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Abstract 
 

Graph coloring is an important research field in graph theory. In vertex sum distinguishing total coloring, the constraint 
condition, that is, the color sum of each vertex is different from that of its associated edges is added on the basis of the 
normal total coloring. A novel algorithm was designed to increase the vertex sum distinguishing total coloring effciency. 
Subobjective functions were designed according to the vertex constraint, edge constraint, vertex-edge constraint, and 
vertex-edge sum constraint to improve the vertex sum distinguishing total coloring efficiency of random graphs. In each 
subobjective function, iterative swap was performed step by step using the coloring matrix and color set complement, in 
which the conflict was handled following the idea of impressed variation, thereby realizing the vertex sum distinguishing 
total coloring of random graphs. In the end, the lower bound of chromatic number in the vertex sum distinguishing total 
coloring was proven through the theoretical analysis and experimental comparison. Results demonstrate that when the 
order of a graph is smaller than 1000 and the edge density is smaller than 0.1, the conflict handling function can be 
converged at a high rate. When the order of the graph is greater than 1000, the convergence rate of the algorithm declines 
rapidly, and the accurate coloring result can be obtained only by increasing the coloring quantity, indicating that the 
vertex sum distinguishing total chromatic number of a connected graph with the order of not smaller than 3 ranged from 
μ∑t(G) to μ∑t(G)+3. This finding is consistent with the algorithm analysis result. On this basis, this algorithm can 
effectively complete the vertex sum distinguishing total coloring of random graphs, and its time complexity does not 
exceed O(n3). The proposed algorithm provides evidence for exploring complex networks, transportation, and network 
security. 

 
 Keywords: Multiobjective optimization, Vertex sum distinguishing total coloring, Vertex sum distinguishing total chromatic number, 

Objective function  
 ___________________________________________________________________________________________ 
 
1. Introduction 
 
Graph coloring is a very classical problem in the field of 
graph theory. Competition arrangement, network 
communication problem, curriculum schedule arrangement 
problem, material storage problem, printed circuit board 
(PCB) design, and index register design can be converted 
into the graph coloring problem for solving [1-6]. Thus, the 
research on graph coloring has great theoretical and realistic 
significance. Ordinary intelligent algorithms are suitable for 
the graph coloring problem based on single-objective 
optimization. However, they have deficiencies and 
limitations when used to solve the graph coloring problem 
under multiple restrictive conditions. Therefore, rapidly and 
efficiently obtaining multicondition constrained coloring 
results is a key problem to solve. 

The present studies on graph coloring mainly include 
theoretical and algorithm studies. In recent years, many 
scholars all over the world have carried out extensive 
theoretical studies on graph coloring. Various concepts and 
conjectures, such as adjacent vertex distinguishing edge 
coloring, vertex distinguishing edge coloring, adjacent 
vertex distinguishing total coloring, and vertex 

distinguishing total coloring, are successively proposed [7-
12]. However, the graph coloring problem is an NP-
complete problem. At present, public intelligent algorithms 
[13-15], such as genetic algorithm (GA), ant colony 
algorithm, and simulated annealing algorithm, show very 
good execution efficiency when solving the graph coloring 
problem with small scale and low complexity. However, 
they can be easily caught in local optimum, accompanied by 
a high calculation cost. GA is initially used to generate 
initial solutions, followed by the variable-field search 
through tabu search algorithm to update the vertex coloring 
given their characteristics [16], thereby accelerating the 
algorithm search. Nevertheless, these coloring algorithms 
have very great limitations when faced with the graph 
coloring problem under multiple constraint conditions, such 
as vertex sum distinguishing total coloring. Multiobjective 
optimization aims to solve the optimization problem 
containing multiple objective functions and constraint 
conditions. The multiobjective optimization was applied to 
vertex sum distinguishing total coloring of graphs. This 
problem was divided into multiple subproblems 
corresponding to respective coloring conditions. A 
subobjective function vector and a decision space were set 
for each subproblem. Moreover, each subobjective function 
gradually obtained the optimal solution in the color 
exchange process, finally enabling the total objective 
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function to satisfy the requirements for vertex sum 
distinguishing total coloring of graphs. 

 
 

2.  State of the art 
 

Graph coloring is a very active research subject in graph 
theory. Since Burris [17] proposed the concept of edge 
distinguishing edge coloring of graphs, it has been 
extensively investigated by a number of domestic and 
foreign scholars[18-21]. Flandrin [12] et al. studied the 
adjacent sum distinguishing edge coloring problem of graphs 
and proposed a conjecture for a connected graph G(≠G5) 
containing at least three vertexes, i.e.,  . 
Pilsnisk [22] et al. put forward the concept and conjecture of 
adjacent sum distinguishing total coloring, namely, 

  held true for a simple graph with the orders 
of at least three. They proved that this conclusion was also 
true in complete graphs, circles, and bipartite graphs. Dong 
and Wang [23] proved that the conjecture of adjacent sum 
distinguishing total coloring was also true for sparse graphs. 
Cui F X, Yang C, and Ye H B [24] et al. studied the adjacent 
vertex sum distinguishing total coloring of joint graphs and 
obtained the precise values of the adjacent vertex sum 
distinguishing total chromatic numbers in three types of joint 
graphs, such as road–road, road–circle, and circle–circle. 
Tian S L and Yang H [25] et al. obtained the precise values 
of the adjacent sumdistinguishing edge chromatic numbers 
for the lexicographic product Pn[H] of a path Pn and a 
connected simple graph H. The graph coloring problem is an 
extensively studied combinational optimization problem, 
which receives high attention from a number of researchers. 
The methods used to solve the graph coloring problem are 
mainly divided into two types, namely, heuristic method and 
accurate computation method, where the former mainly 
includes greedy method, local search method, and hybrid 
evolution method. For instance, Basmassi and Benameur 
[26]et al. combined a heuristic algorithm with an intelligent 
algorithm, used the greedy sequential algorithm to solve the 
genetic operator and correct the unrealizable solution after 
crossover and mutation, upgraded the population by 
improving the coloring quality of chromosomes, and 
improved the algorithm convergence rate. This hybrid 
algorithm achieved the expected coloring result in solving 
the vertex coloring and edge coloring problems of graphs. 
Sun W and Hao J K [27] et al. combined the coarsening 
procedure with the refinement procedure to improve the 
coarse graph through a refinement program, ensuring that 
the graph could be continuously improved in the coarsening 
phase. In addition, the designed weight tabu coloring 
algorithm showed excellent operating efficiency in weight 
graphs especially sparse graphs. However, when the graph 
density was increased, its operating time presented an 
exponential increasing trend. Artacho and Campoy [28] 
improved the Douglas–Rachford algorithm and used the 
overall programing formula to calculate the binary index 
variables and effectively solve the problem, that is, the 
algorithm could be easily caught in a limit cycle. This 
algorithm showed good performance in solving the graph 
precoloring problem, but its operating efficiency was related 
to the selection of starting point. If the starting point was 
inappropriately selected, then the algorithm convergence 
could be slow, with long execution time. Arindam [29] et al. 
applied the improved GA to the total coloring of a graph, 
used a new coding scheme to express the vertex and edge of 
the graph, and determined the total chromatic number of the 

graph through the greedy algorithm as the fitness value of 
chromosomes to accelerate the algorithm convergence. This 
algorithm could acquire the coloring results of standard 
graphs rapidly. The accurate computation method is mainly 
represented by the backtracking method and branch and 
bound method. The branch and bound algorithm based on 
the heuristic algorithm DSATUR is effective in accurately 
solving vertex coloring, but its lower bound can be 
calculated only once without updating. To solve this 
problem, Furini and Ternier [30] et al. introduced reduced 
graph to calculate the lower bound of the branch node. For 
high-density vertex coloring, these bound methods shorten 
the operating time and reduce the number of nodes. On the 
contrary, for medium and low-density vertex coloring, the 
bound technique can only effectively reduce the number of 
explored nodes. However, it fails to effectively shorten the 
operating time. The studies on graph coloring problem are 
mainly concentrated on vertex coloring and edge coloring. 
Other coloring problems have also been investigated. For 
example, Li J W [31-32] et al. studied vertex distinguishing 
total coloring of graphs and effectively solved the vertex 
distinguishing total chromatic number of a random graph 
with the given number of vertexes. The time complexity of 
this algorithm did not exceed O(n3). 

The domestic and foreign studies on the vertex sum 
distinguishing total coloring of graphs are still in the initial 
stage. The vertex sum distinguishing total coloring 
algorithms for graphs have been rarely involved. The 
constraint conditions for the vertex sum distinguishing total 
coloring of graphs are much more complicated than vertex 
coloring and edge coloring. However, the traditional 
intelligent algorithms are suitable to solve vertex coloring 
and edge coloring with low complexity, but cannot solve the 
vertex sum distinguishing total coloring problem of graphs. 
The research idea of the multiobjective optimization was 
combined to convert the coloring conditions of the algorithm 
into multiple subobjective functions. Subsequently, the 
conflict of coloring conditions was handled using the idea of 
pre-exchange and mutation. Subsequently, the solution space 
was searched by means of stepwise optimization, thereby 
accelerating the algorithm convergence. 

The remainder of this study is organized as follows: the 
concept of vertex sum distinguishing total coloring, the 
subobjective functions of vertex sum distinguishing total 
coloring algorithm, and the relevant algorithm design are 
described in Section 3. In Section 4, the experimental results 
and algorithm analysis are presented. In the last section, the 
entire paper is summarized, and conclusions are drawn. 
 
 
3.  Methodology  
 
3.1 Related definitions  
For any undirected graph G(V,E), V(G) stands for the vertex 
set of graph G, E(G) is the edge set of graph G, C(u) 
represents the color set used by the vertex u and its 
associated edges in graph G, and  denotes the 
complement for the color set of the vertex u. On this basis, 
the related definitions in the coloring of graph G are as 
follows: 

Definition 1 [12]: For graph G(V,E), the mapping f: 
E(G)→{1,2,…,k}enables f(e) ≠ f(e’) any adjacent edges e 
and e', and then f is called a k-normal edge coloring of G, 
abbreviated as k-PEC. 

( ) ( ) ( ) 2G G GcD £ £ D +å

( ) ( ) 3G Gc £ D +

( )C u
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Definition 2 [12]: For graph G(V,E),the mapping 
f:  satisfies the following 
conditions: 

1) ,  and ; 
2) ,  

then f is referred to as a k-normal total coloring of G, 
abbreviated as k-PTC.  =min {k| k-PTC for G} is 
called the total chromatic number of G. 

Definition 3 [12]: For a simple connected graph G(V,E) 
with the orders of not less than 2, if the mapping f: V(G)∪
E(G)→{1,2,…,k} satisfies the following conditions:  

1) , , and ; 
2) ,  and  

then f is regarded as k-adjacent vertex sum distinguishing 
edge coloring of G, abbreviated as k-NSDEC. = min {k| 
K-NSDEC for G} is considered the adjacent vertex sum 
distinguishing edge chromatic number of G. 

Conjecture 1 [12]: For a connected graph with the 
orders of at least three but not reaching five, the following is 
true: 

 
                              (1) 

 
where △(G) is the maximum number of degrees of 
the graph. 

Definition 4 [27]: For a simple connected graph 
G(V,E) with the orders of not less than two, if the mapping f: 
V(G)∪E(G)→{1,2,…,k} satisfies the following:  

1) , v≠w, and f(uv)≠f(uw); 
2) , f(u) ≠f(v), f(v)≠f(uw)，f(u)≠f(uw) 
3) , S(u)≠S(v),  

then f is called the k-adjacent vertex sum distinguishing total 
coloring of G, abbreviated as k-NSDTC. = min {k| K-
NSDTC for G} is considered the adjacent vertex sum 
distinguishing total chromatic number of G. 

Definition 5: For a simple connected graph G(V,E) 
with the orders of not less than two, if the mapping f: 

 satisfies the following: 
1) , v≠w, and f(uv)≠f(uw); 
2) , f(u) ≠f(v)，f(v)≠f(uw)，f(u)≠f(uw) 
3) , S(u) ≠S(v),  

then f is referred to as k-vertex sum distinguishing total 
coloring of G, abbreviated as k-VSDTC. = min {k| K-
VSDTC for G} is the vertex sum distinguishing total 
chromatic number of G. 

Conjecture 2: For a random connected graph G with 
the orders of not less than three, the following condition is 
satisfied: 

 

                     (2) 
 

where  and  

 

d1<d2<...<dl represents the different degrees of vertexes in 
the graph G, and nj is the number of vertexes with the degree 
of dj. 
 
3.2 Establishment of constraint functions 
The definition of vertex sum distinguishing total coloring 
graphs indicates that this algorithm must satisfy the 
following constraint conditions: (a) color difference between 
adjacent edges; (b) color difference between adjacent 
vertexes; (c) color difference between vertex and its 
associated edges; (d) the color sum of all vertexes in the 
graph is unequal. According to these constraint conditions, 
the constraint functions are defined as follows: 
 
3.2.1 Edge constraint function 
The mapping f: E(G)→{1,2,…,k} exists for graph G(V,E), 
and the edge constraint function is defined as follows: ei,ej∈
E(G) is set, and ei  and ej  are adjacent edges; moreover, 
 

                  (3)
 

 
Then: 

 

               (4)
 

 
F1(ei,ej) denotes the number of edges that do not satisfy 

the constraint condition (a), which is satisfied when and only 
when F1(ei,ej)=0. 

 
3.2.2 Vertex constraint function 
The mapping f: E(G)→{1,2,…,k}exists for graph G(V,E), 
and the vertex constraint function is defined as follows, 
where uv∈E(G) is set: 
 

                     (5) 

 
Then: 
 

                      (6) 

 
F2(u,v) stands for the number of vertexes that do not 

satisfy the constraint condition (b), which is satisfied when 
and only when F2(u,v)=0. 

 
3.2.3 Vertex–edge constraint function 
The mapping f: {V(G),E(G)}→{1,2,…,k} exists for graph 
G(V,E), and the vertex–edge constraint condition is defined 
as follows, where uv∈E(G) is set: 

 

 
     (7) 

 
Then: 

 

                    (8) 
 

F3(v,e) represents the number of vertexes that do not 
satisfy the constraint condition (c), which is satisfied when 

( ) ( ) {1,2,..., }E G V G kÈ ®
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and only when F3(v,e)=0. 
 

3.2.4 Vertex sum constraint function 
The mapping f: {V(G),E(G)}→{1,2,…,k} exists for graph 
G(V,E), and   is set as the color sum of the 
associated edges of the vertex u. The vertex sum constraint 
function is defined as follows: 
For any u,v∈V(G), the following are set: 
 

                         (9)
 

 
Then: 

 
                        (10)

 
 

F4(u,v) denotes the number of vertexes that do not 
satisfy the constraint condition (d), which is satisfied when 
and only when F4(u,v)=0. 

 
3.2.5 Total objective function 
 

                            (11) 
 

stands for the number of vertexes that do not satisfy the 
four coloring conditions, and the coloring succeeds only 
when . 
 
3.3 Algorithm design and description 
Algorithm 1: generating a simple random connected 
graph 
Input: non-isomorphic simple connected subgraphs with 
minimum edges 
Output: adjacency matrix of graph G 
Step 1) The number of vertexes (n) of graph G is input, as 
well as the matrix Cn*n with n vertexes constituting an 
underlying graph; it refers to all non-isomorphic connected 
graphs containing n-1 edges and n vertexes. 
Step 2) The set N[]is used to number the positions with the 
value of 0 above the main diagonal of color[][]. Without 
considering the situation of isomorphic graphs, sum=2m-1 n-
vertex random graphs can be generated by this underlying 
graph, and each graph corresponds to one element in the set 
T={0,1,…,sum}. 
Step 3) The symmetric numbers are determined by 
considering the counter-diagonal matrix as the axis of 
symmetry and then save them in the array sysN[], which is 
inverted and spliced to the tail part of sysM[], where the 
number 2 is saved in sysN[1]. 
Step 4) The value 1 is set at the corresponding position in 
the matrix, thereby generating a random graph based on the 
present underlying graph. The random graph Cn*n based on 
this underlying graph can be obtained by such a cycle. 
Algorithm 2: edge coloring algorithm 
Input: adjacency matrix Cn*n  of the graph 
Output: normal edge coloring matrix 
Step 1) Random coloring of the adjacency matrix in graph G 
is performed. The complement comset[]and sorted collection 
manyc[]are obtained according to the C after coloring, where 
the former stores the colors that do not appear at the edges 
associated with the vertex , and the vertexes are saved in 
manyc[] in a descending order according to the color set 
complement. 

Step 2)   is set, and 
whether the value of color[0][0] is 0 is determined; if yes, 
then the subobjective function is F1=0, and the algorithm 
ends; otherwise, proceed to Step 3). 
Step 3) vertex u is removed from manyc[] in a certain order 
and compared it with the vertex v. When an edge exists 
between the two vertexes, color[u][v] ≠0, comset[u][] ∩ 
comset[][v] ={a1,a2,…,ai}, where ai represents the color i (i 
is an integer from 1 to k). The edge uv is colored into the 
color , and comset[u][] and comset[][v] are simultaneously 
altered. When each vertex is compared with all the vertexes, 
except the last vertex in manyc[], the one round of 
transformation is completed. 
Step 4) The value of color[0][0] after one round of 
transportation is recalculated. If the value is 0, then the 
algorithm ends; otherwise, a new sorted collection manyc[]is 
regenerated according to the updated color set complement 
comset[][], proceed to Step3), and the next round of 
adjustment is performed. 
Algorithm 3: detect and handle vertex-edge color sum 
conflict 
Input: adjacency matrix Cn*n of normal edge coloring of 
graph G 
Output: the adjacency matrix after the color sum conflict of 
graph G is handled 
Step 1) The color sum colorSum[]of associated edges of 
each vertex is calculated, whether colorSum[i]=colorSum[j] 
exists is judged; if yes, then proceed to Step 2); otherwise, 
no color sum conflict is found in the present coloring result, 
and then the algorithm ends. 
Step 2) The vertexes are pre-exchanged with those not 
adjacent to the vertexes with different color sums once, the 
conflict pairs after the exchange are calculated, the exchange 
vertexes with the minimum conflict pair (cf_i) are 
determined and marked, and the concrete exchange process 
is described as follows: 
Step 2.1) The vp(p≠i,j) that satisfies the conditions for the 
vertex vi is determined, and colorSum[vi]≠colorSum[vp] and 
color[vi][ vp]≠ 0 are required. 
Step 2.2) If the color set complements , then the 
pre-exchange cannot be performed, and cf_i = n*n. 
Step 2.3) If the color set complements , then all 
the color sum conflict pairs cf_i are calculated after the 
common colors in the color set complement comset[vp][mm] 
are exchanged with those in the edge color set comset[vp][vi], 
and the present vertex is marked as vp. 
Step 2.4) All the vertexes that satisfy the conditions are pre-
exchanged, and then the minimum color sum conflict pair 
cf_i is obtained. 
Step 3) The vertex vj is pre-exchanged with the other 
adjacent vertexes with different edge color sums except for 
vi, and the conflict pair cf_j  is calculated after the exchange. 
Step 4) The total color sum conflict pairs cf＿i and cf＿j are 
used to judge after the exchange, and the locally optimal 
exchange is implemented, specifically as follows: 
Step 4.1) If cf_i=cf_j=n*n and , then 
exchange vi and vj, i.e., color[vi][vj]=color[vj][vi]=a1, and 
then simultaneously alter  and . 
Step 4.2) If cf_i=cf_j=n*n, and  is φ or  is φ, then the 
exchange follows the idea of impressed variation; 
Step 4.3) If cf_i=cf_j=n*n  and , then the 
present vertexes with color sum conflict is skipped, and the 
next pair of vertexes with color sum conflict is determined; 
Step 4.4) If cf_i≤cf_jand it is unequal to n*n, then the 
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exchange in Step (2) is completed; 
Step 4.5) If cf_j≤cf_iand it is unequal to n*n, then the 
exchange in Step 3) is completed; 
Return to Step 1) and retest whether any edge color sum 
conflict exists. 
Algorithm 4: vertex sum distinguishing total coloring 
algorithm 
Input: orders n of the graph G 
Output: vertex sum distinguishing total coloring matrix of 
the graph G 
Step 1) An initial adjacency matrix Cn*n  of the graph G is 
generated using Algorithm 1 according to the orders n; 
Step 2) The edge coloring of the graph G is completed 
according to Algorithm 2, and Step 3) is performed after the 
coloring succeeds; 
Step 3) The color sum of the associated edges of each vertex 
is calculated, and the vertex–edge color sum conflict is 
adjusted using Algorithm 3; 
Step 4) The vertexes are colored using each color set 
complement; 
Step 5) The color sum of each vertex and its associated 
edges are calculated, and the vertex total color sum conflict 
is adjusted through the Algorithm 3. 

 
 

4 Result analysis and discussion 
 

4.1 Algorithm test 
According to these algorithm steps, the 10-vertex graph G is 
considered to provide the test results. 
Step 1) A random graph is generated 

According to the Algorithm 1, a underlying graph is 
selected from the underlying graphs of 10-vertex  . On this 
basis, a random graph is generated as the original graph for 
algorithm testing, and the initial matrix of 10-vertex simple 
connected graph is shown in Fig.1. 

 

 

Fig. 1.  Initial Matrix of Graph G 
 
The degree sequence of each vertex is calculated, as 

shown in Table 1: 
 

Table 1. Number of Vertexes under Each Degree in Graph 
G 
Degree 9 8 7 6 5 4 3 2 1 
Number of vertices 2 1 3 3 1 0 0 0 0 

 
Step 2) Edge coloring of graph G 

Fig.1 and Table 1 show that over two vertexes with the 
maximum degrees are adjacent in graph G. Thus, the 
minimum color number required is color_n=△ +2=11. 
color_n++ is executed because the color sum is equal among 
multiple vertexes during the final total color sum adjustment, 
followed by the edge coloring of graph G using 

color_n=12colors according to the coloring rule of the 
Algorithm 2. In addition, the conflict is handled by invoking 
rules until F1=0. The normal edge coloring results are 
displayed in Fig.2 and Table 2. 

 

  

 
Fig. 2.  Coloring Results after Edge Coloring of Graph G 

 
Table 2. Vertex Color Sum after Edge Coloring 
vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 
Sum of colors 54 32 53 34 32 40 35 50 41 15 
 
Step 3) Edge color sum conflict is adjusted according to 
Algorithm 3 (edge color sum conflict adjustment algorithm) 

All vertexes in graph G are reranked in a descending 
order according to the number of elements in the color set 
complement, and then the sorted collection 
manyc[]={v10,v2,v5,v7,v4,v6,v9,v8,v1,v3}is obtained. The color 
sum conflict pairs are sought from ; the first conflict pair 
(v2,v5) is obtained, v2 is pre-exchanged with the other 
vertexes to obtain the minimum conflict pair cf_i =1, and the 
exchange point is v6. Similarly, v5 is exchanged with the 
other vertexes to obtain the minimum conflict pair cf_i=2, 
and the exchane point is v8. As v6 and v8 share a common 
color 6, the edge colors of v6 and v8 are exchanged, whether 
edge color sum conflict exists is tested. The adjusted 
coloring results are presented in Fig.3. 

 

 

Fig. 3.  Coloring Results after Edge Color Sum Conflict Adjustment in 
Graph G 
 
Table 3. Vertex–Edge Color Sum after Edge Color Sum 
Conflict Adjustment in Graph G 
vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 
Sum of colors 54 29 53 38 32 37 39 50 41 15 

As shown in Table 3, the edge color sum varies from 
vertex to vertex, and the adjustment of edge color sum 
conflict is completed. 
Step 4) Vertex coloring 

The color set complement of each vertex is shown in 
Table 4. 

 
Table 4. Statitical Table of Color Set Complements after 
Normal Edge Coloring of Graph G 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 0 0 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0

1 0 1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 1 1 0
1 0 1 1 0 1 0 1 1 0
1 0 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0 0
1 1 1 0 1 0 0 1 0 0

v v v v v v v v v v
v
v
v
v

v

v
v
v
v
v

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

6 1 9 10 3 2 8 11 4 5 7 12
6 10 3 0 7 0 0 1 5 2
1 10 4 8 12 11 5 9 3
9 7 4 2 1 12 0 0

10 0 8 2 0 7 4 1

3 4 12 1 0 10 9 8 0
2 0 11 3 0 10 4 5 0
8 0 5 12 7 9 4 3 2

11 1 9 0 4 8 5 3 0
4 5 3 0 1 0 0 2 0

i
v v v v v v v v v v C

v
v
v
v

v

v
v
v
v
v

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

!

!

!

!

!

!

!

!

!

!

3
0

4 8 9 11 12
2 6 7
5 6 8 10 11
3 5 6 9 11 12
2 5 6 7 11
1 6 7 8 9 12
1 6 10 11
2 6 7 10 12
6 7 8 9 10 11 12

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

1v

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

6 1 9 10 3 2 8 11 4
6 10 3 0 4 0 0 1 5
1 10 4 8 12 11 5 9 3
9 3 4 2 1 12 0 0

10 0 8 2 0 7 4 1

3 4 12 1 0 10 9 8 0
2 0 11 7 0 10 4 5 0
8 0 5 12 7 9 4 3 2

11 1 9 0 4 8 5 3 0
4 5 3 0 1 0 0 2 0

v v v v v v v v v v
v
v
v
v

v

v
v
v
v
v

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

!

!

!

!

!

!

!

!

!

!

7
0



Zhao Huanping, Xue Dangqin and Shi Huojie/Journal of Engineering Science and Technology Review 14 (6) (2021) 107 - 115 

 112 

vertex current element 
number of the color 
complement 

: color complement 

v1 3 5   7  12 
v2 6 2   7   8   9  11  12    
v3 3 6   7   12 
v4 5 5   6   8   10  11   
v5 6 3   5   6   9   11   12 
v6 5 5   6   7   11  12 
v7 6 1   3   6   8   9   12 
v8 4 1   6   10  11 
v9 5 2   6   7   10  12 
v10 7 6   7   8   9   10   11   12   

 
The vertexes in manyc[]are resorted in an ascending 

order of the complements to regenerate a sorted collection: 
manyc[] ={ v1, v3, v8, v4, v6, v9, v2,v5,v7, v10 }, and the vertex 
sequence for coloring is the vertex sequence in manyc[]. The 
vertex is colored. The vertex is colored with the header 
element 5 in its complement because no coloring conflict 
exists between adjacent vertexes in this case. If the header 
element 6 is selected for the vertex v3, then no color conflict 
between adjacent vertexes is observed. Vertex v3is then 
colored with the color 6. Similarly, vertex v8 is colored with 
color 10. When vertex v4 is colored, the header element color 
5 and second element color 6 in its color set complement are 
already selected by the adjacent vertexes v1and v3. Thus, v4 is 
colored with the third element color 8 in its color set 
complement. The remainder can be deduced by analogy, 
namely, the other vertexes are colored with the following 
colors: 7 (v6), 2 (v9), 9 (v2), 3 (v5), 3 (v7), and 7 (v10). Under 
this circumstance, the colors of any two adjacent vertexes in 
the graph are different. Therefore, the vertex coloring is 
completed. In other words, the color for each vertex in 
F3(v,e)=0 is selected from the color set complement after the 
normal edge coloring is completed for the vertex. Hence, 
F4(u,v)=0. The coloring results in this case are as shown in 
Fig. 4. 

 

 

Fig. 4.  Coloring Results after Vertex Coloring of Graph G 
 

The statistical results of the color sum of each vertex 
after the vertex coloring is completed are listed in Table 5. 
 
 
Table 5. Vertex–Edge Color Sum after the Adjustment of 
Edge Color Sum Conflict in Graph G 
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 
Sum of colors 59 38 59 46 35 44 42 60 43 17 

 
Table 5 shows that the total color sum of vertex v1 is 

equal to that of v3, and the total color sum conflict The vertex 
sum distinguishing total chromatic number  
was obtained by analyzing the collection of random graphs 
within eight vertexes, and the coloring results are listed in 
Table 7. 

adjustment is implemented according to the related 
algorithm. 
Step 5) Adjustment of vertex total color sum conflict 

The vertex coloring remains unchanged in the 
adjustment of total color sum conflict, and all the exchange 
processes are performed on the precondition that any edge 
coloring conflict does not occur, given that no new coloring 
conflict exists between adjacent vertexes. When the vertex 
total color sum conflict is handled, the vertex sum-
distinguishing total coloring is completed. 

The total color sum conflict is adjusted through 
Algorithm 3. In the living example, the following 
adjustments are involved in the vertex total color sum 
conflict adjustment.  is adjusted, and the common 
color 12 of the complements is exchanged;  is 
adjusted, and the common color 11 of the complements is 
exchanged;  adjust, and the common color 12 of the 
complements is exchanged; the post-adjustment coloring 
results are shown in Fig.5 and Table 6. 

 

 

Fig. 5. Vertex Sum Distinguishing Total Coloring Results of Graph G 
 

Table 6. Statistical Table of Vertex Color Sum after Total 
Color Sum Conflict Adjustment in Graph G 
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 
Sum of colors 65 44 69 46 55 54 42 60 51 22 

 
Step 6) In this case, F∑T=F1+F2+F3+F4, the coloring is 
completed, and the number of colors used is 
color_n=μt(G)+1, conforming to the content of the Assertion 
10. Therefore, the coloring is successful. 

 
4.2 Experimental results 
The algorithm was used to test the relationships among the 
vertex number, color number, and edge density in some 
graphs under the environment of VC6.0 Windows 64-bit 
system with 2 GB memory and 500 G hard disk. The 
relation maps of vertex number–edge density–color number 
obtained through the substantive test are as shown in Fig.6 
and 7. 

 
Fig. 6.  Vertex number–edge density–color number within 100 vertexes 
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The vertex sum distinguishing total chromatic number 
 was obtained by analyzing the collection of 

random graphs within eight vertexes, and the coloring results 
are listed in Table 7. 
 

 
Fig. 7. Vertex number–edge density–color number within 1000 vertexes 
 

 
Table 7. Vertex Sum Distinguishing Total Coloring Results 
of Graph G within Eight Vertexes 
Vertex Total number of graph  

3 2 2 
4 6 6 
5 21 21 
6 113 113 
7 853 853 
8 11117 11117 

 
4.3 Algorithm analysis 
 
4.3.1 Algorithm accuracy 
This algorithm decomposed the vertex sum distinguishing 
total coloring problem into multiple subproblems, for each 
of which an objective function was set. Subsequently, each 
problem was solved successively according to the 
corresponding rules. First, the edges in the graph were pre-
colored randomly. Second, whether any conflict existed in 
the edge coloring, i.e., whether colored edges with the same 
color exists, was checked. If yes, then the color iteration and 
exchange should be performed according to the rules 
specified by the algorithm until the edge coloring satisfied 
the requirements, namely, F1=0. Subsequently, whether the 
color sum sets of adjacent vertexes were equal was judged. 
If yes, then a conflict existed. Subsequently, it was handled 
by invoking the vertex–edge color sum conflict adjustment 
algorithm until F3=0. The value range of vertex coloring was 
the color complement of the present vertex. If no colors were 
usable, then exchange operation was performed on the 
preconditions of F1=0and F3=0 until F2=0 . Finally, the 
vertex total color sum conflict was adjusted. If the color set 
complement of the present vertex was the same and non-
empty, then the present color set complement was reduced 
into the complement without the addition of the colors given 
to other adjacent vertexes, followed by the exchange 
operation. During the adjustment process, the vertex–edge 
coloring conflict would not be caused even if the vertex 
coloring was unchanged, and finally F4=0 was ensured. On 
this basis, each subobjective function satisfied the 
requirements, and the vertex sum distinguishing total 
coloring was completed. This algorithm achieved the total 
objective F∑T=F1+F2+F3+F4 by gradually optimizing all 
subobjectives; thus, this algorithm was accurate. 
 
4.3.2 Algorithm convergence 
All the colors used by the algorithm to handle the coloring 
conflict were obtained from the color set complement 
comset[][], ensuring that the value of F3 did not increase. 

The colors used in the vertex coloring were also obtained 
from comset[][]. Moreover, F2 and F3 did not increase 
because unchanging the values of F1 and F3 was considered 
the precondition in the vertex conflict adjustment. The 
vertex–edge sum conflict was adjusted when the values of 
F1, F2, and F3 are unchanged. Therefore, the total objective 
function presented monotonic non-increasing trend in the 
algorithm execution process. 

Among the four constraint functions, the value of edge 
constraint function, vertex constraint function, vertex–edge 
constraint function, and vertex sum constraint function was 
0≤F1≤(n-1)(n-2)/2, 0≤F2≤n(n-1)/2, F3=0 and 0≤F4≤n(n-
1)/2,respectively.Thus, 0≤F∑T=F1+F2+F3+F4≤(n-1)(3n-2)/2 . 
Therefore, limits existed in the objective function. 
Meanwhile, as the function was monotonic, the algorithm 
was convergent. 

 
4.3.3 Time complexity of the algorithm 
According to the algorithm description, the algorithm mainly 
had the following steps: 

a) Generating an n*n adjacency matrix, with the time 
complexity of . 

b) Edge precoloring. The worst time complexity of this 
step is equal to the time complexity of edge precoloring 
when G is a complete graph with n vertexes, i.e., 

. 
c) Handling adjacent vertex–edge coloring conflicts. 

For graph G containing n vertexes, only the conflict set is 
adjusted in the algorithm, and the worst time complexity is 

. 

d) Adjusting color sum conflicts. When G is a complete 
graph and the color sums of all vertexes are equal, the 
number of conflicts is the greatest. Each vertex should be 
comparatively judged with the other n-1 vertexes. In each 
adjustment, the colors of the two edges and the color set 
complements of the two vertexes should be altered; the time 
complexity is T4(n)=O(n2). 

e) Vertex coloring. The vertex is colored by selecting a 
color from the color set complement, with the time 
complexity of T5(n)=O(n). 

Through a comparative analysis, the algorithm 
operating time mainly depends on the graph G as well as the 
vertex number n and edge number m. In the worst case, the 
time complexity of this algorithm is T(n)=O(n3).  

 
 

5 Conclusion 
 
The vertex sum distinguishing total coloring is relatively 
complicated in graph coloring. Specifically, th.e constraint 
conditions are added on the basis of the vertex distinguishing 
total coloring. The proposed vertex sum distinguishing total 
coloring algorithm performed iterative exchange and gradual 
optimization by setting multiple subobjective functions and 
using color set complements based on the research idea of 
multiobjective optimization. Thus, the total objective 
function reached the optimal value, and the global optimum 
was achieved from the local optimum. The following 
conclusions are drawn: 

(1) The upper bound of vertex sum distinguishing total 
chromatic number is obtained by analyzing the 
constraint conditions for the vertex sum distinguishing the 
total coloring of the graph. 

( ) ( ) 3T G Gc
å

£ D +

( ) ( ) 3T G Gc
å

£ D +

2
1

1 1
( ) ( )

n n

i j
T n Random O n

= =

= =åå

2
2

1 1
( ) _ ( )

n n

i j
T n pre c O n

= =

= =åå

max
3

3
1 1

( ) ( )
n n

i j
T n exchange O n

= =

= =ååå

( ) 3GD +



Zhao Huanping, Xue Dangqin and Shi Huojie/Journal of Engineering Science and Technology Review 14 (6) (2021) 107 - 115 

 114 

(2) The coloring efficiency can be improved through 
color sum conflict adjustment by means of pre-exchange. 
The color sum vertexes that satisfy the conditions are pre-
exchanged, and the color sum conflict pairs are calculated. 
Subsequently, the locally optimal exchange is realized 
through the exchange following the idea of impressed 
variation. 

(3) The color sets are differentiated using the color set  
complements of each vertex. The number of color set 

complements should be convenient for generating a sorted 
collection to handle the color conflicts. In case of any 
conflict, heuristic coloring can be implemented by taking 
elements from the color set complements, thereby improving 
the coloring efficiency. 

The proposed algorithm was specific to the 
characteristics of vertex sum distinguishing total coloring of 
graphs. According to the constraint conditions, the 
multiobjective constraint subfunctions were generated, the 
vertex coloring was conducted based on the normal edge 
coloring and the vertex sum distinguishing edge coloring, 
and then the coloring of random graphs was completed 
within a short time. The constraint conditions of the 

algorithm can be reduced to obtain the other coloring results 
of random graphs, such as adjacent vertex sum-
distinguishing edge coloring, adjacent vertex sum 
distinguishing total coloring and vertex sum distinguishing 
edge coloring. However, the algorithm execution efficiency 
is low in the case of a large-scale graph. Therefore, the large-
scale graph can be segmented into small-scale subgraphs 
through the graph segmentation algorithm, or the algorithm 
execution efficiency can be improved through the 
multithreading parallel computation to allow the algorithm 
to realize accurate coloring within shorter time. 
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