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Abstract 
 

Power quality (PQ) disturbances generated during the power grid operation are complicated and volatile in real life. If a 
large number of complex PQ disturbances (CPQDs) from power grid monitoring devices are all labelled artificially, then 
it may consume a lot of human resources. To effectively utilize these unlabeled data collected by the monitors to improve 
the accuracy of the learning model, this study proposed an approach for the recognition of CPQDs using a multi-label 
active learning strategy. First, the study presented a novel active learning strategy based on label exclusiveness and 
ranking score (LERS) by analyzing the label relation among different PQ disturbances. Second, the strategy was 
incorporated into the multi-label extreme learning machine classifier to train and identify CPQDs. Finally, extensive 
experiments in the study validate the effectiveness of the proposed method. Results indicate that LERS improves the 
performance of the classification model by adding the most informative sample. As the number of labelled samples 
increases from 1000 to 8000, the evaluation metric MicroF1 reaches more than 0.7. The corresponding labelling cost of 
the proposed strategy is reduced by 40% compared with other strategies when obtaining certain accuracy. This study 
provides a specific reference for recognizing CPQDs and has a bright application prospect. 
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____________________________________________________________________________________________ 

 
1. Introduction 
 
With the large-scale integration of new energy sources into 
the power grid and the booming increase in power load 
types, especially the wide spread of distributed energy 
sources, sensitive electronic components, power converters, 
industrial drives, reactive power devices, and solid-state 
switches, various power quality (PQ) events are increasing 
day by day, manifesting as a large number of steady-state 
and transient PQ problems [1]. Therefore, to protect the 
power system from adverse effects, the accurate recognition 
of complex PQ disturbances (CPQDs) is of great importance. 

The recognition of CPQD signals usually combines the 
modern signal processing algorithms for feature extraction 
and machine learning algorithms for final classification. 
Scholars have conducted numerous related studies on PQ 
analysis in the framework [2-4]. In the current study of 
CPQD classification, the sample data set used to train the 
classifier generates training samples randomly, in which 
most are generated by MATLAB within the IEEE 1529 
standard. Recorded and broadcast signals from standard 
power sources or grid fault recorders are used as training 
datasets for the classifiers. Conventional CPQD training 
methods usually adopt a typical supervised machine learning 
framework. Specifically, the supervised model is trained on 
input data that have been labeled for a particular output. 
Notably, most PQ monitors in power systems only collect 
the raw waveforms without corresponding disturbance class 
information. To accommodate the supervised learning 
process, these time series unlabeled data need to be labeled 
artificially with the type of disturbances it probably contains. 

The efforts require abundant domain knowledge and 
labeling experience of CPQDs. Therefore, fully utilizing the 
unlabeled data in the supervised learning scenario of real 
grid signal analysis is time-consuming and expensive. 
However, training a supervised learning model with only 
few labeled data will result in severe overfitting problems 
when recognizing real signals. Furthermore, the abundant 
intrinsic information contained in the unlabeled CPQDs is 
neglected. 

To make full use of the labeled and unlabeled data in the 
training phase of the CPQDs classification model, this study 
presents a novel multi-label active learning strategy that 
incorporates label exclusion into the conventional 
uncertainty measure. In the proposed method, the margin 
vectors of unknown CPQDs are gained from a multi-label 
classifier based on extreme learning machine (ELM), and 
then the Borda method is adopted to aggregate the vectors to 
output a unified uncertainty measure rank for the unlabeled 
samples across all labels. The novelty of this study is to 
develop a label exclusion measure for CPQD samples in 
selecting the most indeterminate data for the classifier. 
Experiment results demonstrate that the proposed strategy 
can achieve better accuracy in selecting the most informative 
example using the random discriminative projection extreme 
learning machine for multi-label learning (RDPEML). The 
comparison results on the synthetic dataset demonstrate that 
the proposed strategy outperforms the state-of-the-art multi-
label active learning strategies. 
 
 
2. State of the art  
 
Many studies on PQ analysis have been published in the last 
decade. Liu et al. used the discrete wavelet transform to 
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conduct time-domain analysis on the disturbance signals, 
and the extracted features were fed to a random forest 
classifier. This method is relatively simple to implement, but 
a lot of difficulties is encountered in explaining random 
forest, which is a black-box model [5]. Li et al. adopted 
wavelet transform to extract features and then optimized the 
parameters of the support vector machine (SVM) algorithm 
by genetic algorithm. Although this method improved speed 
and accuracy, it neglected the CPQD signals and only 
identified the PQ event that contained a single disturbance 
[6]. Asman et al. proposed a PQ recognition method based 
on discrete wavelet transform and SVM. This method could 
extract the information of transient signals and increase the 
recognition rate; however, solving a quadratic problem in 
SVM added the computational cost of classification [7]. 
Kumar et al. extracted the statistical features of PQ by using 
the traditional signal analysis method and then classified 
them by decision tree (DT). This method verified the 
robustness of PQ to noise, but its extracted features are 
relatively traditional, and only eight types of CPQDs were 
classified, with few classification categories and insufficient 
consideration [8]. Mahela et al. combined S transform with 
Hilbert transform to extract the statistical features of signals 
and finally classified those using DTs. This method was easy 
to implement because of its simple structure and short 
operation time, whereas the DT algorithm was prone to 
overfit when types of CPQDs increased [9]. Swarnkar et al. 
used the S-transform with the Hilbert transform when 
conducting feature extraction and then fed them into DT for 
classification. This method considered various CQPDs, and 
the experiment results showed its effectiveness. However, 
the selection of manufacturing features greatly influenced 
the final performance of DT [10]. Elango et al. hybridized S 
transform and wavelet transform to extract the time-
frequency features of CPQDs and classified them using a 
backpropagation (BP) neural network. Although the method 
obtained excellent accuracy, the BP neural network’s slow 
convergence hindered the PQ recognition model [11-12]. 
Wang et al. decomposed the signals by using modulation 
wideband mode decomposition algorithm and then extracted 
the features by multi-scale fuzzy entropy. Finally, the 
features were classified by a BP neural network, but they 
considered DC signals. Thus, the analysis was relatively 
straightforward [13]. Liao et al. combined improved local 
mean decomposition and Hilbert transform to process 
signals and then used radial basis function (RBF) neural 
network for classification. This method had low 
requirements for PQ disturbance signal conditions and was 
universal. However, optimizing the hyperparameters of the 
RBF neural network was time-consuming [14]. Vidhya et al. 
constructed a learning model that contained ELM and RBF, 
which reflected the superiority of CPQD classification. Still, 
the network’s complex structure had a risk of poor 
generalization [15]. Liu et al. combined the traditional signal 
analysis method with butter worth distribution to extract 
high-order moment statistical features and used the RBF 
neural network as the classifier. This method extracted the 
effective features of CPQDs that were difficult to 
distinguish, but the classification types of CPQDs were 
limited [16]. 

Qu et al. employed sparse autoencoders to extract the 
features in unsupervised learning framework. A softmax 
classifier was adopted to learn and classify the CPQDs. This 
method exhibited a remarkable anti-noise characteristic, 
whereas a range of only two kinds of compound 
disturbances hindered the universality of this method [17]. 

Wu et al. utilized a recurrent neural network to extract the 
deep features of CQPDs and then connected them to a 
softmax classifier to output the recognition accuracy, but it 
had the disadvantage of heavy computational cost [18]. 
Zheng et al. transformed CPQDs into images by using 
Gramian angular field and inputted them into convolutional 
neural networks to extract and classify features 
automatically. However, the PQ signal was a typical time-
series signal. The 2D transformation might neglect the 
intuitive characteristic [19]. 

The above studies mainly develop their classification 
model in supervised learning. So far, works on classifying 
CPQDs from weakly supervised learning, not even from 
active learning, are few. This study proposes a new multi-
label classification algorithm for CPQDs by combining 
active learning with ELM and by adding mutual label 
exclusion. Starting from active learning strategies, the 
influence of different active learning strategies on the final 
performance curve is studied, and the superiority of this 
research method is obtained. 

The remainder of this study is organized as follows. The 
third section mainly introduces the active learning and the 
active learning strategy proposed in this study and describes 
the CPQD classification method that combines ELM and 
active learning. The fourth section combines different active 
learning strategies with ELM to classify the same data with 
multiple labels and obtain the final performance curve. The 
last section summarizes this study and draws relevant 
conclusions. 
 
 
3. Methodology  

 
3.1 Active Learning 
Since active learning first proposed by Cohn in 1996 [20], it 
has rapidly become a subfield of machine learning. Its 
fundamental assumption is whether the learning algorithm is 
allowed to select the most valuable data for improving the 
learning model. And if so, compared with the supervised 
method, the learning algorithm might be trained with less 
training data when reaching comparable performance. 
Active learning is often divided into stream-based selective 
and pool-based learning according to how unlabeled samples 
are obtained [21]. In the stream-based selective sampling 
process, unlabeled data flow from the data source and are 
sequentially submitted to the selection engine. The selection 
engine decides whether to label the currently offered 
samples or not. As the samples are handed over to the 
selection engine one by one, the distribution of the overall 
dataset is unknown. Thus, evaluating the potential value of 
the samples becomes difficult. Pooling-based active learning 
does not rely on a single sample but sorts and selects the 
most valuable subset from the data pool. Pooling-based 
active learning is suitable for general application scenarios 
where a small set of labeled samples and a large set of 
unlabeled samples  coexist. The CPQD classification 
problem examined in this study also conforms to this 
application scenario, so the pool-based active learning 
method is adopted. 

The basic flow of pool-based active learning is shown in 
Figure 1. Given a basic classifier  used in the active 
learning process, in the pool-based active learning scenario, 
a small set of labeled samples , a large set of unlabeled 
samples and an active learning strategy  (selection 
criteria, such as uncertainty measures) are assumed to exist. 
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The general process of active learning is presented as 
follows: 
(1)  selects unlabeled sample data from ; 
(2) The selected sample data are labeled by human experts; 
(3) The selected samples are added to  and removed from 

; 
(4)  is trained by  again; 
(5) The performance of the basic classifier  is evaluated; 
(6) Return to Step 1 if the stop criterion is not satisfied. 
 

 
Fig. 1.  Pool-based active learning circle 
 
3.2 CPQD classification based on active learning 
 
3.2.1 Measure based on Borda method 
Uncertainty sampling is one of the most well-known 
strategies that active learning adopts in selecting unlabeled 
samples. Specifically, uncertainty sampling heuristically 
selects the samples with the most uncertain prediction results 
by using the current learning model and submits them to 
human experts for labeling. For multi-class classification 
problems, least confidence, margin, and entropy are typical 
schemes for uncertainty measures. Given that identifying 
CPQDs is a typical multi-label learning problem, human 
experts have to decide whether the signal is associated with 
each label when labeling unknown disturbance signals. 
Therefore, the cost of manual labeling of CPQDs is much 
higher than that of multi-class classification.  

In this study, the margin of sample in class label can 
be calculated as: 

 

         (1) 
 
If the margin is large, then the learning model is less 

likely to make mistakes when predicting whether the sample 
contains this label, and is less valuable to improve the 

classifier’s performance. On the contrary, a small margin 
means that the classifier is not sure enough to predict 
whether the sample contains a label. Therefore, the smaller 
margin between the two most likely class labels indicates 
more informative the instance is for the performance lifting 
of the model. Given vectors of margins for unlabeled 
samples, q rankings of samples (q represents the total 
number of labels contained in the label set) can be calculated 
to consider the information of all unlabeled samples. 
Moreover, each sequence represents one ranking of all 
unlabeled samples. The sorted sequence can be calculated by 
the formula: 
 

   (2) 
 

The ranking  corresponds to the complete ordering of 
all unlabeled samples according to the margin on the label . 
The uncertainty measure of multi-label samples needs to 
integrate the ranking information of all samples on all labels; 
that is, by accumulating all the rankings, the sample placed 
in the first position of the final ranking contains the most 
uncertain information. Obtaining the cumulative margin 
value is a well-known rank aggregation problem. This study 
adopts an efficient and straightforward rank aggregation 
method called the Borda method to address this problem. 
Borda’s method is a position-based cumulative voting 
method that assigns a score to an element based on the 
position where the element appears in each ranking [22]. As 
a classic voting method first proposed by Jena-Charles de 
Borda, voters express their preference for candidates in high 
to low order. The last candidate is assigned 1 point, the 
second-to-last candidate is given 2 points, and so on, the 
first-ranked candidate is given q points. The results of all 
electors are summed up to obtain the Borda score for each 
candidate, the candidate with the largest point total is the 
winner. The advantage of Borda’s method is that it is fast 
and efficient. With the Borda method, the rank value of the 
unlabeled sample is calculated by Equation (3): 

 

          (3) 

 
where is the position of the sample  in the ranking 

. The value of  is proportional to the uncertainty of 
the sample across all labels. Figure 2 shows the block 
diagram of multi-label sample uncertainty measure based on 
Borda method. 

 
Fig. 2.  Borda method based multi-label sample measurement diagram 
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3.2.2 Measure based on CPQDs label relation 
In addition to the uncertainty measure defined based on the 
Borda ranking aggregation problem, incorporating 
information from the label space is important. The label–
label relation contained in the sample is a crucial problem 
studied in the multi-label classification [23], and the relation 
can be divided into correlation and mutual exclusion. 
Specifically, the multi-label algorithm recognizes that if the 
label “sea” appears in the picture, the probability that related 
labels, such as ‘blue’ and ‘ship’ will also appear is high. Still, 
the probability that “high-rise buildings” and “trains” will 
not occur is high. In the problem of CPQD classification, the 
label-label relation is mainly reflected in the form of mutual 
exclusion between class labels in different disturbance 
groups. According to their definitions and characteristics, 
this study categorizes seven single disturbance types (e.g., 
voltage sag, swell, interruption, pulse transient, oscillation 
transient, harmonic, and flicker). Among them, voltage sags, 
swells, and interruptions are in the same group because of 
the characteristics of the amplitude variation. Transient 
pulses and oscillations are grouped because of the short 
duration. The harmonic and flicker with long duration and 
their characteristics are separated [24]. Disturbances in 
different groups may co-occur, but the disturbance 
components in the same group cannot co-occur, which is 
defined as the mutual exclusion of disturbances. Figure 3 
shows a schematic of the label prediction of the CPQDs, the 

relevant label sets the irrelevant label set, the threshold, are 
the white blocks represent and the black blocks represent, 
respectively. The predicted class labels contained in the 
sample cannot be in Groups 1 or 2 simultaneously. By 
conducting extensive experiments, this study summarizes 
the following four cases and assigns the corresponding 
coefficients according to the counts of label exclusions pairs 
caused by the misclassification. The value of the specific 
disturbance event evaluation function v is shown in Table 1. 
 

 
Fig. 3.  Prediction of complex PQ disturbances 
 
 

 
Table 1. Evaluation score of CPQDs 

 Group1 Group2 Coefficient 
Disturbance type Sag Swell Interruption Oscillation transient Impulsive transient  

Prediction result 

P P P P P 0.01 
P P P P O 

0.1 P P P O P 
P P P O O 
P P O P P 

0.5 P O P P P 
O P P P P 
P P O O O 

0.8 P O P O O 
O P P O O 
O O O P P 

 
3.2.3 CPQD active learning strategy 
This study adopts the most widely used uncertainty sampling 
strategy in active learning. Different from conventional 
uncertainty measure, this study combines the two measure 
strategies defined in the previous two subsections 
innovatively. The strategy can be formulated as follows: 
 

     (4) 

 
where s and v are the measure functions defined in the two 
previous subsections. This new uncertainty sampling 
strategy is named label exclusion and ranking scores (LERS). 
When selecting the most informative sample, LERS not only 
obtains the ranking score by cumulative voting but also 
measure the mutual exclusion of disturbance labels in 
CPQDs. 

 
3.3 CPQD classification based on active ELM 
ELM is a novel single-hidden layer feedforward neural 
network proposed by Professor Huang Guangbin in 2006 
[25]. In ELM, the conventional backpropagation process in 
the neural network was replaced by a simple least square 
method solution to the output weight. As a sequence, ELM 
can achieve extremely fast learning speed. Inspired by the 

successful application of difference vectors of between-class 
samples in the classification problem [26], we proposed a 
new multi-label learning algorithm (random discriminative 
projection extreme learning machine algorithm for multi-
label learning, RDPEML) in our previous work [27]. The 
RDPEML algorithm uses discriminative multi-label inter-
class samples to generate a subset of difference vectors and 
generate hidden layer nodes from them, which improves the 
random mapping architecture of conventional ELM. 
RDPEML extends the basic ELM to a multi-label learning 
domain by incorporating a threshold learning kernel ELM. 
The input weight and bias in RDPEML are formulated as: 

 

     (5) 

 

    (6) 

 
The workflow of the CPQD active learning algorithm 

based on RDPEML is presented as follows: 
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Input: :unlabeled CPQDs pool; :label set; 
RDPEML: . j：maximum number of iteration 
begin 
for iteration= 1 to j do 
Step 1: For each sample  in ,  output the 

corresponding probability vector.  

Step 2: Calculate the margin on each label 
according to the formula (1), and obtain a vector 

 of the margin of the 

sample. 
Step 3: Obtain   which is the ranking of all unlabeled 

samples on the label. 
Step 4: Calculate the output of measure function   by the 

rank aggregation. 
Step 5: Assign the value of   according to the predicted 

results given by and Table 1. 
Step 6: Find the most informative sample according to 

formula (4), add it to the labeled training set, and retrain. 

 
 
4 Result Analysis and Discussion 
 
4.1 Experimental comparison methods 
To the best of our knowledge, this is the first study on an 
active learning strategy for multi-label problems based on 
the ELMmodel. Therefore, random sampling (Random), 
least binary classification (BinMin) [28], maximum 
marginal prediction uncertainty and label cardinality 
inconsistency (MMU-LCI) [29], the maximum loss of 
maximum confidence drop (MMC)  [30] and incremental 
multi-label active learning strategies based on uncertainty 
and diversity (AUDI) [31] , five of the most relevant active 
learning strategies were chosen for performance comparison. 
In order to accomplish a fair comparison, the above 
strategies are conducted on the same model RDPEML. 
 
4.2 Experimental setup 
A total 47 kinds of CPQDs events is generated by MATLAB, 
and each event is randomly generated 200 times within the 
range of IEEE1529 parameters.  MicroF1 and MacroF1, 
commonly used multi-label evaluation metrics in active 
learning literature, are adopted as performance evaluation 
metrics [32]. At the beginning of the experiment, 5% of the 
labeled sample set of the training set is randomly selected as 
the initial labeled pool, and the remaining samples were left 
as unlabeled pools. In each iteration, the active learning 
strategy queries and selects the most informative sample to 
human experts for annotation. In all, 8000 disturbance signal 
samples are added to the marked sample pool. The 
remaining 95% of the samples were used to create the 
unlabeled sample set.  

The effectiveness of different active learning strategies 
can be evaluated by the intuitive vision of the learning 
curves exhibited by the classifiers running under each 
strategy. This learning curve is constructed by plotting the 
evaluation metric as a function of the total number of 
unlabeled samples queried. A learning strategy outperforms 
other strategies if it dominates most points of its learning 
curve. 

 

4.3 Experimental results 
Figures 4(a) and Figures 4(b) illustrate the comparison of 
MicroF1 and comparison of MicroF1 between different 
active learning strategies. Figures 5 visualize the accuracy 
curves of the LERS sampling strategy and the other five 
multi-label sample active learning sampling strategies of 
Random, BinMin, MMU-LCI, MMC, and AUDI on the 
Matlab synthetic data set. The horizontal axis of the figure 
represents the total number of query samples that have been 
added, and the vertical axis is the evaluation metrics 
MicroF1 and MacroF1 of RDPEML for unknown CPQDs 
identification after a number of queries. It can be seen from 
the figure that after the LERS strategy starts several epochs 
of query, especially before the number of unlabeled sample 
queries reaches 2000, the performance learning curves of the 
two metrics are better than that of the rest strategies. It is 
obvious that the curve rises more steeply than other 
sampling strategies. This noticeable improvement is because 
the LERS strategy incorporates the label exclusion 
coefficient into the uncertainty measure. The selection of 
unknown CPQDs that do not comply with the principle of 
mutual exclusivity plays a crucial role in training a more 
accurate multi-label classification model. After many rounds 
of selections, the learning curves of MicroF1 and MacroF1 
of LERS also enter a stable stage, this mainly because with 
the continuous improvement of the learning model, the 
signals in the unlabeled sample pool that do not meet the 
mutual exclusion criterion dramatically decrease. From all 
these results observed, the proposed LERS strategy 
outperformed the rest of the strategies in almost the entire 
active learning process, followed by the AUDI method. The 
BINMIN strategy shows the worst performance in 
comparing both performance metrics of all strategies. 
 

 
(a) 

 
(b) 

Fig. 4. Comparison of MicroF1 and comparison of MicroF1 between 
different active learning strategies 
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To investigate whether the proposed LERS sampling 
strategy is sensitive to the initial labeled dataset size, the 
experiments gradually increase the number of initial training 
data from 1000 to 5000 in steps of 1000. For fixed number 
of initial label set, the performance of the final classifier 
after 3000 active learning queries was compared. Figure 5 
shows the trend of MicroF1 when initial training labeled 
datasets size varies. Figure 5 shows that the LERS strategy 
consistently outperforms nearly all other strategies, except 
for the initial state of 2000, which is slightly lower than the 
AUDI strategy. The MicroF1 curve variation of the LERS 
strategy is minimal for different numbers of initial training 
labeled datasets, which indicates its characteristics of 
robustness. Table 2 shows the comparison of the MicroF1 
values of each strategy after different iterations. After adding 
8000 queried samples, LERS outperforms the MicroF1 
values of other algorithms. Table 2 shows that when LERS 
reaches a MicroF1 value of 0.7271 after adding 3000 
unlabeled samples, and AUDI needs to do 5000 queries to 
obtain a similar performance. This finding shows that under 

the requirement of this performance, LERS can save 
approximately 40% manual labeling effort than AUDI. 

 

 
Fig. 5.  Comparison of MicroF1 under different numbers of initial 
training database 

 
Table 2. Experiment results 

 
5. Conclusions 

 
To make full use of scarce labeled data with abundant 
unlabeled data is a challenge when training the CPQDs 
classification model, a novel active learning strategy LERS 
strategy was developed to consider label mutual 
exclusionwas developed to consider label mutual exclusion 
and ranking score in uncertainty measure process. The LERS 
was incorporated in the learning phase of RDPEML for 
further identification. The following conclusions could be 
drawn as follows: 

(1) The LERS sampling strategy that incorporates a label 
mutual exclusion measure for CPQDs can effectively select 
the most valuable unknown samples for the classification 
model improvement and provide them to human experts for 
labeling when labeling unlabeled CPQDs. Moreover, the 
additional training data improve the recognition performance 
of RDPEML for composite disturbances gradually.  

(2) When facing different numbers of initial training sets, 
LERS exhibits a notable robustness. Comparing with other 
strategies, LERS yields a remarkable reduction in manual 
labeling cost   when reaching certain performance aim. 

(3) The experimental results on the synthetic data set 
reveal that LERS outperforms other strategies in rising 
trends and obtain the best performance finally. 

This study identifies CPQDs based on the active learning 
strategy LERS, in which the measure of both ranking score 
and label mutual exclusion are hybridized. The learning 
model that incorporates LERS strategy has been effectively 
improved by utilizing unlabeled CPQD samples. This study 
provides a solution when facing scarce labeled data and 
abundant unlabeled data in PQ disturbance identification. 
Considering that LERS select and add unlabeled samples 
one by one, in future studies, we will focus on researching 
an efficient active learning strategy for selecting unlabeled 
samples in batches and using a more effective ranking 
aggregation method to improve the uncertainty sampling in 
the active learning process. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License. 
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