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Abstract 
 

Gas concentration monitoring is an important instrument for coal mine gas disasters, and gas concentration prediction is 
especially important for improving mine safety. This study proposed a gas concentration prediction method of bat 
algorithm (BA) optimized extreme learning machine (ELM) based on Mapreduce to accurately and quickly predict mine 
gas concentration. The parameter optimization algorithm of BA-ELM was proposed after analyzing the characteristics of 
the BA and the ELM algorithm, and the single-step prediction method of gas concentration was carried out utilizing 
Mapreduce. The accumulation error of gas concentration prediction in advance was analyzed on this basis. Then utilizing 
real-time error compensation a parallel prediction method for gas concentration was proposed, and the accuracy of this 
model was verified through simulation. Results show that the running time of the BA-ELM prediction method based on 
MapReduce is 21.36s, and the efficiency increases by 6.13 times more efficient than the BA-ELM method. When 
compared to the same period last year, the mean absolute error, mean relative error, and root mean square error decreases 
by 48%, 48%, and 49% respectively. The average absolute error of the parallel prediction model based on real-time error 
compensation is 0.030%, the average relative error is 8.050%, and the root mean square error is 0.034% at the 12th step. 
Meanwhile, the accuracy of a parallel prediction method of gas concentration based on real-time error compensation is 
higher than the model without real-time error compensation. The proposed method provides a good reference for gas 
concentration prediction and gas disaster warning. 
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1. Introduction 
 
The concentration of mine gas is closely correlated with the 
safety production of coal mines, consequently, it is 
particularly crucial to accurately and effectively predict mine 
gas concentration and master its change rule [1]. The gas 
concentration prediction leverages the dynamically acquired 
monitoring data as the research object and excavates its 
internal regularity characteristics, so as to master its future 
change rules [2]. Using a variety of forecasting 
methodologies, a multitude of studies [3-5] have analyzed 
the dynamic change and development tendency of gas 
concentration and produced a wealth of findings. 

With the growth of time and the increase of gas data 
samples, it is possible to predict gas concentration by 
utilizing a single model follows the variation characteristics 
of gas concentration to a certain extent. However, due to the 
theoretically inherent defects of the model, it is difficult to 
simultaneously meet the specifications for gas concentration 
prediction accuracy, operation efficiency, and prediction 
step length. 

Therefore, scholars proposed to construct a combined 
prediction model of gas concentration by coupling various 
optimization methods [6-7]. However, there is still a 
significant discrepancy between the model’s prediction 
accuracy, computational efficiency, leading steps, and the 
actual demand. Therefore, it is of great theoretical and 
practical value to probe how to construct an appropriate 
model for computing and improving the overall 
characteristics of the model. 

Consequently, by combining the bat algorithm (BA) with 
the extreme learning machine (ELM) algorithm, the study 
proposes a multi-step gas concentration prediction method of 
BA-ELM based on Mapreduce, with the objective of 
predicting gas concentration more promptly and accurately 
and providing value for accident prevention references. 
 
 
2. State of the art  
 
At present, Scholars all over the world have conducted 
extensive research on gas concentration prediction and put 
forward a series of methods. Lv Pin et al. [9] constructed a 
dynamic gas concentration prediction model based on the 
gray theory and analyzed its application with examples. Liu 
et al. [10] constructed a model for predicting gas 
concentration based on the gray system and statistical theory. 
Due to the introduction of concepts such as gray derivative 
and background value, the whitening differential equation 
was transformed into the form of background variables, 
resulting in the low precision of the model. Liu et al. [11] 
proposed a multi-factor long short-term memory (LSTM) 
gas concentration prediction model, that integrated multi-
source gas data, and analyzed the gas concentration change 
trend through tunnel wind speed, temperature, CO 
concentration, and historical gas concentration data. 
However, the model’s generalization ability and prediction 
accuracy were of little value. Lai et al. [12] obtained the 
power exponential gray action that changed over time by 
optimizing the traditional gray model, and then proposed a 
power exponential gray gas concentration prediction model 
based on integrated learning. However, there was a major 
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error and making it difficult to be directly adopted in 
practical production. Shan et al. [13] combined the adaptive 
artificial immune system with particle swarm optimization to 
establish a multi-parameter parallel dual-adaptive artificial 
immune system (AIS)-particle swarm optimization (PSO) 
algorithm gas concentration prediction model, which 
improved the prediction accuracy, but the generalization 
ability was relatively limited. Li [14] proposed a multi-
variable adaptive weighted least squares support vector 
machine gas prediction model based on an enhanced chaotic 
particle swarm optimization algorithm, which enabled the 
multi-step prediction of gas concentration. However, the 
maximum number of predicted steps was 5, rendering it 
more challenging to guarantee the prediction accuracy when 
the number of predicted steps increased. On the basis of the 
randomness and timing of gas concentration data, Zhao et al. 
[15] proposed a prediction method based on auto regressive 
and moving average model (RIMA)+generalized auto 
regressive conditional heteroskedasticity (GARCH), with 
high prediction accuracy but low calculation efficiency due 
to the lengthy calculation time. Slezak [16] established a 
prediction model for learning multi-sensor data sets based on 
feature extraction of sliding window and feature subset set of 
a rough set, with a lengthy operation time of 19 minutes per 
group of data. Dey [17] introduced a deep learning network 
to propose the t-distributed stochastic neighbor embedding 
(SNE)-variational auto encoder (VAE)-bidirectional (bi)-
LSTM, with a small prediction error, but the impact of time 
series was not considered, so its generalization ability was 
insufficient. Grodzicka [18] proposed a linear equation to 
predict gas concentration one day in advance. The 
concentration of methane was predicted [19] at the sensor 
location up to 10 m in front of the longwall face and at the 
longwall outlet. BA is a swarm intelligence optimization 
algorithm proposed by Professor Yang from The University 
of Cambridge inspired by the bat echolocation behavior [20]. 
Compared to conventional optimization algorithms, BA is 
characterized by less parameter adjustment, strong search-
ability, rapid convergence speed, and a simple structure; 
therefore it has been applied in numerous fields including 
engineering control, fuzzy intelligence, and fault 
identification. Mohammad [21] utilized the BA-artificial 
neural network (ANN) method to predict the shear strength 
of fiber reinforced polymer (FBR)-reinforced concrete 
beams, and in comparison, to the particle swarm 
optimization algorithm, the prediction accuracy was 
significantly enhanced. However, the mean absolute error is 
13.34% and the root mean square error is 26.34%, indicating 
that the prediction results continue to deviate significantly. 
Bui [22] proposed a machine learning method combining 
least square support vector classification and bat algorithm 
to predict landslides, and the prediction accuracy was higher 
than that of support vector machine (SVM) and ANN 
methods. Based on adaptive neural fuzzy inference system 
(ANFIS) , harris hawks optimization (HHO), support vector 
regression (SVR) , and BA, Paryani [23] used ANFIS-HHO, 
ANFIS-BA, SVR-HHO, and SVR-BA hybrid models, 
respectively, to generate landslide risk maps, respectively, 
and the results indicated that SVR-HHO featured the highest 
accuracy. 

The above results focus on how to improve the prediction 
accuracy and operation efficiency. However, there are very 
few studies on the prediction accuracy, operation efficiency, 
and generalization ability based on the processing of 
massive gas monitoring data. Spatial-temporal correlation 
analysis of gas concentration is carried out firstly in this 

study. Based on the efficient global optimization ability of 
the BA algorithm, Mapreduce was employed to improve the 
parallelization processing ability of the model. Then the 
accumulation error of gas concentration prediction in 
advance was integrated to establish the BA-ELM gas 
concentration prediction method based on Mapreduce. 

The remainder of this study is organized as follows. 
Section 3 describes the principle of combining BA with 
ELM and Mapreduce, analyzes the accumulation error of gas 
concentration advanced prediction, and proposes a gas 
concentration prediction method of BA-ELM based on 
Mapreduce. In section 4, a variety of methods for predicting 
and analyzing mine monitoring data are discussed. Section 5 
provides a summary of this study and pertinent conclusions. 
 
 
3. Methodology  
 
3.1 BA optimization algorithm and ELM principle 
(1) BA optimization algorithm  

The basic principle of BA is as follows: 
1) Bat individuals are able to sense and distinguish the 

differences between food, prey and background obstacles, 
etc., using ultrasound. 

2) When a bat flies at a certain speed at a certain 
position , and searches for prey with a frequency of , a 
variable wavelength of and a loudness of , it can select 
the pulse wavelength and frequency emitted by itself 
according to the distance between the target and itself. 

3) The variation of the sound emitted by Bat is irregular, 
and it is assumed that the variation is gradually reduced from 
the maximum (positive)  to the minimum . 

 
                          (1) 

 
                           (2) 

 
                                (3) 

 
where  is the current iteration number, and  is the 
random variable evenly distributed between (0, 1). 

 
                                (4) 

 
where is a random number and refers 
to the average loudness obtained by all Bats in a specified 
time period. 

 
                                    (5) 

 
                               (6) 

 
where  and are an constant, and for any and 

, then . When , = =0.9.  
In the iteration process, the loudness and pulse rate of each 
Bat are set as the same value, and they are changed together 
by Equations (5) and (6). The termination condition of BA 
search is generally set according to either the number of 
iterations that reaches the maximum value or the precision of 
the search value that meets the requirements. 
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ELM is a learning algorithm for single hidden layer 
feedforward neural network, which consists of three layers: 
input layer, hidden layer, and output layer. 

Assuming there are  learning samples , and 
, . If the number of hidden layer neurons is , 

then the standard form of single-hidden layer feedforward 
neural network is as follows: 

 

                                 (7) 

 
where is the connection weight vector 
of the input layer and hidden layer; is the 
connection weight vector of the hidden layer and output 
layer; is the activation function, and the sigmoid 
function is usually selected as the model activation function. 

is the bias of the  node in the neuron node of the 
hidden layer, and  is the output vector. 

According to the zero error approximation principle[25], 
there are , , and that convert equation (7) into the 
following one: 
 

                                        (8) 
 

where , 

 

, . 

 
If the output threshold and weight are given randomly, 
is the determined output matrix. At this point, the 

network training is finally transformed into the problem of 
solving the least square solution of , namely: 

 
                                       (9) 

 
where is the Moore-Penrose generalized inverse of the 
output matrix of the hidden layer . 
 
3.2 BA-ELM gas concentration prediction method 
 (1) BA optimizes ELM model parameters 

BA possesses effective global optimization capability. 
By sending ultrasonic waves to simulate the dynamic 
searching and preying behavior of bats, the optimization and 
preying processes are coupled and connected, and the 
problem of solving the optimization target is transformed 
into the optimization problem of Bat preying position. In 
order to obtain the optimal and and improve the 
superiority of the ELM network, Random and are 
generated in the BA-ELM network. 

1) Initialization of Bat parameters.  The number of Bats 
is set as , the initial position and initial velocity of the qth 

Bat is and , respectively, the pulse transmitting 
frequency range is , the initial pulse rate is , the 
pulse rate enhancement coefficient is , the attenuation 
coefficient for the loudness is , the loudness scope is 

, the number of iterations is , the training sample 
size is , the sample size of the prediction set is , the 
number of ELM hidden layer nodes is , then each Bat 
contains optimization parameters  and , and the 
mathematical expression of the  Bat is: 

 
         (10) 

 
2) Suppose that the optimal position of the Bat 

population is , and the fitness function is expressed by 
the mean square error of the prediction set: 

 

          (11) 

 
where ， is a temporary variable. 

3) According to the distance of food detected by 
echolocation, then the flight speed, pulse emission frequency, 
and position of Bat  in the  iteration are updated as 
follows: 

 
                         (12) 

 
                          (13) 

 
                                  (14) 

 
where  is the current iteration number, and the random 
variable is . 

4) The Bat randomly generates a new position around 
its selected solution. If the fitness of 
Bat  is better than its own extreme 
fitness , then the position is updated. 

 
                              (15) 

 
where is a random number, is the average 
pulse loudness of all Bats in the current iteration number, M 
is the dimension of the search space. 
 

                          (16) 

 
5) If the fitness of Bat q in the iterative process is 

better than the fitness of global optimal , then the 
new position, pulse loudness, and rate of Bat  are updated 
as Equation (16). 

6) If the iteration reaches the preset maximum value or 
meets the accuracy requirements, then the iteration will 
terminate. At this point, the optimal solution is obtained, 
and the fitness function is , then the corresponding 
parameters w and b are the optimal parameter values. 
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Otherwise, the iterative search continues according to 
equations (12) to (16) until the termination conditions are 
satisfied. 

(2) BA-ELM gas concentration prediction method 
1) Spatio-temporal correlation analysis of gas 

concentration [25]. If the target monitoring site of gas 
concentration prediction is , then the data sample set is 
jointly constructed for monitoring sites with strong 
correlation obtained by improved dynamic clustering 
method. The data sample set can be expressed as follows: 

 
                (17) 

 
where  is the number of related sites and  is the 
length of gas time series of each site. 

2) Assuming that the embedded dimension of phase 
space reconstruction is , and the time delay is , the 
multi-variable phase space reconstruction method [25] is 
used to reconstruct the data of the sample set , and 
reconstructed sample set  can be obtained after the 
reconstruction of the sample set . The reconstructed 
sample set  can be defined in the following way: 

 
                          (18) 

 
           (19) 

 
                  (20) 

 
Thus, a phase point in a dimensional 

phase space can be formed. 
3) The reconstructed data samples are taken as training 

samples. BA-ELM parameter optimization method is used to 

learn the training samples and obtain the optimal weight 
matrix w and hidden layer threshold b of ELM. 

4) The completed training model is applied used to 
calculate the prediction samples and the prediction results 
are output. 
 
3.3 Research on BA-ELM gas concentration single-step 
prediction method based on Mapreduce 
(1) Parallelization analysis of BA intelligent optimization 
algorithm 

Individual bats are autonomous and cooperate with each 
other. For an individual Bat, the foraging process is 
essentially parallel, and BA itself possesses the attribute of 
parallelization. 
(2) Parallel BA optimization algorithm based on Mapreduce 

Fig. 1 shows the Parallel BA optimization process based 
on Mapreduce. This algorithm divides the initialized Bat 
population into  subpopulations, with each subpopulation's 
iterative process handled by a Mapreduce process, and each 
process independently completing the entire optimization 
process of serial BA. The specific process for evaluating 
fitness is as follows: the Map function is invoked to evaluate 
the fitness of each Bat individual in each subpopulation, and 
the fitness value of each Bat individual in each 
subpopulation is obtained and combined. Then whether the 
iteration termination conditions are met is determined. If the 
termination conditions are met, the optimal position will be 
output; otherwise, the intermediate results generated by the 
Map function will be transmitted to the Reduce function for 
reduction processing to complete the update of Bat 
parameters and generate new subpopulations. Under the new 
subpopulation condition, the Mapreduce process is further 
implemented to optimize parameters until the termination 
condition is met.  

 

Fig. 1. Parallel BA optimization process based on Mapreduce 
 
(3) BA-ELM gas concentration prediction method based 

on Mapreduce 
1) Design idea of BA-ELM algorithm based on 

Mapreduce 
The Map function is utilized to complete the ELM 

network parameter training by relying on the node where it 

is located. The ELM input layer and hidden layer connection 
weights and hidden layer thresholds are output locally if the 
training accuracy requirements are met or the maximum 
number of iterations has been reached. The Reduce function 
is employed to reduce the intermediate output results of each 
Map function, thereby the optimal ELM connection weight 
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and threshold are obtained. The design idea of the algorithm 
is as follows. 

a. Map function 
After setting the BA population parameters and ELM 

basic parameters, the basic parameters are passed to each 
slave node, and the fitness of each node is then calculated 
according to the network structure of ELM. If the fitness 
does not meet the accuracy requirement, the BA algorithm is 
adopted to optimize the input weights and threshold of the 
ELM, and the input weights and threshold value are adjusted 
through repeated iterations until the required termination 
conditions are satisfied. Among them, the local data on the 
node exists as key-value pairs of <key, value>. The Map 
function repeatedly and iteratively adjusts the input weights 
and thresholds of ELM through fitness evaluation, and the 
output result is an intermediate key-value pair consisting of 
input weights and thresholds meeting <key1, value1>. 

b. Reduce function 
The < key1, value1> intermediate result key values 

generated by the Map function are forwarded to the Reduce 
function for reduction processing. After reduction operation, 
input weights and thresholds of ELM network whose output 
result is <key2, value2> are generated. In addition, the 
updated global network input weights and thresholds are 
saved in the distributed system file HDFS of the Hadoop 
platform and used as the initial values of the Map function in 
the subsequent Mapreduce process for iterative optimization. 

After repeated iterations, the Mapreduce process is 
carried out. If the change range of input weights and 
thresholds of the BA-ELM algorithm is small or meets the 
maximum iterative value, and the fitness evaluation has met 
or is very close to reaching accuracy requirements, then the 
training is complete and the final network input weights and 
thresholds can be used as input parameters of the ELM 
network for the following prediction. 

2) Realization of BA-ELM gas concentration prediction 
algorithm based on Mapreduce 

First of all, the data set of gas concentration is prepared 
to obtain the basic data of gas concentration prediction; 
Secondly, the BA-ELM network structure based on 
Mapreduce is trained, Mapreduce is applied to program the 
model framework; the parameters of ELM are optimized by 
BA, and the optimal input weights and thresholds of ELM 
are obtained. Thirdly, the trained BA-ELM model is adopted 
to predict gas concentration in advance. The gas 
concentration prediction process of BA-ELM based on 
Mapreduce is shown in Figure 2. 

a. Preparation of gas concentration data sample set 
After completing the data preprocessing of the original 

gas concentration data set, assuming that the target 
monitoring site of gas concentration prediction is , and 
parallel dynamic clustering method is applied to get   
monitoring sites near the target site with a strong correlation. 
Then all site monitoring data are extracted to form the data 
sample set , where 

 are several related sites, and  is the gas time series 
length for each site. Assuming that the embedded dimension 
of phase space reconstruction is , and the time delay is , 
the multi-variable phase space reconstruction method is used 
to reconstruct the data of the sample set , and  can be 
obtained after the reconstruction of the sample set , thus 
forming a multi-dimensional sample space. 
The reconstructed multidimensional data samples are stored 
in HDFS, a distributed file system of the Hadoop platform, 

so as to provide basic data for the gas concentration 
prediction model. 

b. Training of BA-ELM network structure based on 
MAPReduce 

The specific training steps are as follows: 
The parameters of the limit vector machine are set. The 

master node (Job Tracker) randomly generates the initial 
limit vector machine parameters, determines the input 
weights and thresholds of the limit vector machine randomly 
within the interval [-1,1], uploads them to the Hadoop 
platform, and saves them in the distributed file system 
HDFS. 

Initialize the Bat population, including setting the 
number of Bats as , the pulse transmitting frequency 
range as , the initial pulse rate as , the pulse rate 
enhancement coefficient as , the loudness attenuation 
coefficient as , the loudness range as , the 
iteration times as , and the training sample size as . 

Population segmentation: individuals of the Bat 
population are divided into  sub-populations and assigned 
to each sub-node (Task Tracker), and the basic parameters of 
initializing the Bat population are obtained for each sub-
node. 

Map operation: the Map function of each node is 
invoked for each node, the fitness of each Bat population is 
evaluated to determine the fitness value of each individual 
Bat in a population, and the master node incorporates 
various fitness values. At this point, it judges whether the 
termination conditions are satisfied: when satisfied the ELM 
optimal input weights and thresholds will be output, 
otherwise, the next operation will be carried out. 

Reduce operation: the Reduce function receives the 
resultant location information generated by the Map function 
transmitted from the primary node, reads the intermediate 
result file, updates the parameters of Bat individuals, and 
iterates to execute a new round of the Mapreduce process. 

Iteration of the Mapreduce process: repeatedly perform 
Map and Reduce operations. If the change range of input 
weights and thresholds of the BA-ELM algorithm is small or 
reaches the iterative maximum, the optimal input weights 
and thresholds of ELM can be obtained. 

c. Build an advanced single-step prediction model of gas 
concentration based on BA-ELM 

The optimal input weights and thresholds obtained 
through model training are then incorporated into the BA-
ELM model, and the BA-ELM prediction model is used to 
make an advance prediction of gas concentration. The 
structure diagram of the prediction model is shown in Fig. 2. 

Assuming is the gas concentration prediction model 
based on BA-ELM, the single-step prediction modeling 
method is adopted, then the advanced prediction of the one-
step gas concentration is: 

 
                           (21) 

 

 
Fig. 2. Structure diagram of gas concentration advance single-step 
prediction 
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3.4 Real-time error compensation method for gas 
concentration multi-step prediction 

 
(1) Cumulative error analysis of gas concentration ahead 
prediction 

The prediction error is the difference between the actual 
value and the predicted value, which contains the 
characteristics of the internal dynamic change of the gas 
concentration time series. Therefore, effectively analyzing 
the accumulation error of gas concentration prediction and 
constructing a reasonable real-time error compensation 
strategy for gas concentration are essential for improving the 
prediction accuracy and reliability. 

When performing the multi-step advance prediction of 
gas concentration time series, the prediction value of the 
early stage is adopted as the input sample of the later stage 
to realize the gradual prediction, and the prediction error is 
bound to accumulate and expand in the transmission process 
before and after. To further analyze the impact of cumulative 
error, the variance decomposition concept is introduced into 
the square loss function, and the time series model of gas 
concentration monitoring value is assumed as follows: 

 
                         (22) 

 
where  is the random error and is the variance. 
Suppose that the observed value of rolling prediction 
window length  is , then: 

 
                       (23) 

 
Assuming that the corresponding value generated by the 

time series model  is , then: 
 

                               (24) 
 

Further assuming that the  step-ahead prediction value 
of the prediction model is , then the mean 
square error (MSE) at the  step of prediction can be 
expressed as: 

 
                     (25) 

 
Then the MSE of the prediction model at each step 

of prediction can be expressed as: 
 

  (26) 
 
where each error to the right of the equal sign is successively 
represented as the square deviation between the actual model 
and the prediction model, the variance of the prediction 
model, and the random error arising from time series noise.  

As using BA-ELM to carry out rolling prediction error 
analysis is complicated, the prediction model is assumed as 
follows: 

 
                              (27) 

 
where the mean of the random error  is 0 and the variance 
is . 

Assuming that the coefficients  and of the model 
can be accurately estimated, the first-step prediction output 
of the progressive prediction can be obtained, as follows: 

 
                         (28) 

 
The mean square error corresponding to the first-step-

prediction is: 
 

                    (29) 
 

In this way, the mean square errors of the prediction of 
the second and third steps are: 

 
                              (30) 

 
                         (31) 

 
According to the preceding equation, the error gradually 

accumulates and expands as the number of predicted steps 
increases. Therefore, constructing a real-time dynamic error 
compensation strategy based on the predicted value is an 
essential measure in enhancing the prediction accuracy of 
the model. 

 

 
Fig. 3. Flow chart of Real-time error compensation model of gas 
concentration 

 
(2) Real-time error compensation model for gas 

concentration prediction 
The cumulative error analysis reveals that the prediction 

error of the model is composed of self error and random 
error, both of which are predictable. Therefore, there is room 
for improvement in the prediction accuracy of the model. 
With the gradual advance of later prediction, the predicted 
value of gas concentration will lag behind the actual value 
due to the cumulative influence of prediction errors. The 
objective of a real-time error compensation strategy for gas 
concentration is to use the prediction model to correct and 
compensate the prediction results of gas concentration in 
real time. Based on this, the MapReduce-based BA-ELM 
gas concentration single-step prediction method proposed in 
Section 3.3 is adopted as the real-time compensation model 
for prediction error, the prediction error of gas concentration 
is taken as the fundamental data source of the model, and the 
single-variable phase space reconstruction theory is adopted 
to reconstruct the prediction error data. The real-time error 
compensation model is applied to learn the reconstructed 
data, so as to correct and compensate each prediction result 
in real time. The flow chart of the real-time error 
compensation model of gas concentration is shown in Fig. 3. 

(3) Gas concentration multi-step prediction method based 
on real-time error compensation 
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Based on the research on gas concentration single-step 
prediction and real-time error compensation, a multi-step gas 
concentration prediction method based on real-time error 
compensation was proposed. The specific steps are as 
follows: 

1) The historical monitoring data of gas concentration 
are preprocessed according to the spatio-temporal 
correlation analysis method [25] to complete the abnormal 
processing of historical monitoring data, including data 
abnormality, data missing, as well as data noise processing; 
The dynamic parallel clustering method is then employed to 
acquire the data sets of each monitoring station with a strong 
correlation with the target monitoring station. The final step 
is to reconstruct the data group composed of four monitoring 
stations via the multivariable phase space reconstruction 
method. 

2) The reconstructed data serve as the training sample for 
the BA-ELM gas concentration single-step prediction based 
on Mapreduce. The optimal parameters of the model are 
obtained through training, while the prediction error and 
advance prediction value of the training sample are obtained 
with the trained model. 

3) The same prediction method in step 2) is adopted to 
construct the real-time error compensation model of the 
prediction results. The single-variable phase space 
reconstruction is undertaken to the prediction error of the 
training sample, and concurrently the reconstructed data are 
utilized as the real-time error compensation model of the 
training sample to obtain the network structure of the 
optimal model and acquire the target gas concentration 
monitoring compensation error predicted in advance. At this 
juncture, the advanced one-step predicted value of the target 
monitoring site plus the compensation error to produce the 
advanced one-step predicted value. 

4) Univariate phase space reconstruction is carried out 
for each gas monitoring site, and the final single-step-ahead 
prediction value of each monitoring site is obtained 
according to the same method in 2) and 3). 

5) According to the rolling multi-step prediction strategy, 
the one-step-ahead prediction values of monitoring 
sites are taken as the input samples of the BA-ELM gas 
concentration single-step prediction model based on 
MapReduce, and the two-step prediction values of the target 
monitoring station are obtained by applying the BA-ELM 
gas concentration single-step prediction model based on 
MapReduce. Meanwhile, the real-time error compensation 
model is utilized to calculate the advanced two-step 
prediction value, and the sum of the two values is the final 
prediction value. 

6) The advanced H-step prediction value of the target 
monitoring station can be obtained directly by iteration cycle. 

 
 

4 Result Analysis and Discussion 
 

The gas concentration monitoring data samples of a mine for 
31 consecutive days were collected (the sampling interval 
was 1min), and the data of each monitoring station were 
preprocessed. For instance, No.1735 gas monitoring site was 
selected as the target site (prediction site), and four other 
roadway monitoring sites with a strong spatio-temporal 
correlation with No.1735 gas monitoring site were obtained 
by the dynamic parallel clustering analysis method, namely 
No.1734, 1732, 1713 and 1724 monitoring sites sequentially. 

First and foremost, the original monitoring data from the 
gas sensor were preprocessed to minimize the impact of data 

loss and data noise. Secondly, a dynamic parallel clustering 
analysis method was used to obtain a roadway gas 
concentration monitoring site with a close correlation to the 
target monitoring site to jointly form a multivariate data set, 
and the data of the multivariate gas concentration was 
reconstructed with the phase space reconstruction theory. 
Finally, the reconstructed data were imported into the BA-
ELM prediction model based on Mapreduce to obtain the 
advanced gas concentration prediction. Applying the Java 
assembly language, BA and ELM intelligent algorithms, and 
the Mapreduce programming framework, the gas 
concentration prediction model based on real-time error 
compensation had been developed. Then seven computers 
were designated for the Hadoop data analysis platform, and 
a distributed cluster was built in the LAN. The parameters of 
the example were set as follows: the number of parallel 
computing nodes is 6, the number of Bat populations is 

, the pulse emission frequency is , the 
initial pulse rate is , the pulse rate enhancement 
coefficient is , the loudness attenuation coefficient is 

, the loudness range is , and the iteration 
times are . 

Firstly, the time delay of No. 1735 target site was 
obtained by multi-variable phase space reconstruction, and 
the embedded dimension was . The reconstruction 
parameters of the target monitoring site were taken as the 
standard to reconstruct the data of other monitoring sites, 
and a total of 44631×36 dimension data sample space was 
generated. The first 44571 groups were selected as the 
training sample set and the rest as the test sample set. When 
using the trained model for prediction, the current input 
prediction sample was added to the training sample set for 
each advanced prediction, and the previous sample in the 
sample set was eliminated to keep the length of the training 
sample set unchanged before and after prediction, so as to 
achieve the advance prediction of No.1735 gas station 
successively. According to the multi-step advance prediction 
process of gas concentration based on real-time error 
compensation, the prediction results of this model were 
compared with those of the BA-ELM prediction model and 
Mapreduce BA-ELM gas concentration prediction model 
(real-time compensation without error), then the mean 
absolute error (MAE), mean relative error (MRE), root mean 
square error (RMSE), and running time (T) were used to 
evaluate the model performance. The prediction results are 
shown in Fig. 4. 

As can be seen from Fig. 4 and Table 1, the two models 
showed different performance characteristics due to different 
prediction processes and mechanisms: as for the prediction 
error, both the two prediction models have high prediction 
accuracy on the whole, which reflected that after ELM 
parameters are optimized by BA, the impact of ELM model 
parameters on prediction accuracy is effectively avoided. 
Compared with the BA-ELM serial prediction method, the 
mean absolute error (MAE), mean relative error (MRE), and 
root mean square error (RMSE) of the BA-ELM parallel 
prediction method based on Mapreduce are reduced by 48%, 
48%, and 49%, respectively, indicating that after the parallel 
BA based on Mapreduce is adopted to optimize ELM 
parameters, the obtained model has high prediction accuracy 
and model generalization ability. In terms of operation 
efficiency, when the number of operation nodes is 6, the 
running time of the parallel prediction method based on 
Mapreduce BA-ELM is 21.36s, while the single-point serial 
prediction time is 152.31s, the acceleration ratio is 

1N +

200N = [0,2]lÎ

0 0.1r =
0.9g =

0.9a = 0.9a =
400L =
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=152.31/21.36≈7.13, and the operation efficiency is 
improved by 6.13 times, which reflect that the training 
efficiency of the parallel prediction method based on 

Mapreduce is substantially improved, thus effectively 
enhancing the overall computing efficiency of the model. 

 
 

 
   (a)                                                                                            (b) 

Fig. 4. Single-step prediction results of gas concentration. (a). Single step prediction based on BA-ELM. (b). BA-ELM single-step prediction based 
on Mapreduc 
 
Table 1. Performance evaluation of model prediction 

Model type MAE/% MRE/% RMSE/% T/s 
BA-ELM single-step prediction 0.0079 0.0195 1.00 152.31 

Mapreduce+BA-ELM single-step prediction 0.0041 0.0101 0.51 21.36 
 

 

(a)                                                                                         (b) 
Fig. 5. Prediction results of gas concentration 7 steps ahead. (a). Prediction based on Mapreduce 7 steps ahead. (b). Prediction based on real-time error 
compensation 7 steps ahead 

 

 

   (a)                                                                                           (b) 
Fig. 6. Prediction results of gas concentration 12 steps ahead. (a). Prediction based on Mapreduce 12 steps ahead. (b). Prediction based on real-time 
error compensation 12 steps ahead 

 
The high accuracy and efficiency of the single-step 

prediction model serve as the premise and guarantee for 
multi-step ahead prediction. However, when multi-step 
ahead prediction is utilized, two significant issues must be 
resolved: error accumulation and predictable step size For 
this reason, the gas concentration parallel prediction model 
based on real-time error compensation is compared with the 
parallel prediction model without real-time error 
compensation to verify the effectiveness of the real-time 
error compensation model and determine the number of 
ahead steps of the model. Tables 2 and 3 show the prediction 
performance evaluation of the BA-ELM model based on 

Mapreduce and Mapreduce+BA-ELM model based on error 
compensation. Fig. 5 and Fig. 6 show the prediction results 
of gas concentrations of 7 and 12 steps ahead. 
 
Table 2. Prediction performance evaluation of BA-ELM 
model based on Mapreduce 

Advanced step size MAE/% MRE/% RMSE/% T/s 
7 steps 0.014 3.435 0.015 21.42 
9 steps 0.018 4.518 0.020 21.47 

10 steps 0.027 7.663 0.033 21.51 
12 steps 0.035 9.537 0.041 21.58 

 

sT
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Table 3. Prediction performance evaluation of 
Mapreduce+BA-ELM model based on error compensation 

Advanced step size MAE/% MRE/% RMSE/% T/s 
7 steps 0.008 2.136 0.009 39.46 
9 steps 0.013 3.265 0.014 39.57 

10 steps 0.022 5.405 0.025 40.12 
12 steps 0.030 8.050 0.034 40.31 

 
According to Tables 2-3 and Figures 5-6, the prediction 

accuracy of the two models decreases gradually as the 
number of leading steps, and the accuracy deteriorates as the 
number of the predicted steps increases; the worse the 
accuracy is, primarily because the prediction error 
accumulates and expands with the number of steps increases. 
By comparing the prediction results of the two models, it can 
be observed that the MAE, MRE and RMSE of the parallel 
prediction model based on real-time error compensation are 
lower than those of the parallel prediction model without 
real-time error compensation for any step length, reflecting 
that the real-time error compensation model is an effective 
measure to suppress the prediction error transmission. 
Regarding the selection of predictable step size, a relative 
error of less than 9% is adopted as the evaluation benchmark, 
and the MAE, MRE, and RMSE differences of the parallel 
prediction model based on real-time error compensation at 
the 12th step are 0.030%, 8.050%, and 0.034%, respectively, 
with high prediction accuracy. Therefore, after repeated 
trials, the predictable step size of the model can be 
considered as 12, namely, the prediction results can satisfy 
the actual requirements of the project within 12 steps; Under 
the condition of the same step size, the prediction results of 
the parallel prediction model with real-time error 
compensation are superior to than those of the parallel 
prediction model without real-time error compensation, 
confirming that adopting a real-time error compensation 
model is an effective measure to improve the prediction step 
size of the model in the process of leading multi-step 
prediction. Due to the increasing complexity algorithm 
during operation, the parallel prediction model based on 
real-time error compensation is inefficient in terms is 
insufficient in terms of operational efficiency. 
 
 
5. Conclusions 
 
This study proposes a Mapreduce-based BA-ELM gas 

concentration prediction method to improve the accuracy, 
generalization ability, operation efficiency, and prediction 
step size of gas concentration prediction, as well as to 
accurately and rapidly grasp the variation tendency of mine 
gas concentration. The method is based on the basic 
principles of BA and ELM and combines Mapreduce and 
real-time error compensation. The concept was demonstrated 
using specific cases. The following conclusions could be 
drawn: 

(1) The Mapreduce+BA-ELM single-step prediction 
method is significantly more efficient than the BA-ELM 
single-step prediction method. 

(2) After the parallel BA optimization of ELM 
parameters based on Mapreduce, the model exhibits high 
prediction accuracy and model generalization ability. 

(3) In the leading multi-step prediction process, the error 
length of the parallel prediction model based on real-time 
error compensation is smaller than that of the parallel 
prediction model without real-time error compensation. 
Adopting the real-time error compensation model is an 
effective measure for improving the prediction step size of 
the model. 

The study presented a new understanding of gas 
concentration prediction by combining theoretical research 
with practical production, and the resulting model 
established guiding significance for the prevention of mine 
gas accidents. Due to the preliminary establishment of the 
real-time error compensation method, the prediction 
accuracy would decrease after 12 steps as the number of 
steps increases. The method of real-time error compensation 
will be further studied to increase the number of predicted 
steps based on improving the accuracy of the prediction 
thereby gaining a deeper understanding of the law of gas 
concentration prediction. 
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