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Abstract 
 

Graph coloring is one of the areas in graph theory with high research importance. Adjacent vertex-distinguishing edge 
coloring is a type of multi-conditional coloring in graph coloring, but existing associated studies lack analysis on 
constraint conditions. In this study, a novel algorithm was designed to increase the adjacent vertex-distinguishing edge 
coloring efficiency of large-scale random graphs. Sub-graphs were produced in this work by using a nondestructive 
segmentation algorithm to reduce the scale of random graphs, and random pre-coloring was performed on the edges of 
each sub-graph. Iteration was performed step by step in accordance with regulations by searching the conflict set of 
inaccurate edge coloring until the color met the requirements of the ultimate objective function. Next, the sub-graphs that 
were colored successfully were combined to realize adjacent vertex-distinguishing edge coloring of large-scale random 
graphs. Afterward, the accuracy of the adjacent vertex-distinguishing edge chromatic number was proven through 
theoretical analysis and experimental comparison. Several experiments were also performed on random graphs with less 
than 4000 vertexes and an edge density smaller than 0.1. Results show that when the number of vertexes is greater than 
2000 and the edge density exceeds 0.07, the run time generally rings from 0.9 s to 1.5 s, whereas the run time for other 
random graphs is between 0.6 and 1.2 s. The algorithm can solve the adjacent vertex-distinguishing edge chromatic 
number of random graphs effectively, and the time complexity of the algorithm do not exceed O(n3) . The proposed 
algorithm provides evidence for solving the shortest path of large-scale random graphs. 
 

 
 Keywords: Random graphs, Adjacent vertex-distinguishing edge coloring, Adjacent vertex-distinguishing edge chromatic number, 

Segmentation algorithm, Multi-objective optimization  
 ___________________________________________________________________________________________ 
 
1. Introduction 
 
Graph coloring, a classical problem in graph theory, 
originates from the well-known “four-color conjecture.” 
Many problems in practical life, such as computer 
communication, traffic orientation, goods storage, and 
combined optimization, can be solved by transforming them 
into graph coloring [1-7]. Thus, graph coloring is one topic 
with important practical value and theoretical importance in 
graph theory. However, classical intelligent optimization 
algorithms, such as genetic algorithm and neural network, 
have shortages and limitations in the adjacent vertex-
distinguishing edge coloring of large-scaled random graphs. 
Therefore, acquiring adjacent vertex-distinguishing edge 
coloring of large-scaled random graphs performance quickly 
and effectively is a key problem that needs to be solved. 

Existing studies on graph coloring mainly cover those 
on theories and on algorithms. In modern times, some 
mathematical researchers emphasize graph coloring 
problems [8-11]. Zhang et al. [12] proposed the concept and 
conjecture of strong vertex-distinguishing total coloring for 
graphs based on adjacent vertex-distinguishing total coloring 
and strong adjacent vertex-distinguishing total coloring. 
Nevertheless, graph coloring is considered an NP-complete 
problem. Traditional intelligence algorithms [13], such as 

genetic algorithm, ant colony algorithm, and neural network, 
are generally limited to solving graph coloring problems of 
single constraint, and they could obtain the expected 
coloring results under small-scale graphs. Ran and Zhang 
[14] achieved four-color graph coloring effectively by the 
improved heuristic ant colony algorithm. Zhang et al. [15] 
searched the initial solution of the genetic algorithm by 
using the ant colony algorithm and solved the vertex 
coloring problem involving multiple vertices by using the 
improved ant colony algorithm based on the genetic 
algorithm.Ordinary intelligent algorithms present serious 
limitations in solving the adjacent vertex-distinguishing edge 
coloring problem of random graphs when the graph scale is 
greater than 600. 

Existing studies have rarely discussed the algorithm for 
adjacent vertex-distinguishing edge coloring of large-scale 
random graphs. In consideration of the adjacent vertex-
distinguishing edge coloring characteristics of large-scale 
random graphs, sub-graphs were produced in this study by 
using a nondestructive segmentation algorithm to reduce the 
scale of graphs. Adjacent vertex-distinguishing edge 
coloring was performed on all sub-graphs in accordance 
with the multi-objective optimization function. Then, all 
sub-graphs after successful coloring were combined to 
complete the coloring. This approach effectively shortens 
the run time of the algorithm and increases the coloring 
efficiency. 
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2. State of the art 
 
Existing studies on graph coloring mainly focus on 
theoretical studies. In 1993, Burris [16] introduced and 
studied vertex-distinguishing edge coloring (also known as 
strong edge coloring). Major conclusions on the vertex-
distinguishing edge coloring of graphs were mainly 
summarized in previous studies [17-20]. In 2002, Zhang et al. 
[21] proposed the concept and conjecture of strong adjacent 
vertex-distinguishing edge coloring based on vertex-
distinguishing edge coloring. Many relevant studies have 
been reported worldwide [22-28]. In 2007, Zhang et al. [29] 
added a constraint to the concept of adjacent vertex-
distinguishing edge coloring and proposed the concept of 
strong adjacent vertex-distinguishing total coloring. 
Meanwhile, they gained the accurate value of strong 
adjacent vertex-distinguishing total coloring for special 
graphs and the upper boundary conjecture. For a simple 
graph with less than three orders,  may be 
used.  

Studies on graph coloring algorithms can generally be 
divided into three types. The first type recognizes the law of 
graph coloring by combined construction, but this method is 
only applicable to unique graphs. The second type gives 
rough lower and upper boundaries of graph coloring based 
on the probability statistical method. However, such 
boundaries are markedly rough and, therefore, have some 
limitations. The third type processes graph coloring 
problems by using a computer, which can solve large-scale 
graph coloring problems by designing a reasonable high-
efficiency algorithm based on the great operating capacity of 
computers. This approach can prove some conjectures. For 
example, based on the sequence approximation method, 
Appel and Haken [30] proved and solved the four-color 
graph coloring problem under computer assistance  based on 
order approximation in 1976 (the computer operated for 
more than 1,200 hours). However, their method required a 
great deal of time in solving large-scale problems and the 
computation time was proportional to , where n 
represented the number of regions in the graph. By 
combining the advantages and disadvantages of the taboo 
search and genetic algorithms, Li and He [31] generated an 
initial solution by using the genetic algorithm to implement 
field-changing searching and update the vertex coloring by 
the taboo searching algorithm; their results showed an 
increase in the searching speed of the algorithm. Liao and 
Ma [32] analyzed graph coloring based on the heuristic 
searching ant algorithm and gained the expected results for 
small graphs. Yu [33] applied the simulated annealing 
algorithm to graph coloring, but the initial value and 
parameter determination of the algorithm could directly 
affect its performance. Any improper setting of parameters 
would lead to slow convergence and long implementation 
time. Yu et al. [34] provided the graph coloring model of 
uncertainty based on “DNA Origami.” Li [35–36] studied 
the strong vertex-distinguishing total coloring and 
effectively calculated the vertex-distinguishing total coloring 
number for a graph with a fixed random number of vertices. 
Moreover, the time complexity of the solving algorithm was 
lower than 0(n3).Cao et al. [37] realized vertex-
distinguishing total coloring of graphs K2n+1\E(Wm) by using 
a heuristic algorithm and verified the vertex-distinguishing 
total chromatic number and relevant conjecture of graphs 
that Li Muchun et al. presented in Reference [38]. Although 
studies on vertex-distinguishing coloring of large-scale 
graphs have produced several useful outcomes [39-42], no 

effective method is available to solve the coloring issues of 
large-scale random graphs. 

Previous studies on graph coloring were based on K-
vertex coloring. Several scholars have studied adjacent 
vertex-distinguishing edge coloring by adopting classical 
algorithms, but they focused on a relatively small scale of 
research objects. If these algorithms are applied to adjacent 
vertex-distinguishing edge coloring of large-scale random 
graphs, the run time and rate of convergence will increase to 
an unacceptable degree because the chromatic number 
increases continuously with graph scale and density. In the 
current study, nondestructive segmentation of large-scale 
graphs was performed by breaking two-degree or three-
degree vertexes. Adjacent vertex-distinguishing edge 
coloring of small-scale sub-graphs after segmentation was 
completed with the assistance of iterative exchange of a 
complementary set of the coloring matrix, thus accelerating 
the convergence of the algorithm. 

The remainder of this study is organized as follows. 
Section 3 describes the concept of adjacent vertex-
distinguishing edge coloring and the constraint function and 
design of the algorithm for adjacent vertex-distinguishing 
edge coloring. Section 4 analyzes the experimental results 
and the proposed algorithm. Section 5 summarizes the 
conclusions. 
 
 
3. Methodology  
 
3.1 Relevant definitions 
For any undirected graph G(V, E), V(G) refers to the vertex 
set of graph G, E(G) is the edge set of graph G, C(u) is the 
color set used by vertex U and relevant edges in graph G, 
and  is the complementary set of C(u). The relevant 
definitions of the coloring of graph G are introduced as 
follows. 

Definition 1: For graph G(V,E), mapping f: 
meets  for any adjacent edge e 

and e’. Hence, f is a k-normal edge coloring of G and 
recorded as k-PEC. 

Definition 2: Mapping f of one k-PEC of G(V,E) also 
meets any uv∈E(G) and . Hence, f is an adjacent 
vertex-distinguishing edge coloring of the graph and 
recorded as k-AVDEC. is the 
adjacent vertex-distinguishing edge chromatic number of G, 
where C(u)={f(uv)|uv∈E(G)}. 

Conjecture 1: If a connected graph has two adjacent 
maximum vertexes with at least three match exponents, it 
has 

 
                          (1) 

 
3.2 Construction of the constraint function 
According to the concept of adjacent vertex-distinguishing 
edge coloring of a graph, obtaining different color sets of 
adjacent vertexes is required, except for normal edge 
coloring. Moreover, adjacent vertex-distinguishing edge 
coloring of graph G with n vertexes requires two constraints, 
namely, (a) the adjacent edges have different colors and (b) 
the color sets of adjacent vertexes are different. In 
accordance with these constraints, the constraint function 
can be defined as follows. 
 
3.2.1 Edge constraint function 
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G(V,E) involves mapping f: , and the edge 
constraint function is defined as follows. Suppose that 

 and  are adjacent edges. Let 
 

                 (2) 

 
Then, 
 

               (3) 

 
where  denotes the number of edges that do not meet 
Constraint (a). Constraint (b) is met only when =0. 
 
3.2.2 Constraint function of the color set 
Graph G(V,E) involves mappings f:  
and , where . The 
constraint function of the color set is defined as follows. 

For any , let 
 

                 (4) 

 
Then, 
 

                    (5) 

 
where  is the number of color sets of the vertex that 
do not meet Constraint (b). Constraint (b) is met only when 

=0. 
 
3.2.3 Total objective function 
 

                                 (6) 
 

where  is the quantity that does not meet four coloring 
conditions, and the coloring is successful only when =0. 

 
3.3 Algorithm description 
The basic idea of the proposed novel algorithm is to perform 
nondestructive segmentation of large-scale random graphs 
and color the sub-graphs subsequently. The colored sub-
graphs are reduced and combined, thus obtaining the 
coloring results of large-scale random graphs. 

The proposed novel algorithm is composed of 
Algorithms 1 and 2. Algorithm 1 is the segmentation 
algorithm of random graphs, and Algorithm 2 is the adjacent 
vertex-distinguishing edge coloring algorithm of random 
graphs. 

 
Algorithm 1: Segmentation algorithm of random graphs 
 
Input: adjacent matrix of large-scale random graphs 
Output: sub-graphs, segmented vertexes, and segmented 
sets of large-scale random graphs 
Step 1) Input the adjacent matrix color [ ][] of large-scale 
random graphs. 
Step 2) Search the two-degree and three-degree vertexes and 
input into the arrays degree_2[] and degree_3[], respectively. 

Step 3) Disconnect the two-degree vertexes of large-scale 
random graphs in accordance with the rules of the algorithm. 
The breaking vertexes generate new vertexes, and the 
vertexes are added because of the vertex of the original 
graph. Search the sub-graphs (p1, p2, …pn), which are stored 
independently, by using the depth-first traversal algorithm. 
Step 4) Judge the segmentation threshold of these sub-
graphs, which is the proportion of the total vertexes and 
edges of single sub-graphs in the large-scale random graphs. 
The range of the segmentation threshold for graphs with less 
than 3 000 vertexes is [0.05, 0.1]. The sub-graphs after 
segmentation generally have an equal scale. If this condition 
still cannot be met, continue to break the three-degree 
vertexes and return to Step 4. 

The calculation formula of the segmentation threshold 
is 
 

                             (7) 

 
where  is the number of vertexes and edges of sub-
graph i and n and e are number of vertexes and edges of a 
large-scale random graph. 
Step 5) Place the segmented vertexes and segmented sets of 
the large-scale random graphs in arrays point_g[] and 
point_sets[]. 
Step 6) Input all sub-graphs into the algorithm for adjacent 
vertex-distinguishing edge coloring. In the coloring process, 
the adjacent edges of the original graph must be controlled 
and colored differently, and the colored sub-graphs must be 
reduced. The vertexes produced from the original graph are 
combined into one (adjacent vertex-distinguishing edge 
coloring colors only the edges and not the vertex), thus 
realizing coloring of the original graph. 
Step 7) Examine whether the final coloring results are 
accurate. If they are accurate, output the adjacent matrix; 
otherwise, return to Step 1. 
Algorithm 2 Adjacent vertex-distinguishing edge coloring 
algorithm 
Input: adjacent matrix of G of random graphs 
Output: adjacent vertex-distinguishing edge coloring matrix 
Step 1) Normal edge coloring: In accordance with the initial 
chromatic number, select colors randomly from the colors 
that are not greater than the chromatic number for random 
pre-coloring of edges in the graph. Next, determine the 
conflicts and perform iterative adjustment on edge colors in 
the edge coloring conflicts. After several iterations, obtain 
the normal edge coloring results of graphs. 
Step 2) Establish statistics on color set C(u) of different 
vertexes and the corresponding complementary set . 
Generate the ranking set manyc[ ] in accordance with the 
number of elements in . 
Step 3) Calculate the value of the constraint function (F2) of 
the color set. Initialize  and set it to 0. When a conflict 
exists between a pair of color sets, that is, , sum _ 
com[i] = sum_com[j], and , add 1. Detect all color 
sets one by one and calculate the value of F2. If , go to 
Step4. 
Step 4) Solve the color set conflict. It has to replace 
elements in the complementary set and elements in the 
matrix. Compare the first vertex in the ranking set manyc[ ] 
to all follow-up vertexes. If an edge exists between two 
vertexes and their complementary sets have the intersection 

, replace the color in the matrix. Let 
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 and modify the values of and . After the 
replacement, determine whether the color sets of adjacent 
vertexes have the same colors. If , a conflict still 
exists, and another replacement is needed. This task 
continuous for several color iterations until . 
Step 5) Complete the coloring. Determine whether edge 
coloring and the color set are normal. If they are, output the 
final coloring results; otherwise, repeat Step 5. 
 
 
4. Result analysis and discussion 
 
4.1Algorithm test 
In accordance with the steps of the algorithms, the test 
results of graph G with 15 vertexes are obtained. 
Step 1) First, an undirected graph with 15 vertexes is 
generated randomly. The value is 1 when edges are present; 
otherwise, the value is 0. The adjacent matrix of this 
undirected graph is shown in Fig. 1. 
 

  

Fig. 1. Adjacent matrix of random graph G 
 

Step 2) Statistics on the degree arrays of different vertexes 
are established, and the initial chromatic number k is 
determined. The numbers of vertexes under different degrees 
are listed in Table 1. 
 
Table 1. Number of vertexes of the graph under different 
degrees 

Number of degrees 4 3 2 1 
Number of vertexes 3 5 2 5 

 
Given that the adjacent vertex-distinguishing edge 

chromatic number is not less than the maximum degree +1,  
 

the initial chromatic number is k=5. 
Step 3) The number of two-degree vertexes (V3 and V8) is 
recorded. With the graph segmentation algorithm, new 
vertexes v16 and v17 are generated by breaking V3 and V8. 
The adjacent matrixes of G1 and G2 after segmentation are 
shown in Figs. 2 and 3. 
 

 

Fig. 2. Adjacent matrix of G1 
 

 

Fig. 3. Adjacent matrix of G2 
 
 

Step 4) Adjacent vertex-distinguishing edge coloring is 
performed on G1 and G2. The following text introduces the 
detailed process of adjacent vertex-distinguishing edge 
coloring of G2. 
Step 4.1) The results after normal edge coloring are shown 
in Fig. 4. 
 

   

Fig. 4. Normal edge coloring results of G2 
 

Step 4.2) The ranking set manyc[8]={17,14,15,10,11,13,9, 
12} is obtained in accordance with the coloring matrix. One 
vertex is selected from manyc[8] to compare with the 
follow-up vertexes. On the basis of the rule of the 
algorithms, the first exchange is performed for color sets that 
have conflicts. 

: , , , , 

,  
The exchange results are shown in Fig. 5. 
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Fig. 5. First exchange results 
 

Step 4.3) On the basis of the first exchange results, the 
second exchange is performed according to the rules of the 
algorithm. 

: , , , , 
,  

The exchange results are shown in Fig. 6. 
 

 

Fig. 6. Second exchange results 
 

Step 4.4) After the exchange, a conflict occurs between the 
color sets of V9 and V12. According to the rule of the 
algorithm, exchange . Similarly, a conflict exists 
between the color sets of V10 and V12. According to the 
rule of the algorithm, exchange . 

The adjacent vertex-distinguishing edge coloring 
outcomes obtained after solving the conflicts between color 
sets are shown in Fig. 7. 

 

 

Fig. 7. Adjacent vertex-distinguishing edge coloring results of G2 
 

Step 5) Adjacent vertex-distinguishing edge coloring of G1 
is performed (Fig. 8). 
 

 

Fig. 8. Adjacent vertex-distinguishing edge coloring results of G12 
 

Step 6) The graphs after G1 and G2 coloring are reduced 
and combined, yielding the coloring outcomes for original 
graph G (Fig. 9). 
 

 

Fig. 9. Adjacent vertex-distinguishing edge coloring results of G 
 

Step 7) Examine whether the coloring results of G after 
combination meet the requirements. The examination shows 
that the results conform to Conjecture 1: . 
Therefore, the coloring is accurate. 
 
4.2 Experimental results 
The relations among the number of vertexes, chromatic 
number, and edge density of several graphs were tested 
implementing the proposed novel algorithm on a computer 
with 64-bit Windows OS, 2 GB of memory, 500 G of hard 
disk, and VC6.0. The relation graphs were derived after 
many tests (Figs. 10 and 11). Chromatic number was 
determined to be positively related with the number of 
vertexes and edge density of coloring graphs. 
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Fig. 10. Number of vertexes, edge density, and chromatic number 
(number of vertexes: <1000) 
 

 
Fig. 11. Number of vertexes, edge density, and chromatic number 
(number of vertexes: 1000–4000) 
 
4.3 Algorithm analysis 
 
4.3.1 Validity 
The proposed novel algorithm implements random pre-
coloring on the edges in a graph and examines the conflicts 
in edge coloring, that is, whether certain edges are colored 
the same. If yes, color iteration and exchange are performed 
based on the agreed rules of the algorithm until edge 
coloring meets the requirement F1=0. Next, the algorithm 
judges whether the color sets of adjacent vertexes are similar. 
If they are, the colors are adjusted using the algorithm that 
solves the conflicts between color sets to make F2=0. In this 
manner, all sub-objective functions can meet the 
requirements, and the adjacent vertex-distinguishing edge 
coloring is completed. The proposed algorithm achieves the 
total objective Fas=F1+F2 through stepwise optimization of 
different sub-objectives. This procedure conforms to 
Conjecture 1, namely, . Hence, the 
proposed algorithm is valid.  
 
4.3.2 Time complexity 
The proposed novel algorithm involves the following major 
steps: 

(a) An  adjacent matrix is generated, and the time 
complexity is . 

(b) Pre-coloring of edges: The worst time complexity of 
this step is equal to the time complexity of edge pre-coloring 
when G is a complete graph with n vertexes, i.e., 
 

. 
 

(c) The conflict in color sets between adjacent vertexes 
is solved. For G with n vertexes, the conflict sets are 
adjusted in the algorithm. The worst time complexity is 

 . 
Comprehensive analysis shows that the run time of the 

novel algorithm is primarily determined by graph G, number 
of vertexes (n), and number of edges (m). In the worst 
condition, the time complexity of the novel algorithm is 

.  
 
 
5. Conclusions 
 
Summarizing practical problems into graph coloring 
problems often involves random graphs. Hence, studying the 
algorithm for adjacent vertex-distinguishing edge coloring of 
random graphs has a high practical value. The proposed  
novel algorithm segments large-scale random graphs by 
nondestructive segmentation and completes adjacent vertex-
distinguishing edge coloring of random graphs through 
independent coloring of sub-graphs. The following major 
conclusions were obtained from this study. 

(1) The analysis of constraints in the adjacent vertex-
distinguishing edge coloring of graphs showed that 

 if two adjacent maximum-degree vertexes 
exist. 

(2) Graph segmentation can increase the coloring 
efficiency. After segmentation, the ratio between the number 
of vertexes of sub-graphs and that of the large-scale graph is 
the segmentation threshold, which is in the range of [0.05, 
0.1]. Image segmentation is successful, and the segmented 
sub-graphs basically have an equal scale. 

(3) The color sets are distinguished by a 
complementary set of different vertexes. The number of 
complementary sets is sufficient to generate a ranking set for 
handling the conflicts of color sets. When a conflict occurs 
between color sets, the elements in the complementary set 
can be selected for heuristic coloring to increase the coloring 
efficiency. 

In consideration of the adjacent vertex-distinguishing 
edge coloring characteristics of large-scale random graphs, 
the proposed novel algorithm generates a multi-objective 
function according to the constraints and reduces the scale of 
graphs through the segmentation algorithm. The sub-graphs 
are combined after successful coloring, thus realizing the 
coloring of the large-scale random graphs. Moreover, several 
constraints in the novel algorithm can be increased to obtain 
other coloring results for random graphs, such as adjacent 
vertex-distinguishing total coloring and vertex-
distinguishing total coloring. When the scale of a graph is 
relatively large, the run time of the novel algorithm increases 
by leaps. Hence, the time complexity of the novel algorithm 
should be reduced further to increase the coloring efficiency. 
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