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Abstract 
 

As a common geological disaster in the Loess Plateau, loess collapse has a huge impact on local industry, agriculture, 
transportation and water conservancy projects. Loess collapse is due to instability caused by the influence of weather, 
topography, soil type, human engineering activities and other factors that cause environmental destruction. To reveal the 
relationship between the collapse of loess and its influencing factors, a calculation model for the probability of loess 
collapse was proposed in this study. In this study, the causes of loess collapse were analyzed by establishing a 
multivariate aggregate structure. Stochastic Petri net and its isomorphic Markov chain were applied to examine the 
collapse process and the accuracy of the model was verified through experiments. Results demonstrate that road network 
density and soil stability have large utilization rate and great influence on the entire system. The daily temperature 
difference and daily rainfall below 10 °C and 30 mm strongly influence the probability of collapse warning. The change 
of road network density affects the probability of early warning, but the effect decreases with the increase of density. By 
examining the early warning mechanism of loess collapse, this study provides a reference value for the prevention and 
control of other types of loess collapse disasters. 
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1. Introduction 
 

Scholars have conducted numerous studies on the 
regional and monomer analysis of collapse events by 
establishing mathematical models, physical and mechanical 
models, or uncertainty models [1] [2]. However, in the case 
of loess collapse, many deficiencies occur in the 
comprehensive judgment of the occurrence process, 
formation mechanism and soil stability due to limitations in 
the calculation methods and assumptions. Although some 
studies have been conducted on the quantitative aspects of 
soil stability evaluation, collapse process reduction, or risk 
evaluation, current studies on loess collapse mostly focus on 
the qualitative aspects. With regard to common preventive 
measures of soil state monitoring, few comprehensive 
studies have been conducted on early warning mechanisms 
with external factors such as climate and human engineering 
activities [3-5]. Obviously, disasters caused by loess 
collapse are complex and multifactorial and huge technical 
difficulties are involved in the failure mode [6-9], which 
brings great challenges to early warning mechanism and 
prevention and control measures. Considering the extensive 
loss of disasters, achieving the early warning of loess 
collapse is necessary. 

 In this study, the cause of loess collapse in northern 
Shaanxi is considered as a multivariate set structure. The 
influencing factors and early warning process are 
investigated quantitatively quantitatively by using Stochastic 
Petri Net(SPN) theory and Markov chain, which enable us to 
scientifically and accurately predict the relationship among 

the influencing factors and the occurrence probability of 
disaster loess collapse. This study provides a reference for 
the prevention and early warning of the collapse disaster. 
 
 
2. State of the art  
 
Scholars have focused on collapse-forming conditions and 
influencing factors and laws and established early warning 
models by analyzing the deformation failure characteristics 
of collapse. Liu[10] classified and summarized the typical 
loess collapse failure modes in Shanxi and summarized the 
unstable interface of loess collapse and the corresponding 
inducing factors ,but mainly focused on the mechanical 
properties of the soil. Applying the static mechanism, Hu 
[11] established the stability-calculating method of various 
collapse types and proposed the comprehensive prediction 
method of collapse. Qu et al. [12] studied the clay content of 
loess and the development degree of loess collapse disaster 
from the micro point of view. Tang et al. [13-15] determined 
the scattering range of collapse by using the definitions of 
collapse angle and extension angle, which is a statistical 
measurement after the fact and lacks predictability. Xu [16] 
proposed the concept of displacement tangent angle 
according to the characteristics of cumulative displacement 
time curve in various deformation stages of the slope and 
established the landslide early warning criterion. Liu [17] 
made a preliminary retrospective analysis on inducement 
and critical risks of disaster by using the expert assignment 
method. Peng et al. [18] concluded that the regional tectonic 
stress was the first driving force applied by the landslide 
groups on the Loess Plateau and mainly analyzed the 
changes of the mechanical properties of the soil, which 
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caused the deformation rate time curve to become a non-
differentiable curve at the key points without considering 
other factors and caused difficulty in achieving the advance 
warning and prediction of sudden loess landslides. Li et al. 
[19] proposed a collapse detection method based on 
influencing factors without specific case analyses. Garakani 
et al. [20] evaluated loess collapse in an unsaturated state 
and built a model, but only focused on collapsible loess. 
Zamani et al. [21] evaluated the folding potential of the 
samples collected at a certain place under different 
immersion stresses by studying the clay content of folding 
soil with a 1D integration device and also evaluated  the soil 
stability. Fei et al. [22] analyzed the effects of rainfall 
conditions and soil characteristics on pore water pressure of 
slopes by using finite element analysis. Johari et al. [23] 
found that the likelihood of collapse increased with 
decreasing water content, dry density and nanoclay content, 
but no other factors were studied. Assallay et al. [24] studied 
the formation and stability of fragipans, but mainly focused 
on the micro scale.  Osabank and Staceyt [25] established a 
slope instability prediction model based on velocity 
reciprocal method by using a slope monitoring radar, which 
can effectively predict the failure time in the accelerated 
deformation stage. Lipiec et al. [26] analyzed changes in the 
pore size distribution (PSD), stability and water repellency 
of one-week old compound casts produced by edgier 
earthworms vs. surrounding natural aggregates in loess soil 
exhibiting unstable structure. Niemiec et al. [27] considered 
that surface runoff as a neglected key factor in the past 
exploration of loess stability and described the measures to 
control surface runoff as a difficult and dangerous process. 
Manconi et al. [28] applied the statistical method to set the 
threshold model to predict La Sax rock landslide in the time 
window, which is only suitable for short-term prediction. 
Arabameri et al. [29] invented spiral columns to increase the 
stability of loess according to the properties of loess soil. 
Sharma et al. [30] invented a soil nail to increase the friction 
of soil particles and reduced the probability of soil instability, 
which damaged the soil ecosystem. By studying the 
relationship between plant roots and soil stability, Sonal et al. 
[31] presents the effect of initial placement conditions and 
flooding stress on the collapse potential of endanger loess. 
Rahmani et al. [32] found that the introduction of additives, 
such as lime and other substances, changed the texture of 
loess and improved its mechanical strength.  

The preceding analyses mainly focused on the formation 
of loess collapse under single factors such as rainfall and soil 
properties. Most of the multi-factor studies focused on 
qualitative aspects. The study on the formation process of 
loess collapse under the comprehensive influence of 
multiple factors is rare. In this study, the cause of collapse is 
described as a multivariate aggregate structure. Using the 
methods of stochastic Petri net and Markov chain, the SPN 
model of loess collapse in Northern Shaanxi is constructed, 
the relevant performance parameters of the model are 
calculated and the formation mechanism of collapse is 
quantitatively analyzed. At the same time, the dynamic 

simulation analysis is conducted for the collapse example of 
Jiaxian County in Northern Shaanxi to study the relationship 
among daily rainfall, daily temperature difference, road 
network density and collapse early warning probability, to 
provide a reference for the prevention and control of loess 
collapse disasters. 

The rest of this study is organized as follows. Section 3 
describes the multivariate set structure of loess collapse and 
establishes the SPN model of early warning in northern 
Shaanxi based on stochastic Petri net and Markov chain. 
Section 4 calculates the busy rate of the place and the 
utilization rate of the transition to analyze the performance 
of the model according to the specific collapse example, 
dynamically analyzes the key influencing factors and 
determines the influence of each factor on the early warning. 
Section 5 summarizes the conclusions. 
  
 
3. Methodology  
 
3.1 Loess collapse structure 
The study described the loess collapse as a multivariate 
aggregate structure: loess collapse accident = {{foundation 
causes} {potential causes}, {inducing causes}}. The loess 
collapse of the multivariate aggregate structure is shown in 
Fig. 1. 
 

 
Fig.1. Causes of loess collapse based on multivariate aggregate 
structure 
 
3.2 Early warning mechanism of loess collapse disaster 
 
3.2.1 Model establishment 
The study established an early warning indicator system for 
loess collapse disasters based on foundation causes, potential 
causes and inducing causes, as shown in Fig. 2.
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Fig. 2.  Early warning indicators of loess collapse disaster 

 
The foundation causes were mainly the structure, 

topography and stability of the loess itself, which were due 
to natural conditions and historical man-made actions. The 
loess could be monitored and evaluated to endow the SPN 
model an initial value. Among the potential causes, human 
engineering activities often resulted in the loose structure of 
loess soil and daily temperature difference caused the soil 
freeze to thaw. Eventually, when the bearing capacity is not 
enough to support the gravity of the soil, collapse would 
occur. Atmospheric precipitation was the main inducing 
cause of loess collapse. Results demonstrated [1] that many 
loess collapse accidents were caused by rainfall and high 

intensity human engineering activities. Among them, 
meteorological information, such as rainfall and daily 
temperature difference, could be obtained through 
meteorological sensors and the intensity of human 
engineering activities is quantitatively described by road 
network density, that is, the ratio of the total length of 
regional roads to the area of the region. The selected roads 
included highways, national highways, provincial highways, 
county highways and railways. Referring to the 3D 
aggregate factor index of loess collapse, an early warning 
mechanism of loess collapse disaster is designed and shown 
in Fig. 3.  

 
Fig. 3.  Early warning mechanism of loess collapse disaster 
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3.2.2 SPN model for early warning of loess collapse 
disaster 
Loess collapse is a type of dynamic system with rapid 
occurrence and short time interval. Petri net is a modeling 
and analytical tool for structured discrete event dynamic 
system. Petri net accurately describes not only the system 
structure but also the dynamic behavior of the system in real 
time, that is, the state change of the system. As the early 
warning mechanism of loess collapse we are studying is a 
system that can produce effective warning information, the 
local population has enough time to protect themselves or 
withdraw from the disaster area after the danger warning to 
reduce casualties and losses. Therefore, time is a parameter 
that needs to be considered in the early warning model. 
Stochastic Petri net is also called Markov Petri net. SPN 
regards time as a random variable on the basis of classical 
Petri net, so that a certain time sequence occurs among the 
places. Therefore, the study selects stochastic Petri net for 
analysis. 

Stochastic Petri nets is generally defined as a 7-tuple 

: is the non-empty finite set 

of the place, a finite set of transitions, 

 represents the set of directed arc elements 
connecting the elements of the place and the elements of 
transition, is the forbidden arc of transition,  is 
the arc weight function, ,  mapping from 

,  means the set of markings and 
is the average ignition efficiency of  the 

transition.  
The instantaneous transition is associated with a random 

switch with zero ignition delay and the time transition obeys 
a negative exponential distribution. 

According to the early warning mechanism of loess 
collapse disaster in Fig. 3, the study divided the place and 
transition through the analysis of the loess collapse process 
and expressed the various discrete factors that affect the 
probability of loess collapse in chronological order. The 
SPN model is finally constructed as shown in Fig. 4 and the 
elements are defined in Table 1. The model consisted of 8 
places and 10 transitions and the meanings of each place 
and transition are shown in Tables 2 and 3. 
 

 
Fig. 4.  SPN model of loess collapse disaster early warning process 
 
Table 1. Petri net elements 

Petri net elements Meanings 
Place P Resource Status 

Transition t Resource Changes 

Token Number of resources (the item 
was 0 or 1 in a random Petri net) 

Initial marking  Initial state of resource 

 
Table 2. Definitions of places 

Place Definition 
 Meteorological datasets 

 Geographic datasets 

 Information integration 

 Loess in poor condition 

 Human overexploitation of loess 

 Loess condition deterioration 

 Elevated risk of loess collapse 

 Crisis warning 

 
 

Table 3. Definitions of transitions 
Transition Definition 

 Database update 

 Average monthly temperature difference 
for a month over the years 

 Slope assessment 

 Slope height assessment 

 Road network density 

 Increased daily temperature difference 

 Occurrence of atmospheric precipitation 

 Atmospheric daily precipitation 

 Tendency toward loess collapse 
(abnormal soil stability) 

 Early warning activation 

 
The initial marking of this system was , 

which meant that each of the  and  places contained a 
token and the other places did not. In Fig. 3, the loess 
collapse early warning process diagram represented the 
acquisition of meteorological data and geographic data. 
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According to the initial marking and SPN model shown in 
Fig. 4, the reachable set obtained by different transitions was 
calculated. When the transition satisfied the conditions of 
occurrence, the token moved from the corresponding input 
place to the output place and the model generated a new 
state. Based on the initial state  as the starting point, the 
set of all states that could be reached was calculated and then 
the reachable marking Table 4 was obtained. 

 
Table 4. Reachable marking of SPN for early warning 
process of loess collapse disaster 

         

 1 1 0 0 0 0 0 0 

 0 0 1 0 0 0 0 0 

 0 0 1 0 0 0 0 0 

 0 0 1 0 0 0 0 0 

 0 0 0 1 0 0 0 0 

 0 0 0 0 1 0 0 0 

 0 0 0 0 1 0 0 0 

 0 0 0 0 0 1 0 0 

 0 0 0 1 0 1 1 0 

 0 0 0 0 0 0 0 1 

 
The SPN model has an isomorphic Markov chain. Thus, 

the corresponding Markov chain could be constructed by 
solving the reachable set of SPN, as shown in Fig. 5. When 
the constructed Markov chain had a stable distribution, the 
stable state probability of the system could be obtained. 
Among them, the directed arc in Fig. 5 represented the 
transition process from one state of the SPN model to 
another state and the average implementation efficiency of 
each transition of the SPN model was taken as  , as 
shown in Fig. 5. 

 

 
Fig. 5. Isomorphic Markov chain of SPN model for early warning of 
loess collapse disaster  

 
Based on the row vector 

  the steady-state 
probability of each marking was represented. According to 
the related theorem of Markov chain stationary distribution 
and Chepman–Kolmogorov equation: 

 

                                   (1) 

  
In Equation (1), the matrix  was the rate transition 

matrix of the Markov chain and the off-diagonal element 
 in the matrix  depended on the state diagram of 

the Markov chain system. When a directed arc was observed 
from the marking  to the marking  in Fig. 5,  was 
the implementation rate value on the arc. When there was no 

arc,  was zero. Then, the elements on the diagonal of the 
matrix  are as follows: 
 

                                            (2)  

 
Equation (1) and Fig. 5 show the relationship between the 

Markov chain and probability of the system state, where the 
result is as follows: 

 

     (3) 

 
Substituting the data on November 5, 2021 in various 

regions of northern Shaanxi into Equation (3), the 
probability distribution of loess collapse in northern Shaanxi 
on that day was obtained, as shown in Fig. 6. 

 

 
Fig. 6. Probability distribution of collapse in northern Shaanxi 
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higher than that in other regions. On that day, only the three 
regions above in northern Shaanxi had atmospheric 
precipitation, indicating that the probability calculation 
results were reasonable. 
 
3.2.3 Test of SPN model for early warning of loess 
collapse disaster 
The receiver operating characteristic (ROC) curve graph is a 
curve reflecting that reflects the relationship between 
sensitivity and specificity. The accuracy of the SPN model 
prediction was verified by plotting the ROC curve of the 
probability of loess collapse and calculating the area of the 
graph below the curve. The probability of disaster 
occurrence under the SPN model was determined on the 
basis of the Chepman–Kolmogorov equation and the 
collection of relevant meteorological, topographic and 
human activities and other data when the loess collapse 
occurred in northern Shaanxi. The ROC curve was created 
by combining the obtained probabilities of disaster 
occurrence with actual occurrences using SPSS software, as 
shown in Fig. 7. 
 

 
Fig. 7. ROC curve 

 
We calculated the Area Under Curve(AUC) of the ROC 

curve and got obtained AUC = 0.975 > 0.85, which meant 
that the SPN early warning model had passed the test. 
 
 
4 Result Analysis and Discussion 

 
4.1 Experimental settings 
On October 26, 2019, at around 7:00 am, a sudden loess 
collapse occurred in Gaolijiagou Village, Mutouyu Town, 
Jiaxian County in northern Shaanxi Province. The collapsed 
area was approximately 500 cubic meters. Dozens of 
casualties were reported, four houses collapsed, three people 
were killed and the social influence was bad. According to 
the DEM data of northern Shaanxi, highway vector data and 
the official website of the Jiaxian government, the ignition 
efficiency of each transition when the disaster occurred was 
calculated, as shown in Table 5. 
 
Table 5.Transition ignition efficiency 

Ignition 
efficiency 

Valu
e Meaning 

 3 Database update once every three months 
 11 Multi-year average temperature difference 

in October in Jiaxian Country (°C) 
 9.77 Slope of Jia County (°) 
 20.52 Slope height of Jiaxian County (m) 
 0.17 Road network density of Jiaxian County 
 20.8 Daily temperature difference in Jiaxian 

County when collapse occurred (°C) 
 1 Atmospheric precipitation 
 70 Daily rainfall in Jiaxian County during 

collapse(mm) 
 1 Abnormal soil stability 

 1.5 Warning start 

 
According to the proposed calculation method of the 

probability of each state of the system in 3.3.2, by 
substituting the data in Table 5 into equation (3), the stability 
probability of each state was obtained as shown in Table 6. 
 
Table 6. Stability probability of each state 

State Probability value 
 0.0324 
 0.0044 
 0.0050 
 0.0023 
 0.4296 
 0.0018 
 0.0365 
 0.0010 
 0.2921 
 0.1947 

 
 
4.2 Performance index analysis 
On the basis of obtaining the stable probability of each state, 
the basic performance indicators of the system were 
analyzed. 
 
4.2.1 Busy rate of places 
The busy rate of places refers to the probability of resource 
flow in various warehouses when the system is in a stable 
state. In fact, it indicates the probability that each link in the 
loess collapse early warning system is busy. The busy rate of 
each place is the sum of the stable probability of each 
marking state where resources exist in the place as follows: 

 
                               (4) 

 
The busy rate of each place is calculated according to 

formula (3), as shown in Table 7. 
 

Table 7. Busy rates of each place 
Place Busy rate 
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utilization rate of each change in this study is shown in 
Table 8: 

 
Table 8.Transition usability 

Transition Utilization rate algorithm Transition 
usability 

  0.0324 

  0.0044 

  0.0050 

  0.0023 

  0.4296 

  0.0018 

  0.0365 

  0.0010 

  0.2921 

  0.1947 

 
Table 8 shows that the utilization rate of transitions 5 

and 9 is relatively high, indicating that the activities 
represented by these transitions play an important role in the 
early warning system and more time and energy are spent. 
Thus, the supervision of these two links should be 
strengthened to ensure the normal operation of early warning 
work. 

 
4.3 Single-factor dynamic analysis 
Through the static analysis of the various factors of the 
collapse system, the influence of each link on the start of the 
collapse warning could be obtained according to the stability 
probability of each state. In addition, a single factor can be 
dynamically analyzed based on stability probability. 
Compared with other influencing factors, the daily 
temperature difference and rainfall change greatly over time 
and the road network density is highly artificially interfered. 
Therefore, to provide a reference for disaster early warning 
more effectively, the study obtained the change of stability 
probability of each state by changing the daily temperature 
difference, rainfall and road network density data, thereby 
proposing a scientific early warning specification for loess 
collapse disaster. 
 
4.3.1 Influence of daily rainfall on warning probability 
The experiment first considered the influence of the daily 
rainfall in various situations on the stability probability of 
each state. The results are shown in Fig. 8. 
 

 
Fig. 8. Influence of daily rainfall on each steady-state probability 

 

As shown in Fig. 8, with the increase of daily rainfall, the 
value of collapse warning probability  increases. In 
the stage less than 10 mm, the early warning probability 
increases rapidly, the growth slows down in the 10–30 mm 
stage and the early warning probability above 30 mm is 
almost unchanged. This result shows that when the daily 
rainfall is below 30 mm, it has a stronger impact on the early 
warning probability of collapse and when it is greater than 
30 mm, the probability of collapse is greatly affected by 
other factors. 
 
4.3.2 Influence of daily temperature difference on 
warning probability 
Subsequently, through the simulation experiment of the 
daily temperature difference, the changes of the stability 
probability of each state under various conditions were 
obtained as shown in Fig.9. 
 

 
Fig. 9.  Influence of daily temperature difference on each steady-state 

probability 
 
Fig. 9 shows that the influence of daily temperature 

difference on the early warning probability is similar to that 
of daily rainfall: with the increase of daily temperature 
difference, the early warning probability of collapse 
increases first and then remains unchanged. In the stage 
below 5 °C, the early warning probability increases rapidly 
with the increase of daily temperature difference. At 5 °C–
10 °C, the early warning probability increases slowly. After 
10 °C, the probability of early warning is almost unchanged 
with the increase of daily temperature difference, which 
shows that when the daily temperature difference is greater 
than 10 °C, the change of this factor hardly affects the 
warning probability. 

 
4.3.3 Influence of road network density difference on 
warning probability 
Finally, by changing the numerical value of the road 
network density, we obtained the influence of the strength of 
human engineering activities on the probability of collapse 
warning, as shown in Fig. 10. 

As reported in Fig. 10, the increase in road network density 
has a direct impact on the probability of collapse warning. 
When the road network density is less than 0.2 km/km, the 
warning probability increases at a faster rate as the road network 
density increases and the density is greater than 0.2 km/km2, the 
warning probability still increasing, but the rate slower. A 
comparison of Figs. 8, 9 and 10 show that the road network 
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density has a slightly stronger impact on the hazard 
probability   and collapse warning probability of loess 
soil  than the daily rainfall and daily temperature 
difference. This finding shows that human populations should 
reduce the intensity of engineering activities to reduce the 
probability of loess collapse.   
 

 
Fig. 10. Influence of road network density on each steady-state 
probability 

 
 
5. Conclusion 
 
To respond in advance to the occurrence of loess collapse so 
that casualties and losses can be reduced, the study applied a 
combination of the establishment of a stochastic Petri net 
and simulation example analysis to estimate the probability 
of disaster loess collapse and conduct static and dynamic 
analysis of the cause, early warning mechanism. The 
following conclusions can be drawn: 

 (1) According to the analysis results of the basic 
indicators of the model, it is easy to block the information in 
the three processes of whether the health status of loess is 
poor, whether the collapse condition is deteriorated and 
whether the risk of loess collapse is elevated, which should 
take more time and energy. 

(2) With the increase of daily rainfall and daily 
temperature difference, the probability of collapse warning 
increases first and remains unchanged when the two 
indicators reach 30 mm and 10 °C, respectively. 

(3) Road network density has a greater impact on collapse 
probability than the aforementioned two factors. With the 
increase of road network density, the growth rate of early 
warning probability continues to decrease, but maintains an 
increasing trend. Therefore, relevant departments should 
reduce the intensity of human engineering activities to 
reduce the probability of collapse. 

The study analyzed and described the causes of loess 
collapse in a multivariate aggregate structure. Based on the 
analysis results, the early warning index system of loess 
collapse was proposed and the early warning mechanism in 
northern Shaanxi was established. Considering the influence 
of geological conditions, meteorological factors and human 
engineering activities, the SPN model of loess collapse was 
established by introducing stochastic Petri net theory to 
quantitatively describe the probability of loess collapse. The 
established model scientifically and comprehensively 
describes the early warning mechanism of loess collapse in 
northern Shaanxi, providing decision-making basis and data 
support for disaster prevention, as well as a reference for 
other disaster warnings. Due to the lack of on-site terrain 
data, a certain deviation occurs in the probability calculation 
of specific locations. Therefore, in future research, the 
accuracy of the early warning method of loess collapse 
probability can be improved by combining the field terrain 
data with the stochastic Petri net established in this study. 
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