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Abstract 
 

The application of Genetic Algorithm (GA) in solving any combinatorial problem presupposes the adoption of an encoding 
scheme and configuration of genetic operators that, according to the literature, impact the behavior of the GA population 
during the convergence phase. Understanding this behavior is essential to assist the refinement of configuration parameters 
and for proposing heuristics that support searching better quality solutions with the least possible computational effort. 
However, observing and understanding such behavior is not an easy task and, for this reason, this issue has attracted the 
attention of many researchers in recent years. In this work we proposed a computational tool and a method to evaluate the 
impact of different encoding schemes and settings for crossover and mutation operators in the GA performance. To this 
end, we have considered the application of GA in solving the Capacitated Vehicle Routing Problem (CVRP). However, it 
is important to highlight that the computational tool and the evaluation method are generalizable for the study of other 
population-based meta-heuristics and/or other combinatorial optimization problems. The results indicate that in most 
aspects binary encoding schemes are less efficient than schemes using integer numbers, and that the impact caused by 
genetic operators is directly related to the employed encoding scheme. It was also found that some of the performance 
measures proposed can be used either to propose heuristics or as heuristics itself.  
 
Keywords: Genetic Algorithm, Capacitated Vehicle Routing Problem, Encoding Scheme, Genetic Operators, Population Behavior. 
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1. Introduction 
 
The Genetic Algorithm (GA) is a metaheuristic method, 
derived from evolutionary computation that is based on 
Charles Darwin's theory of natural evolution, according to 
which organisms in a population that best adapt to the 
environment in which they live are more likely to survive and 
reproduce. The evolution process of the GA occurs from a 
population of initial individuals, through the application of 
genetic operators for selection, crossing and mutation of 
individuals [1]. Each individual of the population (or 
chromosome) is a possible encoded solution to the addressed 
problem. 
 The GA has been widely used in the solution of highly 
complex optimization problems, known in the literature as 
NP-Hard (Non-deterministic Polynomial Time), among 
which are the Job Shop Scheduling Problem (JSSP), Cutting 
and Packing Problem (CPP) and the Vehicle Routing Problem 
(VRP). The latter, addressed in this work, has attracted the 
attention of researchers in recent years due not only to the 
difficulty of its solution, but also to its presence in various 
practical situations [2]. 
 According to Vieira [3], the VRP consists in determining 
a set of routes to be followed by a fleet of vehicles, so that the 
demands of all customers are satisfied, and that each vehicle 
returns to the depot at the end of the route. The objective can 

be, for example, minimize total cost, travel time or total travel 
distance. In the literature there are many variations of VRP, 
such as Capacited Vehicle Routing Problem (CVRP), Vehicle 
Routing Problem with Pickup and Delivery (VRPPD), 
Vehicle Routing Problem with Time Window (VRPTW), 
among others. The CVRP, treated in this work, is the most 
common version of the VRP and considers a single fleet for a 
transport that leaves and returns to the unique depot. The 
restriction is limited to the vehicle’s capacity [2,3]. 
 The methods applied to solve routing problems can be 
exact, heuristic or metaheuristic and are chosen, in most 
cases, according to the size and complexity of the solution 
space [4]. The GA has been widely used in solving the VRP 
and other optimization problems due to the good results 
presented in the literature [5,6]. However, solving any 
optimization problem using GA presupposes the adoption of 
a solution encoding scheme (computational representation of 
the solution in the GA chromosome) and the configuration of 
genetic operators, which, according to the literature, directly 
impact the behavior of the population in the solution space. 
 Regarding the use of GA to solve the CVRP there are 
many works in the literature of the last decade such as [7-22]. 
However, only few works such as Lu & Vincent [9], Ruiz et 
al. [20], Hosseinabadi et al. [21], Zhu [22] and Koç et al. [23] 
have investigated the mechanisms of GA functioning. 
 Lu & Vincent [9] combined different operators and 
parameters of the GA to solve the VRPPD with flexible time 
windows. In this study, the authors explored the combination 
of different operators to maximize the quality of the solution 
found. However, they do not describe how these operators 

 
JOURNAL OF 
Engineering Science 
and Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: saraujo@uni9.pro.br 
ISSN: 1791-2377 © 2021 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.146.25 



Stanley Jefferson de Araujo Lima and Sidnei Alves de Araújo/Journal of Engineering Science and Technology Review 14 (6) (2021) 220 - 227 

 221 

impact the behavior of the GA population when exploring the 
solution space. 
 Ruiz et al. [20] employed the GA with random keys to 
solve the CVRP. For this purpose, a real-number vector 
encoding scheme was used and, for the solutions refinement, 
the authors applied local search heuristics to support the GA 
in the exploration of the solution space helping it to escape 
from local optima. Although the authors addressed elements 
about the functioning of the GA, they do not explain how the 
refinement heuristics employed impact the behavior of the 
GA. 
 Hosseinabadi et al. [21] and Zhu [22] presented hybrid 
versions of GA for CVRP solution. Hosseinabadi et al. [21] 
combined GA with the Gravitational Emulation Local Search 
- GELS Algorithm [24]. In the proposed approach, the GELS 
algorithm is used as a heuristic to refine GA solutions. 
According to the authors, the crossover and mutation 
operators are not enough to guarantee that the GA adequately 
explores the solution space, and for this reason they employed 
the GELS algorithm to strengthen the solution space 
exploration process. They also argue that the combination of 
these two algorithms produces a variety of solutions that lead 
to the exploration of a large area in the solution space, making 
the GA more efficient to escape local optima, thus obtaining 
solutions with better quality. Zhu [22] proposes an approach 
combining GA and Fuzzy C-Means Clustering techniques 
that modifies the crossover and mutation operations, so that 
these operators can be set dynamically. According to the 
author, the improved algorithm achieved good performance 
reducing the possibility of falling into local minima in the 
search process. However, both works [21, 22] do not present 
detailed explanations on how the proposed hybrid GA 
explores the solution space. 
 Koç et al. [23] presented a hybrid GA for the optimization 
of the VRPTW. In this proposal, the authors combined GA 
with the Large Neighborhood Search (LNS) heuristic 
However, although they have explored concepts of 
intensification and diversification, there are no discussions on 
the behavior of the GA population in the spaces of solutions 
produced. 
 As can be seen, most works in the literature reporting the 
use of GA to solve the VRP have focused on the hybridization 
of this metaheuristic and not on understanding the 
mechanisms that control its functioning or that explain how 
the GA population is impacted by the genetics operators and 
the solution encoding schemes. On the other hand, in recent 
years there has been increasing research efforts focused on 
mitigating the solution space in order to understand the 
difficulties of metaheuristics in solving NP-Hard problems, as 
well as exploring this knowledge to develop more efficient 
methods [25]. In this sense, some authors employ the idea of 
fitness landscape, which consists of forming a surface that 
represents the space of solutions [26]. 
 The technique used by some researchers involves 
generating several solutions and plotting the cost of these 
solutions versus the distance from the solution to the best-
known solution, to visualize the fitness landscape. 
Nevertheless, to explore the fitness landscape, other 
researchers employ projection methods to generate the 
position of each element in a two or three-dimensional space, 
such as the t-Distributed Stochastic Neighbor Embedding (t-
SNE), Fastmap, Isomap, Least Square Projection (LSP) and 
Principal Component Analysis (PCA) [27, 28]. The latter was 
used by Tayarani-n & Prügel-bennett [29] to study fitness 
landscape in the Traveling Salesman Problem (TSP). 

 Despite advances in mapping and exploring spaces of 
solutions, understanding the behavior of populations of 
metaheuristic is not an easy task, mainly due to the high 
dimensionality of such spaces and the lack of specific tools 
for this task. It is in this context that the present work is 
inserted presenting as main contributions a tool and an 
evaluation method that allow investigating the influence of 
the encoding scheme and genetic operators on the behavior of 
the GA population and, consequently, on the quality of the 
solutions provided by it. For that, experiments were carried 
out considering the GA in the CVRP solution. 
 
 
2. Theoretical Background 
 
2.1 Genetic Algorithm 
The Genetic Algorithm (GA) is an optimization method based 
on the evolutionary process, that is, it is based on Charles 
Darwin's theory of evolution of species [1]. In general, the 
operation of the GA consists of maintaining a population of 
individuals (chromosomes), initially generated randomly, 
representing possible solutions to a given problem, which 
evolve over generations (iterations) through a process of 
competition in which the best solutions (defined according to 
their aptitudes) are more likely to survive and reproduce. The 
reproduction is based on a process of selecting and modifying 
candidate solutions. For that, genetic operators such as 
selection, crossover and mutation are used [1, 2]. The 
operation of the GA is illustrated in Figure 1. 
 

 
Fig. 1. GA operation  
 
 
 A chromosome is constituted by genes, which in turn 
represent the decision variables of a problem [2,14]. Thus, 
encoding a solution means defining an architecture that 
encodes the information of the problem addressed, to allow 
the computational interpretation of the variables that define 
its solution [30], as illustrated in Figure 2. 
 

 
Fig. 2. Encoding and decoding operations 
 
 
 Although there are many operators for manipulating the 
individuals of the GA population, the main ones are: 
selection, crossover and mutation. The selection operator 
aims to choose the individuals from the population that should 
participate in the reproduction process, passing on their 
characteristics to the next generation. The selection is based 
on the fitness of each chromosome, which is calculated by an 
objective function (OF). The main selection methods are 
roulette wheel, ranking and tournament [2]. The crossover is 
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responsible for carrying out the exchange of genetic material 
between pairs of individuals (parents), that is, it consists of 
the recombination of genes from selected individuals to 
generate offspring. Finally, the mutation operator, normally 
applied after crossover, aims to increase the diversity and 
variability of the population, helping to avoid premature 
convergence of the GA (fall into local minima). Mutation can 
occur in two ways: by changing gene positions or by replacing 
allele values, as shown in Figure 3. 
 

 
Fig. 3. Crossover and mutation operations 
 
 The performance of the GA can be influenced by the 
definition of the parameters used in the configuration of its 
operators [31, 32]. However, it is very difficult to define a set 
of optimal values for such parameters that guarantee a better 
performance of the GA, since the same configuration can 
present variation of results when applied in different encoding 
schemes and problems [32]. Nevertheless, the solution 
encoding scheme is also of great importance for the good 
performance of the GA, since it is directly related to the 
quality of the solutions found, as well as the computational 
cost spent to find them [30].  
 The main encoding schemes employ vectors and matrices 
of binary, integer and reals numbers; symbols; vector of 
characters and tree structures [33]. According to Castro [34], 
there is no encoding scheme would work equally well in all 
situations. Thus, in each case a careful choice must be made 
aiming to obtain the expected result. 
 
2.2 Capacitated Vehicle Routing Problem (CVRP)  
The CVRP is the most basic version of VRP in which all 
customers have a demand defined previously and must be 
fully met by only one vehicle, the fleet is homogeneous (all 

vehicles are similar in terms of capacity) and depart from a 
single distribution center (depot). In this version of the 
problem, only the vehicle capacity constraint is imposed so 
that the sum of the demand of all customers on a route cannot 
exceed the vehicle capacity [35]. Figure 4 illustrates an 
example of a CVRP, in which 3 routes are defined to meet the 
demands of 10 spatially dispersed customers. 

 
Fig. 4. Example of a CVRP with 3 vehicles and 10 
costumers 
 
 Mathematical formalizations for the CVRP, taking into 
account its intrinsic constraints, can be found in [2, 3, 14]. 
Such formalizations are used as objective function (FO) to 
evaluate the aptitude (fitness) of the solutions generated by 
the employed optimization method. 
 
 
3. Material and Methods 
 
3.1 Instances of CVRP 
To carry out the computational experiments, we considered 
three instances (collection of data describing CVRP 
scenarios) from the set proposed by Christofides [36], which 
are detailed in Table 1. The optimal solutions (best solutions) 
for these instances were extracted from the work of Reinelt & 
Wenger [37]. 

 
Table 1. Characteristics of the scenarios described by the considered instances of CVRP 

 Instances 
E-n22-k4 E-n51-k5 E-n76-k8 

Vehicle capacity 6000 140 180 

Costumers and 
their demands 

1(0), 2(1100), 
3(700),4(800), 5(1400), 
6(2100), 7(400), 8(800), 
9(100), 10(500), 11(600), 
12(1200), 13(1300), 
14(1300), 15(300), 
16(900), 17(2100), 
18(1000), 19(900), 
20(2500), 21(1800), 
22(700) 

 

1(0), 2(7), 3(30),  16), 5(9), 
6(21), 7(15), 8(19), 9(23), 
10(11), 11(5), 12(19), 13(29), 
14(23), 15(21), 16(10), 
17(15), 18(3), 19(413), 20(9), 
21(28), 22(8), 23(8), 24(16), 
25(10), 26(28), 27(7), 28(15), 
29(14), 30(6), 31(19), 32(11), 
33(12), 34(23), 35(26), 
36(17), 37(6), 38(9), 39(15), 
40(14), 41(7), 42(27), 43(13), 
44(11),  45(16), 46(10),  
47(5), 48(25), 49(17), 50(18), 
51(10)  

 

1(0), 2(18), 3(26), 4(11), 5(30), 6(21), 
7(19), 8(15), 9(16), 10(29), 11(26), 
12(37), 13(16), 14(12), 15(31), 16(8), 
17(19), 18(20), 19(13), 20(15), 
21(22), 22(28),  23(12), 24(6), 25(27), 
26(14), 27(18), 28(17), 29(29), 
30(13), 31(22), 32(25), 33(28), 
34(27), 35(19), 36(10), 37(12), 
38(14), 39(24), 40(16), 41(33), 
42(15), 43(11), 44(18),  45(17), 
46(21), 47(27), 48(19), 49(20), 50(5), 
51(22), 52(12), 53(19), 54(22), 
55(16), 56(7), 57(26), 58(14), 59(21), 
60(24), 61(13), 62(15), 63(18), 
64(11), 65(28), 66(9),  67(37), 68(30), 
69(10), 70(8), 71(11), 72(3), 73(1), 
74(6), 75(10), 76(20) 

 
Optimal solution 375 521 735 

 
 Such instances were classified by their degree of 
optimization difficulty, as presented in the work of 
Kalatzantonakis et al. [38] and by its size taking into account 
the number of customers (𝑛 − 1) and vehicles (𝑘) indicated in 

their names. For example, the E-n22-k4 instance considers a 
CVRP scenario with 21 customers plus the depot and 4 
vehicles. According to Kalatzantonakis et al. [38], it is 
classified as low difficulty and small (few vehicles and few 
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customers). The instance E-n51-k5 was classified as medium 
difficulty and size (medium number of vehicles and/or 
customers) and, finally, the E-n76-k8 was classified as high 
difficulty and large size (many vehicles and/or customers). 
 
3.2 Encoding Schemes  
From the literature review, the most representative encoding 
schemes were identified and two of them were chosen: binary 
(three-dimensional matrix of binary numbers), since it is more 
natural for the GA and for its wide use in the literature for 
solving combinatorial optimization problems, including VRP; 
and integer (vector of integers), as it is the most recurrent in 
recent literature. The chosen encoding schemes were 
presented in Nazif & Lee [8] and in Lima et al. [14] and 
detailed below. 

 
3.2.1 Binary Encoding Scheme (BES) 
The CVRP solution encoding scheme illustrated in Figure 5 
was employed by Lima et al. [14] and by Vieira [3]. It is a 
three-dimensional matrix of binary numbers with M columns, 
N rows and depth Z, where M represents the number of 
customers to be served, N represents the customer service 
sequence and Z is defined by the number of vehicles (routes ) 
needed to meet the total demand. The column position that 
receives value 1 in each row indicates the customer to be 
visited while the row position indicates the customer's service 
order. The depth represents the vehicle assigned to serve a 
given customer. This type of encoding, although more natural 
for the GA, requires more computational instructions to 
decode the solution. 

 
Fig. 5. Operation of considered BES. Source: adapted from Lima et al. [14] 
 
3.2.2 Integer Encoding Scheme (IES) 
Nazif & Lee [8] employed a vector of integers of length N 
(see Figure 6), where N represents the number of customers 
to be served, and each element of the vector can contain an 
integer value corresponding to a customer. The sequence of 
numbers in the vector determines the customer service order 
and the set of customers that make up each route is delimited 
by the vehicle’s capacity. As illustrated in Figure 6, when the 
vehicle's capacity is exceeded, a new route is started. In 
Hosseinabadi et al. [21] a similar representation was used, 
with the only difference that each route is separated by a digit 
0. In this kind of encoding, the vector represents the 
chromosome and each element of the vector represents a 
gene. 

 
Fig. 6. Functioning of considered IES. Source: adapted from Nazif & 
Lee [8]   
 
3.3 Parameters and Genetic Operators Configurations 
In order to find out which genetic operators can most 
significantly impact the behavior of the GA, as well as define 
the rate intervals (configuration) to be used in these operators, 
preliminary experiments were carried out taking into account 
crossover rate, number of crossover points, mutation rate, 
elitism rate, population size and number of generations. 
 From these experiments it was observed that crossover 
and mutation operators have more significant impact on the 
behavior of the GA and therefore they appear in the literature 
among the main configuration parameters. In addition, as in 

Abdelatti et al. [10], the Design of Experiments (DoE) was 
employed to define the set of GA configuration parameters 
presented in Table 2. 
 
Table 2. GA configuration parameters 

Parameters Adopted 
values/rates 

Population size (popSize) 200 
Number of generations (nGer) 50 
Number of crossover points (nPoints) 1 

Crossover rate (cr) (0.50, 0.70, 
0.90) 

Mutation rate (mr) (0.01, 0.05, 
0.10) 

Elitism rate (er) 0.10 
Method of selection (metSel) roulette wheel 

 
3.4 Experimental Design 
To carry out the computational experiments, the GA was 
configured with the parameters presented in Table 2 and 
applied in the resolution of the three instances described in 
Table 1, considering BES and IES. 
 Then, using the developed tool (see section 4.1), the 
results of the experiments were analyzed, based on the 
following measures GAP, percentage of non-feasible 
solutions (PNFS), diversity (DIV), dispersion (DISP), area 
explored (AEX) and computational cost (CC), in order to 
understand the behavior of the GA population. To make a fair 
comparison, we considered the same initial population 
(generated randomly with uniform distribution) in all 
experiments presented. In addition, two individuals generated 
by Gillett & Miller heuristic [39] were inserted in the initial 
population, allowing the GA starting with two feasible 
solutions, as demonstrated in [14, 17, 18]. 
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4. Results 
4.1 Developed Computational Tool 
The computational tool employed in the experiments carried 
out in this work, illustrated in Figure 7, was developed to 
visualize and analyze the behavior of the GA population in 
the solution space. Each individual of the population is 
projected by the PCA method from a n-dimensional solution 
space to a two-dimensional space, represented by the panel at 
the right of the interface shown in Figure 7, composed by 
720×640 pixels representing the points of the projected 
solution space. 

 
Fig. 7. Computational tool interface 
 
 There are two important characteristics in the two-
dimensional space projected by the PCA: i) two similar 
solutions in the phenotype space are always mapped to 
neighboring points in the projected space and; ii) it is possible 
that two very similar solutions in the genotype space are 
mapped to the same point in the projected space since the 
dimensionality reduction is very drastic. 
 Regarding the layout of the computational tool, the left 
panel displays two graphs plotted at runtime. The first 
presents the measure of aptitude or fitness, the explored area 
and the percentages of feasible and non-feasible solutions. 
The second graph illustrates the accuracy, stability, dispersion 
and diversity of the population. Such measures are presented 
further in this section.  
 The tool also has a status bar, located at the top, which 
displays the parameters employed by GA such as: encoding 
scheme, population size, number of generations, current 
generation, number of feasible individuals inserted in the 
initial population, crossover rate, mutation rate, elitism and 
the objective function value of the best solution found in the 
literature for the instance (“Best solution” corresponds to 
OF_best used to calculate the GAP). Still in the status bar are 
shown the computational cost (time in seconds between the 
beginning and the end of the GA execution in the optimization 
of an instance) and the values calculated during the GA 
execution for 8 different measures, listed below, being the 
first 4 extracted from the literature and the last 4 proposed in 
this work.  
 
• Accuracy (ACC): aims to determine the location of the 

best solution found, within the range defined by a lower 
limit representing the worst solution found and an upper 
limit, indicated by the best solution known in the literature 
[40].  

• Diversity of the population (DIV): expresses, through a 
value ranging from 0 to 1, the diversity of the population. 
Value 0 indicates that all individuals in the population are 
similar while value 1 indicates that all individuals are 
completely different.  

2. Stability (STA): indicates how much the algorithm is 
able to maintain its stability. A stable algorithm 
maintains accuracy for countless generations [40].  

• GAP: expresses how far the result obtained for a problem, 
denoted by 𝑂𝐹	(objective function value), is from the best 
result reported in the literature for that problem, 
represented by (𝑂𝐹!"#$). It is calculated as follows:  GAP 
= (OF - OF_best) / OF_best.  

• Area explored (AEX): reflects, through a rate ranging 
from 0 to 1, the percentage of the area of the solution 
space is explored during the execution of the GA. The 
higher the rate, the greater the area explored, indicating 
that the algorithm was more likely to explore more 
promising points. To compute this measure, the two-
dimensional projected solution space is divided into 2,500 
subregions (50 columns × 50 rows). Then, the number of 
subregions explored by one or more individuals mapped 
by PCA over all generations is divided by the total number 
of subregions. 

• Dispersion (DISP): describes how dispersed the 
individuals of the population are, that is, the greater the 
average dispersion, the greater the area explored in the 
solution space. For that, a distance matrix is calculated, 
and the average distance value is normalized to the 
interval [0, 1].  

• Percentage of feasible solutions (PSF): expressed 
through a rate ranging from 0 to 1, it reflects the capacity 
of the GA in converting non-feasible solutions in feasible 
ones. The Percentage of non-feasible solutions (PNSF) 
is obtained simply making 1- PSF. 

• Percentage of suboptimal solutions (PSS): this measure 
reveals, through a rate, the percentage of suboptimal 
solutions in the population. Here, suboptimal solutions are 
those with 𝐺𝐴𝑃	£		0,10.  

 
 The results generated by the tool are recorded in a text file 
in CSV (Comma Separated Values) format that can be read in 
Microsoft Excel spreadsheet software, and in video using AVI 
(Audio Video Interleave) format, facilitating an in-depth and 
detailed analysis of the populations’ behavior. 
 Finally, it is noteworthy that although the computational 
tool provides several performance measures, some of them 
describe the behavior of the GA in a similar way. Thus, we 
decided to consider only the GAP, DIV, AEX and 
computational cost. 
 
4.2 Analysis of the Behavior of the GA Population 
This section presents a general analysis of the behavior of the 
GA population, based on the comparison of measures that 
sharply highlight the differences observed in the use of the 
two encoding schemes and the configuration parameters 
presented in sections 3.2 and 3.3 respectively. The results 
obtained in the experiments are summarized in Table 3, which 
contemplates the average values for the performance 
measures considered. The values highlighted in blue indicate 
the best performances of the GA while the values in red 
indicate its worst performances. The graphs of figures 8 to 11 
were provided to help understanding these results. 
 In relation to the average GAP, it is observed in the graph 
of Figure 8 that, in general, in all the experiments, the IES 
presented GAPs smaller than those obtained by BES. In this 
context, employing IES, the experiment using (cr = 0.7 and 
mr = 0.01) resulted in the best average GAP (0.22). 
Nevertheless, using BES the best average GAP (0.37) was 
obtained in the experiment adopting (cr = 0.9 and mr = 0.01). 
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Table 3. Summarized results 

GA 
configuration 
parameters  

BES IES 

cr mr GAP  DIV AEX GAP  DIV AEX 
0.5 0.01 0.43 0.28 0.09 0.23 0.70 0.33 
0.5 0.05 0.48 0.28 0.11 0.24 0.73 0.34 
0.5 0.10 0.52 0.29 0.11 0.24 0.69 0.35 
0.7 0.01 0.38 0.28 0.12 0.22 0.71 0.33 
0.7 0.05 0.44 0.29 0.13 0.24 0.74 0.35 
0.7 0.10 0.45 0.29 0.13 0.23 0.70 0.38 
0.9 0.01 0.37 0.24 0.08 0.25 0.71 0.30 
0.9 0.05 0.43 0.24 0.09 0.26 0.73 0.31 
0.9 0.10 0.45 0.24 0.09 0.25 0.69 0.34 

 
 On the other hand, the worst performance of the GA 
regarding the average GAP in the IES was obtained in the 
experiment using (cr = 0.9 and mr = 0.05), in which the value 
of 0.26 was obtained, while in the IES it was obtained the 
value 0.52 in the experiment adopting (cr = 0.5 and mr = 
0.10). 
 

 
Fig. 8. Average GAP 
 
 The IES also favored the performance of the GA in terms 
of diversity (DIV), as shown in the graph in Figure 9, in which 
it is noted that in all experiments with the IES resulted in a 
greater population diversity than that obtained by using BES. 
IES provided the best performance of the GA in the 
experiment using (cr = 0.7 and mr = 0.05) reaching a 
maximum diversity of 0.74 and the worst performance in the 
experiments adopting (cr = 0.5 and mr = 0.10) and (cr = 0.9 
and mr = 0.10) in which the maximum diversity was 0.69. 
BES presented the best performances in the experiments 
using (cr = 0.5 and mr = 0.10), (cr = 0.7 and mr = 0.05) and 
(cr = 0.7 and mr = 0.10) in which a maximum diversity of 
0.29 was reached. The worst performances for BES were 
observed in the experiments adopting (cr = 0.9 and mr = 0.01), 
(cr = 0.9 and mr = 0.05) and (cr = 0.9 and mr = 0.10), where 
a maximum diversity of only 0.24 was obtained. 
 

  
Fig. 9. Maximum diversity 

 
 About the average area explored (AEX), it is observed in 
the graph of Figure 10 that in this aspect the GA also obtained 
a better performance using IES, which presented its best 
performance adopting (cr = 0.7 and mr = 0.10), in which was 
reached the value of 0.38. On the other hand, in the 
experiment adopting (cr = 0.9 and mr = 0.01) IES presented 
the worst performance, obtaining 0.30 of average explored 
area. BES, in terms of this measure, presented the best 
performance in the experiments using (cr = 0.7 and mr = 0.05) 

and (cr = 0.7 and mr = 0.10), obtaining 0.13 of average 
explored area, and the worst performances in the experiment 
employing ( cr = 0.9, mr = 0.01), in which 0.08 was obtained 
for the referred measure. 
 The low values presented in the explored area for the BES 
can be explained by the fact that it is a very sparse encoding 
scheme, which results in a very large space of solutions. On 
the other hand, IES, that is more compact and can be 
understood as a more direct representation of the solution, 
produces smaller spaces of solutions. 

 

 
Fig. 10. Average area explored  
 
 Regarding the computational cost, the graph illustrated in 
Figure 11 shows the average processing time (in seconds) for 
the two encoding schemes, considering the three instances 
presented in section 3.2. From this graph one can observe that 
IES presented a computational cost equivalent to only 10.27% 
of the cost achieved by using BES. In this sense, although the 
BES presents greater simplicity in the operations performed 
because it is more “natural” for the GA, since it is sparse and 
requires more operations in the solution decoding, it demands 
a high computational cost. 

 
 

 
Fig. 11. Average computational cost 
 
 
 From the results achieved in the experiments, it is possible 
to infer that in the BES scheme the rates used in the crossover 
and mutation operators impact several aspects of the GA. It 
was observed that high crossover rates (for example, mr = 0.9) 
provide better GA performance in terms of convergence, 
however such rates imply a high number of non-feasible 
solutions. A medium crossover rate (e.g. cr = 0.7) provides a 
larger area explored in the solution space while low crossover 
rate (for example, cr = 0.5) produced a better performance of 
the GA in terms of the ability to transform non-feasible 
solutions into feasible ones, in increasing population diversity 
and population dispersion. 
 It was also observed that low mutation rates (e.g. mr = 
0.01) provide a better performance of the GA in terms of 
convergence, ability to convert non-feasible solutions into 
feasible ones and population diversity. On the other hand, 
high mutation rates lead to a better performance of the GA in 
relation to population dispersion, as well as in the explored 
area. 
 In this context, it appears that it is possible to obtain good 
performance from the GA using BES, combining it with 
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heuristics that reinforce the negative aspects caused by the 
configuration of genetic operators. For example, when 
employing a high crossover rate, it is suggested to adopt a low 
mutation rate and/or local search heuristics, with the objective 
of helping the GA in transforming non-feasible solutions into 
feasible ones, as well as heuristics that enable the GA to 
explore a larger number of regions, such as ILS (Iterated 
Local Search), (Simulated Annealing) and GRASP (Greedy 
Randomized Adaptive Search Procedure) [11]. On the other 
hand, when employing a low crossover rate, one should 
consider the use of heuristics to support the GA in the GAP 
evolution process, as well as heuristics that promote increased 
diversity and population dispersion. 
 When employing low mutation rates (for example, mr = 
0.01) it is recommended to employ diversification heuristics 
with the purpose of increasing diversity, being an alternative 
to dynamically increase the population size, or even replace a 
part of the population by randomly generated individuals, 
with the purpose of increasing the diversity and dispersion of 
individuals in the population, promoting an exploration of the 
space of solutions with greater amplitude. 
 In the IES, the rates adopted in crossover and mutation 
operators subtly impact on some aspects of the GA. The 
results reveal that high crossover rates (e.g. cr = 0.9) help to 
maintain some population diversity and dispersion. On the 
other hand, a low crossover rate (cr = 0.5) favors convergence, 
as well as promoting a better performance of the GA in 
converting non-feasible solutions into feasible ones, in 
addition to increasing the distance between the solutions, 
resulting in a greater number of sub-regions explored in the 
solution space. However, a low crossover rate (e.g. cr = 0.5) 
provides a subtle improvement in convergence, in addition to 
resulting in the conversion of non-feasible solutions into 
feasible ones with fewer generations, as well as a greater 
distance between the solutions in the search space, resulting 
in a larger area explored. 
 In addition, when applying a high mutation rate, it is 
recommended to employ refinement heuristics that help the 
GA in the process of improving the GAP as well as improving 
its ability to convert non-feasible solutions into feasible ones, 
and, when adopting low mutation rates, it is suggested employ 
diversification heuristics that help the GA to carry out a more 
dispersed exploration through the solution space, in addition 
to maintain diversity and dispersion of the population at high 
levels. 
 To improve the GA performance using IES, it is 
recommended to combine crossover and mutation operators 
with additional heuristics that compensate the adverse aspects 
caused by the configuration adopted. It is also recommended 
to employ diversification heuristics that help the GA to make 
“jumps” in the solution space aiming to explore sub-regions 
that may be more promising. 
 Making a general analysis of the results obtained in the 
experiments, it can be seen that the crossover and mutation 
rates have a different impact on the GA performance 
depending on the solution encoding scheme adopted. The 

results also revealed that the encoding scheme adopted has a 
more significant impact on the behavior of the GA population 
than the crossover and mutation rates alone. These analyses 
corroborate the insights of the literature with regard to the 
need for great care in choosing of the solution encoding 
scheme as well as the configuration of the genetic operators, 
since an inadequate parameterization can significantly impair 
the performance of the GA in obtaining the expected results.  
 The results also showed that, even though GA is an 
effective, robust and flexible metaheuristic, it is 
recommended to combine it with other heuristics to solve NP-
Hard problems, aiming to overcome its critical aspects. Thus, 
the discussions presented in this work can be of great 
importance to support research involving the application of 
GA in the solution of the CVRP and other VRP variants.  

 
 

5. Conclusions 
 
The results of the experiments carried out showed that 
crossover and mutation rates impact the GA differently 
depending on the solution encoding scheme adopted, and that 
the encoding scheme acts more significantly on GA behavior 
than crossover and mutation rates alone. The results also 
showed that the binary encoding scheme is less efficient in 
terms of converting non-feasible solutions into feasible ones, 
in addition to producing low population diversity, making the 
convergence of the GA difficult. In the other hand, integer 
encoding schemes are efficient in generating feasible 
solutions, as well as in providing good population diversity, 
thus helping the algorithm convergence process. Perhaps it is 
for this reason that this type of encoding has been widely used 
in current works, although this explanation is not provided in 
such works. Finally, in addition to the discussions on the 
analysis of the GA behavior, the performance measures 
provided here and incorporated in the developed 
computational tool can help in the proposition and/or choice 
of heuristics that aim to support the process of refining the 
solutions generated by the GA, improving its performance. In 
feature works we intend to analyze other encoding schemes, 
as well as other genetic operators; produce a set of rules to 
compose a Fuzzy inference mechanism responsible for the 
reconfiguration of the GA at runtime; and evaluate the 
performance of the GA using the mentioned Fuzzy inference 
mechanism. 
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