental findings revealed 
that the proposed approach has better prediction recall, accuracy, precision, AUC-ROC, and f-measure. 
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1 Introduction 
 
In the present day, modern software systems are enormous 
and more intricate, leading to defects in the software. A 
defect can be considered a divergence from the requirement 
that affects the reliability and leads to failure or unforeseen 
results. Many activities have been employed, such as code 
review and testing, to improve the software's quality norms. 
However, such types of activities cost the financial plan. The 
number of defects increases in direct proportion to the 
software's complexity [1][2]. Software managers are 
concentrating on the modules with the most defects to 
enhance software quality. This is the rationale software 
defect prediction came into the scenario. SDP will create 
models to detect flaws in software components. Primarily, it 
will give ranks to the modules according to the severity of 
the modules. So, software managers focus and investigate 
those modules, which have several defects. By this, software 
engineers can test only on defect modules. The above-said 
process reduces software engineers, cost, and time to reduce 
the project's entire expense [3][4]. 
 In SDP, classification and regression are popular 
methods. The main objective of regression SDP is to 
determine the overall number of faults in a given module. In 
the literature study, there are many regression models in 
SDP [1][5][6][7]. With classification, it will determine if the 
module is defect-free or defect-prone. In both cases, 
machine learning plays an important role. Machine learning 
algorithms, in particular Support Vector Machine (SVM) 
[8], Naïve Bayes (NB) [9], K-Nearest Neighbor (KNN) [10], 
Neural Networks (NN) [11], and Random Forest (RF) [12], 
is used to predict whether the module is defect-free or 
defect-prone.  

 Sometimes machine learning algorithms are not 
performed well in classification because of their limitations, 
such as lack of considerable data to train, data imbalance, 
and biases in the data. The primary goal of this study is to 
make use of the benefits of these machine learning 
algorithms while avoiding the drawbacks of ML by using EL 
techniques. Ensemble learning combines multiple base 
classifiers so that every classifier's better features will 
increase accuracy. Ensemble learning increases performance 
by using various base classifiers to reduce their variance and 
stop bias error rate. 
 This work presented an ensemble learning method called 
the stacking approach for identifying defect-free or defect-
prone at the modular level using PROMISE datasets ivy2.0, 
tomcat, and velocity1.6. The performance of the proposed 
method stacking classifier has been validated by comparing 
several ML approaches GNB, SGD, KNN, MLP, DT, SVM, 
QDA, RF, LR, and LDA. The remaining sections of the 
paper are organized as follows: The literature review on SDP 
using different machine learning techniques and the 
proposed approach is presented in Section 2. The proposed 
technique's background and algorithm have been presented 
in Section 3. The experimental data and parameter setup for 
all of the methods are detailed in Section 4. Section 5 
discusses several findings in the case of ivy2.0, tomcat, and 
velocity1.6. The conclusion is addressed in Section 6, along 
with future directions. 
 
 
2 Literature Study 
 
This section discusses the literature on ML and EL 
algorithms in SDP. 
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2.1 K-nearest neighbor algorithm 
KNN is also called an instance-based classifier. KNN is a 
supervised machine learning (SML) technique that can 
classify and predict data. Its fundamental idea is to group 
similar things in proximity. It is based on the minimum 
distance between the query instance and the training sample 
to determine the number of neighbors. 
 Turabieh, Mafarja, and Li, 2019[13] proposed a layered 
recurrent neural network by selecting features with several 
techniques such as binary ant colony optimization, binary 
particle swarm, binary genetic algorithm, and binary ant 
colony. The PROMISE repository is used for 
experimentation by nineteen projects. The performance of 
the proposed approach is compared with various ML 
algorithms such as Naïve Bayes, decision tree, artificial 
neural networks, k-nearest neighbors, and logistic regression 
by considering the ROC-AUC. The outcomes demonstrate 
the proposed approach's superiority. 
 Wahono and Suryana, 2013[14] investigated two 
techniques, particle swarm optimization, for selecting 
features and bagging classifiers to deal with data imbalance 
and classification. The proposed approach's performance is 
compared with various techniques such as LDA, Naïve 
Bayes, k-nearest neighbors, k*, backpropagation, SVM, 
LibSVM by considering the NASA repository dataset c4.5, 
CART, and random forest. From the results, they have 
witnessed a significant improvement in prediction 
performance. 
 Balogun et al., 2018[15] evaluated many individual 
techniques such as DT, SVM, k-NN, MLP, and various 
ensembles such as Bagging, boosting, stacking, voting 
classifiers for software defect prediction. Performance 
validation is done by the analytic network process using 11 
SDP datasets. Among all classifiers, stacking and voting 
performed well. 
 
2.2 Support vector machine 
The SVM is useful in both regression and classification. 
SVM's main aim is to create a hyperplane within n-
dimensional space that will categorize data points while 
maximizing the distance between the two classes. 
 Elish and Elish, 2008 [8] investigated the support vector 
machine's performance in SDP. They compared the 
prediction performance using various machine learning 
algorithms with four NASA datasets such as KC1, PC1, 
KC3, and CM1. They concluded that the Support vector 
machine's performance is better than various machine 
learning models. 
 Shuai et al., 2013[16] proposed the cost-sensitive 
support vector machine (CSSVM) and genetic algorithm 
CSSVM (GA-CSSVM). In GA-CSSVM, the support vector 
machine is optimized with the genetic algorithm. They used 
geometric fitness function and enhanced the performance of 
GA-CSSVM. Moreover, they validated the performance 
using AUC values using the various dataset of MDP by 
NASA.  
 Yan, Chen and Guo, 2010 [5] proposed a novel fuzzy 
support vector regressors method. They used fuzzification to 
handle imbalance data and compared the proposed method 
with a fuzzy support vector repressor using MIS, RS-DIMU 
dataset. They discovered that the proposed methodology has 
a low mean square error and is more accurate. 
 
2.3 Random Forest 
It's a Supervised Machine Learning (SML) technique that 
can be used for both classification and regression. As the 

name implies, it has several decision trees that operate as a 
group. Every individual tree gives its prediction accuracy. 
From these accuracies, it selects the best accuracy based on 
voting. Magal. R and Gracia Jacob, 2015 [17] enhanced the 
random forest approach by using a feature selection 
algorithm based on the correlation among features to choose 
the best features from the datasets PC1, PC2, PC3, and PC4. 
They investigated the proposed method's computational 
framework and found it better than the traditional random 
forest method. 
 Kakkar and Jain, 2016[18] built a framework by utilizing 
attribute selection on different classifiers such as a random 
tree, KStar, IBk, LWL, and random forest on NASA-MDP 
datasets. They concluded that LWL performed well 
compared to other techniques with ten cross-fold validation 
accuracy and ROC curve. 
 
2.4 Decision Tree 
In machine learning, decision trees are the most frequently 
utilized classification and regression methods. This is a 
similar tree structure, with an internal node representing an 
attribute, a branch representing the result, and a leaf node 
holding the class's label. The decisions are established up of 
the route from the root node to the leaf. 
 Rathore and Kumar, 2016 [6] demonstrated the decision 
tree regressor's capability to forecast the defects in two 
situations, such as intra-release and inter-release prediction. 
They carry the experimental study by five open-source 
projects with various releases provided by the PROMISE 
repository. They test the performance using absolute error, 
relative error, the goodness-of-fit measure, and prediction at 
level l. The proposed decision tree regressor performed well 
in both scenarios.  
 Babu et al., 2019 [19] analyzed various performances of 
ML methods such as decision trees, naïve Bayes, artificial 
neural networks, and linear classifiers in SDP. They utilized 
the Keel tool to evaluate them using k-fold cross-validation 
on the PROMISE repository datasets and found that other 
machine learning methods dominated the linear classifier. 
 Chug and Dhall, 2013[20] experimented with 
classification algorithms such as decision tree (J48), Naïve 
Bayes, and random forest. The performance is evaluated on 
the datasets from NASA by considering the measures such 
as ROC, RAE, precision, MAE, etc., and concluded that the 
random forest method outperformed compared to various 
classification models. 
 
2.5 Neural networks 
Several studies based on neural networks for effective SDP 
can be found in the literature. Kanmani et al., 2007 [21] 
proposed two variant neural networks, probabilistic and 
backpropagation neural networks, to predict software 
defects. They compared these networks with statistical 
approaches and validated using various metrics such as 
completeness, effectiveness, and efficiency percentages 
using the datasets PC1-PC6. As compared to other methods, 
the probabilistic neural network is robust, and this 
outperformed well. 
 Li et al., 2017[22] investigated software defect 
prediction through convolutional neural networks (DP-
CNN). Deep learning has utilized to generate effective 
features, and the numerical vectors have been sent to CNN 
to learn structural features. Finally, conventional features are 
blended with newly learned features. They have considered 
various datasets such as jedit, camel, lucene, xalan, synapse, 
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poi, and xerces for experimentation. In terms of f-measure, 
the proposed approach performs substantially better.  
 Manjula and Florence, 2019 [23] proposed a hybrid 
method; features have been selected using a genetic 
algorithm, and a deep neural network is utilized for 
classification. They enhanced the genetic algorithm 
performance by changing the design of the chromosome and 
fitness function. In the same way, they adopted an auto-
encoder to improvise the DNN. Experimentation was carried 
by using the PROMISE repository, and the performance is 
verified by various measures such as specificity, recall, 
precision, f-score, sensitivity, accuracy, and recall. 
 Zhao et al., 2019 [24] presented a Siamese dense neural 
network for learning similarity features and distance metrics. 
They utilized the cosine-proximity contract loss function. 
Using NASA's MDP measurements, they compared the 
proposed method to several conventional SDP methods. PD, 
PF, f-measure, MCC, and AUC are used to assess 
performance. The simulation results concluded that SDNN is 
stable and outperformed well compared to all the baseline 
models.  
 
2.6 Logistic regression 
It's an SML method that predicts a dependent variable's 
probability. It falls under two categories: a binary logistic 
regression model, where the possible values are 0 and 1, and 
multinomial logistic regression, where the dependent 
variable may have 3 or more unordered types. 
 Panichella, Oliveto and De Lucia, 2014 [25] came up 
with a novel approach Combined DEfect Predictors 
(CODEP), as an efficient defect prediction model. They 
experimented on ten open-source projects and used TPR, 
FPR, precision, and recall to verify the results. The results 
concluded that the proposed method is significantly superior 
to standalone applications such as LR, RBFN, ADtree, DT, 
multi-layer perceptron, and Bayes net. 
 Zhang et al., 2016 [26] analyzed unsupervised 
classifiers' performance and supervised classifiers using 26 
projects extracted from AEEM, NASA, and PROMISE 
repository. The connectivity-based classifier is proposed 
using spectral clustering, and the proposed method obtained 
better accuracy among logistic regression, naïve Bayes, 
random forest, logistic model tree, decision tree, and some 
clustering algorithms. 
 
2.7 Ensemble learning 
Ensemble learning is an ML technique that combines several 
basic classifier models to produce a more accurate prediction 
model. It is mainly used to enhance classification 
performance, prediction, and function approximation 
performance. Bagging, stacking, voting, and boosting are 
examples of ensemble learning methods. 
 Alsaeedi and Khan, 2019 [27] evaluated different 
supervised machine learning techniques and ensemble 
approaches on 10 NASA Datasets. They utilized SMOTE to 
deal with the skewed data and evaluated the results using 
accuracy, f-score, and AUC-ROC. They noticed that 
bagging, ada-boost, and random forest worked well. 
 Kaur and Kaur, 2014[28] evaluated bagging, boosting, 
and random forest using several base learning classifiers and 
experimented with datasets from the PROMISE repository. 
Proposed ensemble learning methods such as Bagging, 
boosting, and the random forest outperformed basic 
classifiers considerably in AUC. 
 Sayed and Ramadan, 2018 [29] utilized re-sampling 
techniques to handle the imbalance dataset and simulated 

using various ensemble learners such as boosting, bagging 
and random forest. They have utilized 8 base learners and 
tested on 7 datasets from the PROMISE repository. After 
comparing performance, they found that ensemble learning 
methods outperformed ML algorithms. 
 Laradji, Alshayeb, and Ghouti (2015) [30] integrated 
feature selection and EL methods to enhance software defect 
prediction performance. They experimented with various 
feature selection techniques and observed correlation-based 
forward selection to select features to produce better AUC. 
The enhanced version APE with greedy forward selection 
attained better performance using various NASA and 
PROMISE repository datasets. 
 
 
3 Proposed Method 
 
The framework of this proposed research is an integration of 
several independent methods (Figure 1). Data collection is 
collected from PROMISE repository, data preprocessing has 
been done based on correlation-based feature selection, and 
then the data has been supplied in an 80:20 split for training 
and testing. 

 
3.1 Stacking Classifier 
Stacking is a supervised ML technique for combining a set 
of predictions for binary classification, multi-classification, 
and regression. Stacking is also called a stacked regression 
[31] or super learner [32] developed in the year 1992 [33]. 
Though it was introduced many years ago, bagging and 
boosting are utilized widely compared to staking, which is 
difficult to examine theoretically. Stacking differs from 
bagging and boosting in these it utilizes the same kind of 
base learner while bagging and boosting use distinct types of 
base learners. It involves second-level training called meta-
learner that will find optimal prediction from the 
combination of base learners. Base-level learners are 
generated by applying various learning algorithms to a stated 
dataset[34].  
 

Algorithm: Stacking Classifier 

Input: Data for training 𝐷𝑆 = {𝑥! , 𝑦!}!"#$  
Output: Ensemble Classifier H 
Level 1: Learning algorithm at the base level classifier 
for𝑙 = 1 to 𝐿do 
learn ℎ% based on 𝐷𝑆 
end for 
Level 2: Creating various datasets for predictions 
for𝑖 = 1 to 𝑚do 
𝐷𝑆& = {𝑥!', 𝑦!},	where,𝑥!' = {ℎ#(𝑥!), … , ℎ((𝑥!)} 
end for 
Level 3: meta-classifier learning 
learn 𝐻 based on𝐷𝑆& 
return 𝐻 
 
 
 Considered features  𝑋 = {𝑥! ∈ 𝑅$}, set of class labels 
𝑌 = {𝑦! ∈ 𝑁} and data for training is given as		𝐷𝑆 =
{𝑥! , 𝑦!}!"#$ , here the learning model is M on the training data 
𝐷𝑆. In the first level, learning is performed on the original 
training dataset with distributed weights, and learning 
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parameters have tuned on the base classifier. At the second 
level, new datasets are created and predicted the labels from 
the output of first-level classifiers that are considered as new 

features. In place of using predicted labels, we can use 
probability estimators of the said first-level classifiers.  

 
Fig.1.  The framework of the Proposed Stacking classifier.  
 

 
4 Experimental setup 
 
This section discussed the datasets considered for 
experimentation, performance measures considered to 
evaluate the model, and experimental setups such as 
hardware and software setup for the working environment 
and parameter setting of the various machine learning 
models. 

 
4.1 Empirical data 
Experimentation is carried out in this article using open-
source software code measurements. The PROMISE 
repository contains 44 datasets associated with 13 different 
software projects [35]. These are developed using object-
oriented programming: java, and every feature in the dataset 
represents a java class. The experiment is conducted using 
datasets ivy2.0, tomcat, and velocity1.6. Table 1. shows the 
descriptive analysis of these datasets, containing 20 features 

of software metrics [36]. A software class is deemed defect-
prone if it has one or more defects. Otherwise, it is free of 
defects [37].  
4.2 Performance measure 
This section described various classifiers used to validate the 
performance, such as precision, recall, accuracy, AUC-ROC, 
and f1-score. AUC obtains a superior assessment in all 
classifications because it is unaffected by changes in data 
distributions. [38]. Therefore, we used AUC as one of the 
main metrics to assess the proposed approach. The confusion 
matrix, also known as the error matrix, is used to compute 
the AUC based on the trade-off between false positive and 
true negative rates. It is a combination of various predicted 
and actual values. The confusion matrix for the two classes 
is as shown in Table 2. It is very useful in calculating 
several evaluating factors such as recall, true positive rate 
(TPR), false-positive rate (FPR), precision, f1-score, AUC, 
etc. [39].   
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Table 1. Dataset statistics. 
Dataset Corpus Defective Ratio #Modules #Defective 

Modules 
Ivy2.0 ck 11.363636 352 40 
Tomcat ck 8.97439 858 77 
Velocity1.6 ck 34.061135 229 78 
 
 
Table 2. Confusion matrix. 

Actual Label Predicted Label 
Defect-Free Defect-Prone 

Defect-Free TP FN 
Defect-Prone FP TN 

TP: True Positive; TN: True Negative; 
FP: False Positive; FN: False Negative 

 
4.3 Simulation environment and parameter setup 
This study examined an ensemble learning approach 
stacking classifier and various ML approaches such as SGD, 
SVC, KNN, QDA, RF, DT, LR, GNB, MLP, and LDA with 
ivy2.0, tomcat, velocity1.6 that are available at PROMISE 
repository. On the Windows 10 operating system, we 
utilized an Intel i5 CPU with 6 GB RAM. The proposed 
approach and several ML algorithms are implemented using 
Scikit-learn, an open-source machine learning library based 
on python. We explored the dataset features using a 
correlation matrix to find the relation among features and 
feature distribution.  Table 3 shows each classifier's distinct 
parameter setting with respective datasets ivy2.0, tomcat, 
and velocity1.6. 

 
Table 3. Proposed method parameters in Jedit4.0, camel1.4, Ant1.7, ivy2.0, tomcat, and velocity1.6. 
Techniques Parameter Setting 

Ivy2.0 Tomcat Velocity1.6 
Stacking Classifiers : 

[KNeighborsClassifier( 
‘n_neighbors’ = 50, ‘algorithm’ = 
'kd_tree', ‘weights’ = 'distance'), 
RandomForestClassifier( 
‘random_state’=1), GaussianNB()] 

Classifiers : [KNeighborsClassifier( 
‘algorithm’='kd_tree' 
‘n_neighbors’=15,), 
RandomForestClassifier( 
‘random_state’=1), GaussianNB()] 

Classifiers : [DecisionTreeClassifier( 
‘criterion’='entropy', ‘max_depth’=7, 
‘random_state’=2 ‘splitter’='best',), 
RandomForestClassifier( 
‘random_state’=1), 
BaggingClassifier(DecisionTreeClassifier(), 
‘n_estimators’ = 400, ‘random_state’ = 1)] 

‘meta_classifier’ : 
LogisticRegression(), 

‘meta_classifier’ : 
LogisticRegression(), 

‘meta_classifier’ : LogisticRegression(), 

‘use_probas’ : ‘True’, ‘use_clones’ 
: ‘False’ 

‘use_probas’ : ‘True’, ‘use_clones’ : 
‘False’ 

‘use_probas’ : ‘True’, ‘use_clones’ : ‘False’ 

 
5 Result analysis 
 
This segment portrayed the outcomes gained on ivy2.0, 
tomcat, velocity1.6 software metrics from the PROMISE 
repository with stacking. The proposed Stacking has been 
compared against several ML techniques such as KNN, 
SVM, LR, RF, MLP, SGD, GNB, LDA, DT, and QDA. 
Evaluation metrics such as confusion matrix, TP, FN, FP, 
TN, FPR, TPR, TNR, Accuracy, Precision, Recall, F1-score, 
and AUC-ROC have been considered to compare the 
models. We partition the rest of the segment into three cases 
for ivy2.0, tomcat, and velocity1.6 separately. 
5.1 Test case 1: ivy2.0 dataset 
In this case, the ivy2.0 dataset from the PROMISE 
repository is considered for experimentation. The dataset has 
352 modules. From these, 88 percent are defect-free 
modules, and 12 percent are defect-prone modules 
represented in Figure 2. Descriptive statistics of the dataset 
has presented in Table 4. 
 The feature distribution is important for understanding 
the dataset's features. From the feature distribution, we can 
determine the data's possible temporal range and 
occurrences. Figure 3 depicts the ivy2.0 dataset's feature 
distribution. The feature distribution plots show that the 
metrics 'lcom3', 'cam', 'dam' is normally distributed features 
that imply these features are distributed at the same interval 
and may improve the classification accuracy. Features such 
as 'ca', 'npm',  'wmc', 'dit', 'cbo', 'rfc', 'loc', 'mfa', 'amc', 
'avg_ccare' partially skewed and leaving the rest features 
'lcom', 'moa',  'noc', 'ic', 'cbm', 'max_cc' are fully skewed. 
Ordinarily normal distributed features are extremely 
valuable in getting good accuracy than the partially skewed 
and fully skewed features. 

 
Fig. 2. Class distribution of the ivy2.0 dataset. 
 
 Proposed method Stacking contrasted with diverse ML 
techniques such as KNN, SVM, LR, RF, MLP, SGD, GNB, 
LDA, DT, and QDA. The confusion matrix of the proposed 
method over ivy2.0 is as shown in Figure 4. 

 

 
Fig. 4. Confusion matrix for ivy2.0 dataset on proposed method 
stacking classifier 
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Fig.3. Feature distribution of ivy2.0 dataset. 
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Table 4. Description of the dataset - ivy2.0.  
MEAN STD MIN 25% 50% 75% MAX 

WMC 11.284091 15.148232 1 3 6 13 157 
DIT 1.792614 1.244773 1 1 1 2 6 
NOC 0.369318 1.318279 0 0 0 0 17 
CBO 13.232955 16.571085 1 5 8 16 150 
RFC   34.036932 44.679566 1 6 19 40 312 
LCOM 131.579545 712.192029 0 0 6 45.25 11794 
CA 6.880682 13.938917 0 1 3 6 147 
CE 5.164773 8.931273 0 1 2 5 75 
NPM 9.036932 12.636099 0 2 5 11 142 
LCOM3 1.059352 0.660123 0 0.625 0.85 2 2 
LOC 249.34375 428.259698 1 20 85.5 267 2894 
DAM 0.616224 0.45994 0 0 1 1 1 
MOA 0.715909 1.441737 0 0 0 1 12 
MFA 0.290908 0.385164 0 0 0 0.670918 1 
CAM 0.490831 0.254585 0.055223 0.299074 0.444444 0.666667 1 
IC  0.357955 0.733601 0 0 0 0.25 4 
CBM 0.636364 1.781077 0 0 0 0.25 18 
AMC 18.489722 27.032755 0 4.666667 10.388199 21.434615 203.5 
MAX_CC 3.1875 3.848123 0 1 2 4 29 
AVG_CC 1.214294 0.816136 0 0.8 1 1.446925 6.5 
DEFECTS 0.113636 0.317821 0 0 0 0 1 
 
 
 From the insights acquired from the confusion matrix, 
we figured different classification measures of the proposed 
technique and different machine learning strategies are 
presented in Table 5. 
 The proposed technique stacking classifier obtained 
97.44 percentage, which is better contrasted with other 
standard machine learning algorithms. Other than the 
proposed technique, methods such as decision tree, random 
forest, quadratic discriminant analysis, linear regression, and 
support vector machine performed well with accuracy 94.6, 
93.46, 92.61, 90.62, 90.05 individually. Out of 352 modules, 
312 are properly classified as defect-free modules based on 
the findings of the proposed approach. 31 defect-prone 
modules have been properly identified as defect-prone. Next, 
the true positive rate is that the pace of positive examples is 
correctly classified, the TPR value of the stacking classifier 
is 0.77, and the remaining are in the middle of 0.01 to 0.6. 

 The stacking classifier and random forest are better 
regarding false positive rate and precision. All methods 
performed well w.r.t. the true negative rate. The stacking 
classifier beat well on account of f-measure and ROC-AUC. 
By considering all the performance measures, the proposed 
method stacking classifier is superior to the other machine 
learning models with stable results. 
 Comparative analysis of the proposed stacking and 
several ML techniques concerning the FPR, TPR, TNR, 
Accuracy, Precision, Recall, F1-score, and AUC-ROC on 
ivy2.0 is represented graphically in Figure 5. 
 The suggested technique's AUC-ROC curve, as well as 
other ML approaches are plotted in the center of true 
positive and false-positive rates, as shown in Figure 6 based 
on the ivy2.0 dataset (i) through (xi). 
 

 
 

Table 5. Statistical performance analysis on ivy2.0. 

Prediction 
Models 

Performance Metrics 

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC 

KNN 88.92 4 309 3 36 0.009 0.1 0.99 0.571 0.17 0.545 
SGD 87.215 7 300 12 33 0.038 0.175 0.961 0.368 0.237 0.568 
RF 93.465 17 312 0 23 0 0.425 1 1 0.596 0.712 
GNB 85.511 18 283 29 22 0.092 0.45 0.907 0.382 0.413 0.678 
LR 90.625 13 306 6 27 0.019 0.325 0.98 0.684 0.44 0.652 
DT 94.602 25 308 4 15 0.012 0.625 0.987 0.862 0.724 0.806 
LDA 90.625 15 304 8 25 0.025 0.375 0.974 0.652 0.476 0.674 
MLP 86.931 16 290 22 24 0.07 0.4 0.929 0.421 0.41 0.664 
QDA 92.613 24 302 10 16 0.032 0.6 0.967 0.705 0.648 0.783 
SVC 90.056 6 311 1 34 0.003 0.15 0.996 0.857 0.255 0.573 
Stacking 
(Proposed) 97.443 31 312 0 9 0 0.775 1 1 0.873 0.887 
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Fig. 5. Comparison of prediction results from various classifiers on ivy2.0 dataset. 
 
 

 
(i) 

 
(ii) 

 

 
(iii) 

 
(iv) 

 

 
(v) 

 

 
(vi) 
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(vii) 
 

 
(viii) 

 

 
(ix) 
 

(x) 
 

 
(xi) 

  
Fig. 6. AUC-ROC curve of various classifier: i) KNN, ii) SGD, iii) RF, 
iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP, ix) QDA, x) SVM, and 
xi) stacking on ivy2.0. 

5.2 Test case 2: Tomcat dataset 
Here, an experimental study is conducted by the tomcat 
dataset from the PROMISE repository. Tomcat has 858 
instances; among these, 91 percent of modules are defect-
free modules, and the remaining 8 percent are defect-prone 
modules. The graphical portrayal of defect-free and defect-
prone modules is shown in Figure 7. The investigations on 
the dataset's insights, such as mean, min, max, standard 
deviation, etc., are presented in Table 6. 
 

 
Fig. 7. Class distribution of the tomcat dataset. 
 
 
 Feature distribution gives us a better overview of the 
data, and it is shown in Figure 8. The features 'lcom3' and 
'cam' are distributed normally; 'wmc', 'cbo', 'rfc', 'npm', 'dam', 
'avg_cc' are skewed partially; and the remaining features 'ce', 
'dit', 'noc','moa','mfa', 'lcom', 'ca', 'amc', 'loc', 'ic', 'cbm', 
'max_cc' are skewed fully. 
 The proposed method stacking classifier and different 
machine learning algorithms have been experimented on the 
tomcat dataset. The confusion matrix for the proposed 
method is shown in Figure 9. 
 
 

 
Fig. 9. Confusion matrix for tomcat dataset on proposed method 
stacking classifier. 
 
 
 From the confusion matrix, metrics such as true positive, 
false positive, true negative, and false negative of the 
proposed method are identified, and we figured the 
performance measures such as TP, FN, FP, TN, FPR, TPR, 
TNR, Accuracy, Precision, Recall, F1-score, and AUC-ROC 
in Table.7. 
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Table 6. Description of the dataset - tomcat.  
MEAN STD MIN 25% 50% 75% MAX 

WMC 12.95921 18.61893 0 3 7 14 252 
DIT 1.687646 1.053022 1 1 1 2 6 
NOC 0.363636 1.973732 0 0 0 0 31 
CBO 7.573427 11.09689 0 2 4 9 109 
RFC   33.47086 44.97656 0 7 17 39.75 511 
LCOM 176.2762 1159.188 0 0 4 42 29258 
CA 3.862471 8.90333 0 0 1 3 109 
CE 0 0 0 0 0 0 0 
NPM 10.77622 16.71321 0 2 5 12 231 
LCOM3 1.086168 0.660434 0 0.625 0.871795 2 2 
LOC 350.4359 644.839 0 25.25 112 373 7956 
DAM 0.574051 0.471406 0 0 0.994048 1 1 
MOA 0.944056 2.107749 0 0 0 1 24 
MFA 0.293751 0.386574 0 0 0 0.666667 1 
CAM 0.486463 0.253582 0 0.286667 0.444444 0.666667 1 
IC  0.275058 0.578783 0 0 0 0 4 
CBM 0.59324 1.74214 0 0 0 0 19 
AMC 25.57757 46.64224 0 4.5 14.79048 29.96563 894.5 
MAX_CC 4.271562 6.954404 0 1 1 5 95 
AVG_CC 1.250478 1.002395 0 0.723225 1 1.5 10 
DEFECTS 0.089744 0.285981 0 0 0 0 1 

  
Table 7. Statistical performance analysis on tomcat. 

Prediction 
Models 

Performance Metrics 

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC 

KNN 91.142 1 781 0 76 0 0.012 0 1 0.025 0.506 
SGD 83.799 24 695 86 53 0.11 0.311 0.889 0.218 0.256 0.6 
RF 93.24 19 781 0 58 0 0.246 0 1 0.395 0.623 
GNB 91.142 1 781 0 76 0 0.012 0 1 0.025 0.506 
LR 91.724 14 773 8 63 0.01 0.181 0.989 0.636 0.282 0.585 
DT 92.307 11 781 0 66 0 0.142 0 1 0.25 0.571 
LDA 91.491 22 763 18 55 0.023 0.285 0.976 0.55 0.376 0.631 
MLP 85.547 47 687 94 30 0.12 0.61 0.879 0.333 0.43 0.745 
QDA 88.578 18 742 39 59 0.049 0.233 0.95 0.315 0.268 0.591 
SVC 91.375 3 781 0 74 0 0.038 1 1 0.075 0.519 
Stacking 
(Proposed) 97.902 60 780 1 17 0.001 0.779 0.998 0.983 0.869 0.888 

 
 The outcomes show that the proposed model stacking 
classifier outperformed well with accuracy 97.90, random 
forest, decision tree with accuracy 93.24 and 92.30 percent 
individually, and KNN, GNB, LR, and LDA have accuracy 
with 91 percent. The performance of the stacking classifier 
is significantly better than all the machine learning 
algorithms regarding the true positive rate. The stacking 
classifier, k-nearest neighbor, random forest, Gaussian naive 
Bayes, decision trees, and support vector machine are better 
in false-positive rate and precision. Performance of stacking 
classifier, quadratic discriminant analysis, linear 
discriminant analysis, and linear regression are remarkably 
predominant in true negative rate. The stacking classifier is 
strikingly one step better than both f-measure and ROC-
AUC. Considering all performance measures, it is evident 
that the proposed technique stacking classifier dominated the 
performance on a greater scale over the other machine 
learning models. Figure 10. shows the predictions 

Accuracy, Precision, Recall, F1-score, and AUC-ROC of the 
proposed approach and different ML approaches on tomcat. 
 

 
Fig. 10. Comparison of prediction results in various classifiers on the 
tomcat dataset 
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Fig. 8. Feature distribution of tomcat dataset. 
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 AUC-ROC curves of the suggested technique and 
different ML approaches are plotted in the middle of true 
positive rate and false-positive rates; those are presented 
in Figure 11: (i) to (xi) on account of the tomcat dataset. 
 

 
(i) 

 
(ii) 

 
(iii) 

 
(iv) 

 
(v) 

(vi) 

 
(vii) 

 
(viii) 

 
(ix)

 
(x) 

 
(xi) 

Fig. 11. AUC-ROC curve of various classifier: i) KNN, ii) SGD, iii) 
RF, iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP ix) QDA, x) SVM, 
and xi) stacking on tomcat. 
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5.3 Test case 3: velocity1.6 dataset 
Here, object-oriented dataset velocity1.6 is examined for 
experimentation. It has 229 modules that are 151 defect-free 
modules and 78 defect-prone modules, presented graphically 
in Figure 12. The dataset that consists of mean, standard 
deviation, min, max, percentiles of 25, 50, and 75 are shown 
in Table 12. 

 
Fig. 12. Class distribution of the velocity1.6dataset. 

 
Table 8. Description of the dataset – velocity1.6.  

MEAN STD MIN 25% 50% 75% MAX 
WMC 9.021834 14.13514 0 3 5 9 153 
DIT 1.676856 0.888739 1 1 1 2 5 
NOC 0.436681 2.754846 0 0 0 0 39 
CBO 10.80786 1272.267 0 4 7 11 80 
RFC   22.97817 27.36906 0 6 14 30 250 
LCOM 80.34061 554.868 0 0 3 10 8092 
CA 5.606987 11.17968 0 1 2 5 76 
CE 5.982533 7.675985 0 1 4 8 61 
NPM 7.218341 8.799193 0 3 5 7 50 
LCOM3 1.232531 0.710674 0 0.625 0.956522 2 2 
LOC 248.9607 1034.079 0 20 77 220 13175 
DAM 0.432095 0.462687 0 0 0.166667 1 1 
MOA 0.471616 1.145291 0 0 0 1 10 
MFA 0.387857 0.411527 0 0 0 0.833333 1 
CAM 0.465075 0.222449 0 0.333333 0.4375 0.541667 1 
IC  0.31441 0.551563 0 0 0 1 2 
CBM 0.489083 1.041302 0 0 0 1 9 
AMC 19.60873 28.11434 0 4.333333 10.83333 26.66667 276 
MAX_CC 3.9869 14.58925 0 1 1 4 209 
AVG_CC 1.270836 1.855954 0 0.6667 1 1.3226 23 
DEFECTS 0.340611 0.474953 0 0 0 1 1 

 
 Figure 13 depicts the dataset velocity feature 
distribution. The distribution of the features gives us a good 
overview of the data. The feature 'cam' is normally 
distributed; 'ce', 'cbo', 'rfc', 'lcom3','mfa', 'dam', 'amc' are 
skewed partially; and the other features 'noc', 'wmc', 'dit', 
'lcom', 'ca', 'npm', 'loc', 'moa', 'ic', 'max_cc', 'cbm', 'avg_cc' 
are skewed fully. Normally distributed features play a 
critical role in increasing the accuracy than partially skewed 
features followed by fully skewed features. 

 The proposed method stacking and different ML 
techniques are tested with velocity1.6. The confusion matrix 
of the proposed method is shown in Figure 14. 
 Using confusion matrix estimates, we computed 
performance metrics such as true positive rate, false-positive 
rate, precision, true negative rate, f-measure, and ROC-AUC 
are shown in Table 9. 

 
Table 9. Statistical performance analysis on velocity1.6. 

Prediction 
Models 

Performance Metrics 

Accuracy TP TN FP FN FPR TPR TNR Precision F-mes ROC-
AUC 

KNN 77.292 28 149 2 50 0.013 0.358 0.986 0.933 0.518 0.672 
SGD 65.938 14 137 14 64 0.092 0.179 0.907 0.5 0.264 0.543 
RF 93.449 71 143 8 7 0.052 0.91 0.947 0.898 0.904 0.928 
GNB 69.868 23 137 14 55 0.092 0.294 0.907 0.621 0.4 0.601 
LR 78.602 42 138 13 36 0.086 0.538 0.913 0.763 0.631 0.726 
DT 91.703 69 141 10 9 0.066 0.884 0.933 0.873 0.878 0.909 
LDA 74.672 34 137 14 44 0.092 0.435 0.907 0.708 0.539 0.671 
MLP 80.349 42 142 9 36 0.059 0.538 0.94 0.823 0.651 0.739 
QDA 76.419 29 146 5 49 0.033 0.371 0.966 0.852 0.517 0.669 
SVC 94.323 65 151 0 13 0 0.833 1 1 0.909 0.916 
Stacking  
(Proposed) 95.196 71 147 4 7 0.026 0.91 0.973 0.946 0.928 0.941 
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Fig. 13. Feature distribution of velocity1.6 dataset. 
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Fig. 14. Confusion matrix for velocity1.6 dataset on proposed method 
stacking classifier. 

 
 

 The results show that the proposed ensemble learning 
technique stacking outperformed various machine learning 

methods on the velocity1.6 dataset. The proposed method's 
performance in accuracy is 95.19% followed by SVM, RF, 
and DT with accuracy 94.32, 93.44, and 91.70, respectively. 
The stacking classifier and random forest are performed well 
in terms of true positive rate. KNN, SVM, and stacking are 
superior in false-positive rate and precision. SVM, KNN, 
stacking, and quadratic discriminant analysis outperformed 
well; besides, all other models performed well in terms of 
true negative rate. The stacking classifier, SVM, and RF 
performed well in f-measure and AUC-ROC. By considering 
all measures, the proposed technique stacking outperformed 
others, according to the results. The prediction performance 
of various measures such as accuracy, true positive rate, 
precision, true negative rate, f-measure, and ROC-AUC by 
the proposed method and different machine learning 
algorithms on velocity1.6 are shown in Figure 15. 

 

 
 

Fig. 15. Comparison of prediction results in various classifiers on velocity1.6 dataset. 
 
 
AUC- ROC curves of the proposed technique and different 
ML methods are shown in Figure 16: (i) to (xi) in the 
velocity1.6 dataset. 

 
(i) 

 

 
(ii) 
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(iii) 

 
(iv 

 
(v) 

 
(vi) 

 
(vii) 

 
(viii) 

 

 
(ix) 

 
(x) 

 
(xi) 

 Fig. 16. AUC-ROC curve of various classifier: i) KNN, ii) SGD, 
iii) RF, iv) GNB, v) LR, vi) DT, vii) LDA, viii) MLP ix) QDA, x) SVM, and xi) 
stacking on velocity1.6. 

 
 

 Table 10 compares performance metric AUC values in 
the cases of ivy2.0, tomcat, and velocity1.6 with previous 
studies. In the case of ivy2.0 data, the proposed method's 
AUC value is 0.887, and from the literature highest AUC 
value is given by the Bayesian network with 0.846. Next in 
tomcat data, the proposed method AUC value is 0.869, and 
the highest AUC values from the literature are SC, NB, and 
LR, having 0.8. In velocity1.6 data, the AUC value is 0.928 
in the proposed method, and from the literature, MLP 
performed well with 0.782. In all three cases, the proposed 
methodology outperformed prior research and several well-
known ML models considerably. 
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Table 10. Previous studies in ivy2.0, tomcat, and velocity1.6 
Dataset Various classifier performance in terms of AUC    Ref 
Ivy2.0 RF SC LMT NB       [26] 

-0.71 -0.7 -0.7 -0.68 
AUC 

LR DT NB RF MLP J48 SVM [37] 
-0.774 -0.704 -0.769 -0.761 -0.697 -0.558 -0.534 

AUC 
Bayesian network         [40] 

-0.846 
AUC 

Bagging with [28] 
NB MLP LR J48 SVM 

  

-0.762 -0.686 -0.76 -0.782 -0.589 
AUC 

Boosting with  
NB MLP LR J48 SVM 

  

-0.65 -0.716 -0.65 -0.695 -0.698 
AUC 

Stacking Classifier Our Proposed 
Method Accuracy: 97.443 

AUC: 0.887 
Tomcat SC RF NB LMT       [26] 

-0.8 -0.78 -0.8 -0.77 
AUC 

Bayesian network         [40] 
-0.766 
AUC 

LR DT NB RF MLP J48 SVM [37] 
-0.747 -0.702 -0.799 -0.752 -0.762 -0.619 -0.5 

AUC 
Bagging with [28] 

NB MLP LR SVM J48 
  

-0.798 -0.663 -0.801 -0.517 -0.792 
AUC 

Boosting with 
NB LR MLP SVM J48 

  

-0.705 -0.705 -0.705 -0.77 -0.751 
AUC 

Stacking Classifier Our Proposed 
Method Accuracy: 97.902 

AUC: 0.869 
Velocity1.6 Bayesian network         [40] 

-0.678 
AUC 

LR DT NB J48 MLP RF SVM [37] 
-0.747 -0.679 -0.709 -0.665 -0.782 -0.785 -0.589 

AUC 
Bagging with [28] 

LR NB MLP SVM J48 
  

-0.767 -0.719 -0.583 -0.65 -0.761 
AUC 

Boosting with 
NB LR MLP SVM J48 

  

-0.752 -0.752 -0.751 -0.711 -0.768 
AUC 

Stacking Classifier Our Proposed 
Method Accuracy: 95.196 

AUC: 0.928 
 
6 Conclusion 
 
SDP at an early stage helps to maintain software quality 
measures and improves software management procedures. 
This paper focused on an ensemble learning technique called 
stacking classifier and ML approaches such as SVC, SGD, 
KNN, RF, QDA, DT, GNB, LR, LDA, and MLP for SDP. 
The projects' software metrics are considered features; 
training and testing are performed on these data and 
extracted the input patterns provided by the datasets ivy2.0, 
tomcat, and velocity1.6 from the PROMISE repository. 
 Stacking classifier is an incredible machine learning 
paradigm that has displayed efficacy in many applications. 

Initially, all the attention has been on choosing the "best" 
single classification model from different models, where the 
proposed method can frame the combinations of models 
utilizing level one data. By combining various base 
classifiers, we achieved a low error rate through stacking.  
 Extensive experimental work is carried out through three 
cases, performance comparision has been done on the 
proposed method and ML methods on ivy2.0 and obtained 
the classification accuracy is 88.920, 87.215, 93.465, 85.511, 
90.625, 94.602, 90.625, 86.931, 92.613, 90.056, and 97.443 
for KNN, SGD, RF, GNB, LR, DT, LDA, MLP, QDA, 
SVC, and proposed stacking classifier respectively. 
Similarly, on the tomcat dataset,the achieved accuracies are 
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91.142, 83.799, 93.240, 91.142, 91.724, 92.307, 91.491, 
85.547, 88.578, 91.375, and 97.902 for KNN, SGD, RF, 
GNB, LR, DT, LDA, MLP, QDA, SVC, and proposed 
stacking classifier respectively. Likewise, we experimented 
with these models on the velocity1.6 dataset and obtained 
accuracy are 77.292, 65.938, 93.449, 69.868, 78.602, 
91.703, 74.672, 80.349, 76.419, 94.323, and 95.196 for 
KNN, SGD, RF, GNB, LR, DT, LDA, MLP, QDA, SVC, 
and proposed stacking classifier respectively. By utilizing an 
ensemble learning technique stacking, attained improved 
results over conventional machine learning algorithms. 
Finally, we attained higher accuracy, precision, recall, and 

AUC-ROC values using the proposed method. Further 
analysis is encouraged with various feature selection 
paradigm and optimization algorithms on the ensemble 
classifiers in future work. Moreover, a deep learning-based 
approach is to be developed to analyze the features and 
prediction of software defects effectively.  
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License. 
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