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Abstract 
 

Electric vehicles (EVs) can inhibit the wind power fluctuations in the generalized form of energy storage. However, 
optimizing the charging process of EVs under wind power fluctuations is difficult because of the uncertainties of wind 
power output and user demands. A charging control strategy based on deep reinforcement learning (DRL) was proposed 
in this study to address the influence brought by uncertain environmental factors to the control. This strategy mined the 
deep relation between perceiving the uncertainties of environmental factors and learning charging laws by virtue of the 
perceptual and learning abilities of DRL. An immediate reward mechanism that acts upon the environment was 
constructed from the angle of neural network fitting function. The EV charging control model was expressed as a Markov 
decision process (MDP) that contain the state, action, and transfer functions and reward and discount factors through 
temporal discretization. Next, the single-step updating and experience replay mode were combined to construct the DRL 
algorithm, followed by the comparative convergence experiment with the reinforcement learning (RL) algorithm that 
expressed the reward function in mathematical form. In the end, the agent obtained through training was used for the 
verification of the calculated example. Results show that the constructed RL algorithm is converged by 8,500 episodes 
earlier. The charging control strategy based on DRL meets the charging requirements when the proportion of 
optimization objectives is 0.5 and 0.9, and users are allowed to change the allowed charging time temporarily. This study 
demonstrates that the charging control strategy based DRL can optimize the EVs charging process under many uncertain 
factors. 
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1. Introduction 
 
With the development of new energy technology and 
emergence of the smart grid, the application of new energy 
technology is important because of the local consumption of 
renewable energy sources in power distribution networks. 
Electric vehicle (EV), which is an important carrier of new 
energy technology, especially the technology of consuming 
renewable energy sources by controlling the EV charging 
process, has aroused high attention from numerous 
researchers. However, this technology can hardly reach a 
perfect effect, which is ascribed to the uncertainties in the 
power output of renewable energy sources and users’ power 
utilization behavior. Thus, how to flexibly and effectively 
control the EV charging process under such uncertain factors 
has become the key to solving the problems. 

The traditional research method solves the objective 
function by perfecting the environmental model of EVs [1] 
and simulation [2-4]. However, this method proposes high 
model requirements and even needs to code the problem, 
thereby militating against real-time dispatching. The deep 
reinforcement learning (DRL) that is not based on the 
aforementioned model has become the breakthrough point 
with the increasingly complicated EV environment, 
continuous accumulation of uncertain factors, and 

requirements for intelligent development. DRL [5] combines 
the perceptual ability of deep learning and decision-making 
ability of reinforcement learning and realizes the end-to-end 
learning through the repeated trials and errors of sequential 
decision problem. In terms of the present EV charging 
strategies based on DRL, most charging strategies fail to 
handle the feedback problems generated by uncertain factors 
in EV environment [6] to DRL. Literature [7] constructed a 
multi-agent and multi-objective DRL architecture, but it did 
not consider the limitation of training capacity; as such, the 
agent could not contain more environmental states. 
Literature [8] improved the optimization performance of 
DRL for real-time EV dispatching by virtue of long short-
term memory (LSTM) network but did not consider more 
characteristic quantities. The hierarchical reward function [9] 
enhances the perceptual ability of DRL but delays the 
convergence of DRL. In this study, the multilayer perception 
(MLP) network fitted reward function was used based on the 
deep deterministic policy gradient (DDPG), which not only 
improved the perceptual ability of DRL to some extent but 
also shortened the convergence time and perfected the EV 
charging strategy. 
 
 
2. State of the art 
 
To cope with the influence of environmental uncertainties on 
the EV charging process, the present dispatching methods 
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include day-ahead dispatching [10,11] and real-time 
dispatching [12,13], where the former is mainly used to 
study historical data and control EV according to priori 
knowledge. Nevertheless, its flexibility is restricted. The 
real-time dispatching method mainly aims to study the 
present data, where the optimal dispatching is implemented 
by the control strategy, and the optimization speed of the 
algorithm is the key. During the optimization of charging 
process through dynamic programming [14,15], the state 
space that contains all features in the environment is 
obtained by the state prediction model through reverse 
calculation, and the state space connected by the transfer 
function defines the optimal strategy through the real-time 
search; thus, the abundance of sample data influences the 
discreteness of state space and optimization scope of 
strategy. In Literature [16], the historical and present data, as 
well as prediction data, were considered to improve the 
abundance of sample data, and a RL algorithm of batch 
learning was proposed to learn the optimization strategy 
from the samples. Next, the optimal charging decision 
dataset was created using a method based on linear 
programming. However, the charging strategy based on 
DRL mainly concerns two aspects: the perceptual ability of 
DRL for charging environment and the learning performance 
of DRL. Literature [17] not only formulated the EV charging 
control model as a Markov decision process (MDP) and 
proposed a charging control strategy based on DRL but also 
used LSTM network to extract the day-ahead energy price 
information to improve the dynamic perceptual ability of the 
strategy. Then, the DRL training efficiency is enhanced by 
using two experience replay buffers and adding Gaussian 
noise into the network. To consider the vehicle-to-grid (V2G) 
ability of EVs and the discreteness of their 
charging/discharging level, Literature [18] used the two-
layer optimization formula to simulate the pricing of EVs 
and established the problem in multidimensional continuous 
state and action space by combining DDPG and experience 
replay buffers with priority levels. This method could 
effectively improve the effective utilization efficiency and 
optimization ability of experience replay buffers, but the 
priority setting, which depended on priori knowledge, was 
the key. Literature [19] constructed DRL using a competitive 
mechanism that improved the DRL learning performance; 
however, but the strategy of updating the neural network 
parameters of this method was crucial. In time and space, the 
laws included in the samples are mainly fed back by the 
reward function to DRL. Similarly, the uncertain factors in 
EV environment are mainly presented by the reward 
function. Literature [20,21] used the mathematical method to 
express immediate reward, the formulized immediate reward 
contained the setting relation between state quantities, the 
calculation results directly acted upon the environmental 
quality, and the obtained numerical values were transmitted 
to the neural network, thereby directly impacting the 
updating of DRL parameters. This method either could not 
guarantee enough state quantities or could not feed effective 
information back. 

When the EV environment feeds back to DRL, although 
the perceptual ability of DRL can be improved through the 
clustering analysis and feature extraction, feeding back 
enough effective information using the reward function in 
mathematical form is difficult in consideration of the 
uncertain factors contained in EV environment. Therefore, 

starting from solving the form of reward function, a reward 
function in the form of neural network was designed, a 
Markov decision process was established for EV charging, 
and then the DDPG algorithm was combined to complete the 
EV charging control strategy considering the wind power 
fluctuation. 

The remainder of this work is organized as follows: 
Section 3 first expounded the principle of EV collaborative 
wind power digestion, introduced the MDP of EV charging 
control strategy, and designed a neural network to fit the 
reward function and improve DDPG. Section 4 analyzed the 
calculated example and mainly introduced the setting of RL 
environment and analysis of training results. Section 5 
summarized the whole study. 
 
 
3. Methodology 
 
3.1 Principle of EV collaborative wind power digestion 
Under the influence of natural environmental factors and 
technical limitations, wind power output is prone to reverse 
peak load regulation and evident fluctuation. The wind 
curtailment phenomenon can easily occur when the power 
supply structure is single, namely, when the adjustable 
power supplies are limited and there is limiting value on the 
power transmission section. When used as adjustable loads, 
EVs can effectively inhibit the wind power fluctuation and 
further improve the quality of wind power. 

As shown in Figure 1, the equivalent load of wind power 
and EV can be adjusted by changing the charging power so 
as to reduce the fluctuations of wind power at the grid-
connected side during the EV charging process, especially 
when EVs are connected to continuous adjustable charging 
piles. 

In order to simplify the limitation of charging time 
permitted by EV users and consider the optimization 
operation under multiple objects (charging cost and wind 
power fluctuation), the weight method was used to transform 
the multi-objective problem into a single-objective problem, 
so the optimization objectives of EV charging behavior are 
as follows: 
 

              (1) 
 

                               (2) 
 

                                  (3) 
 

                                             (4) 
 
 Where  is the fluctuation of the equivalent load of EV 
and wind power; is the charging cost; is the 
proportionality coefficient of optimization objective, 

; stands for the initial charging time of EV; 

denotes the ending time of EV charging;  is the 
equivalent load of  EV and wind power; represents the 
wind power at time ; is the power output by the charging 
pile at time ; and is the electricity price at time . 
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Fig. 1.  Conceptual diagram of charging control based on minimum fluctuation of equivalent load 

 
 
3.2 EV charging control model 
In this study, the EV charging control model was formulated 
as a MDP with discrete time step. In short, the next state 
only depended on the present state and action, which was the 
precondition for using DRL. 

The model included five elements , where 
 represents the state set,  is the action set,  stands for 

the rule and probability for transferring the action  under 
the present states to the next state ,  is the return 
function of environment; and is the discount factor of 
return function, where: 

(1) . The state space 
includes the wind power and change rate , charging 

power and change rate of charging pile, electricity 
price , and state of charging ((SOC) ) of EV battery at 
the present time , as well as the time needed to meet the 
user demand and user permitted charging time . Here, the 
state space contains a characteristic quantity—user permitted 
time , indicating that users can change the charging time 
requirement whenever possible so that the model can 
conform more to the uncertainty of actual users. 

(2) , where the action  is the variable quantity of 
power output by the charging pile. In this study, the MDP of 
EV charging control model consisted of 96 time steps 

. When the EVs were charged by connecting 
to the charging pile and the charging power was kept 
unchanged within each time step, the mathematical charging 
model is expressed as follows: 
 

                       (5) 

 
where is the minimum value of charging power;  is 
the maximum value of charging power;  is the SOC at 
the previous time;  denotes the charging efficiency;  
stands for the unit time step, namely, 15 min; and  is the 
maximum value of SOC. 

In addition, the action is subjected to the following 
limitations because charging piles have many types: 
 

                                                        (6) 
 
where and represent the minimum and maximum 
values permitted by the charging power of the charging pile 
number . 

 (3) , the transfer probability decides how 
the environment skips to the state  at the next time step. 

(4) , which represents the cumulative reward of the 
state transformed into the state after the action is 
completed. 
 

                       (7) 
 
where  is the immediate reward of the state  transformed 
into the state  by executing the action  at time . 

(5) , and the discount factor facilitates the 
cumulative reward to trade off the future reward. 
 
3.3 DRL architecture 
DRL aims to acquire the maximum cumulative reward, but 
the immediate reward function in cumulative reward has a 
bearing on the quality of agent training. A good instant 
reward function that fully include environmental factors and 
comprehensively describe the objective optimization degree 
can contribute to the fast convergence of neural network in 
the training process. 

 
3.3.1 Neural network of instant reward function 
Considering that the neural network had the potential of 
fitting any functions, a neural network of immediate reward 
function (RN) was designed in this study. The nerve cell 
structure adopted at the hidden layer of this network is 
shown in Figure 2. 

The activation function of nerve cell is a rectifying linear 
function (RELU), as shown in Formula (8), and the output 
function is as seen in Formula (9). If introduced into the 
neural network, then could promote the high sparsity 
of network to improve its temporal and spatial efficiency and 
avoid gradient vanishing. 

The neural network of immediate reward function was 
set as the multilayer perceptron type, and the hidden layer 
was of (768,96,8) structure. The feature of reward was 
learned from the characteristic state using the network, so 
as to provide an appropriate immediate reward value in any 
states. 
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Fig. 2.  Neuron diagram of reward function 
 

                             (8) 

 
                          (9) 

 
As shown in Figure 3, the designed neural network was 

combined with the EV system to obtain a complete EV 
interaction environment. The EV environment received and 
executed the action  to obtain the state at the next time 
step,and the present state obtained the immediate reward 

through RN. The obtained data could be trained by DRL 
as samples. 

 
Fig. 3. Schematic diagram of an interaction between RN and EV 
environment 
 
3.3.2 Particle turbulence operation 
In this study, DDPG was used as the RL method, which not 
only absorbed the single-step updating framework of “Actor-
Critic” (AC) but also took full advantage of the fixed 
network mode and experienced the replay technique of 
“Deep Q-Learning” (DQN). Hence, it had the more effective 
learning ability on continuous actions. In Figure 4, four 
neural networks, namely, Actor-Network, Critic-Network, 
Actor-Target-Network, and Critic-Target-Network, were 
reported. The improved DDPG was obtained by adding RN. 

The input and output of Actor-Network were the present 
state  and action , respectively. After receiving the 
output of Actor-Network and the state , the Critic-
Network outputs the function values that correspond to the 
output state and action, and the values were applied to the 
parameter updating of Actor-Network and calculation of loss 
function (TD-error). The Actor-Target-Network was just 
slightly different from the Critic-Target-Network.  

 

 
Fig. 4.  Stucture of reinforcement learning 

 
The concrete training process of optimized charging 

control is presented as follows: 
The parameters of neural network were 

initialized, and each parameter included the weight 
and bias . 

the present state was 
obtained by the interaction with the environment. The action 

was acquired on the basis of the present state through the 
Actor-Network. 

The action was taken as the expectation and  as the 
variance to construct a normal distribution  
followed by the random processing of output action. The 
value of depended on the exploration degree, and it would 
gradually decline with the training process, that is, it was 
finally subjected to the action output by the network. 

The action was executed by interacting with the 
environment to obtain the next state and reward. The state 
and action at time and those ( ) at time 

were put into the experience replay buffer. The batch 
training and learning began after the data in the experience 
replay buffer reached the maximum capacity. 

The Actor-Target-Network began receiving the state at 
the next time and outputted the actual executed action. 

The Critic-Network evaluated the present state and 
action to obtain the value function, whose value  
had two functions. On the one hand, it was used to calculate 
the loss TD-error, and on the other hand, it updated the 
Actor-Network together with the output of this network. The 
loss function is listed as follows: 
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where is acquired by calculating the immediate reward  
and output value of Critic-Target-Network at time 

.  is the output value of the Actor-Target-

Network. 
The Actor-Network was updated through the following 

formula: 
 

  (12) 

 
The updating was further implemented through the 

parameters of back propagation Actor-Network. 
 

                                           (13) 
 
where and in Formula (14) correspond to the learning 
rates of respective networks. 

Through the back propagation, the Critic-Network could 
be updated by the loss function . 
 

                                               (14) 
 

The soft updating mode was adopted for the target 
network. 
 

                                       (15) 

 
where is the soft updating factor. 

 
 

4 Result analysis and discussion 
 

4.1 Data environment settings 
As seen in Table 1, the wind power and its change rate, 
charging power of charging pile and its velocity, battery 
capacity of EV and permitted charging time all followed the 
uniform distribution. The initial wind power was 
randomly generated in the uniform distribution of 

. Similarly, the change rate of wind power was 
randomly generated in . With the lapse of time, the 
wind power at the next time was decided by the wind power 
and rate at the present time. The initial charging power  
of the charging pile followed distribution, the 
initial charging velocity of charging pile was sampled 
from , and the at the next time was generated 
by the RL network and restricted within . Similar to 
wind power, the caring power of charging pile at the next 
time depended on  and . The electricity price 

followed the normal distribution of , and 
its sampling was restricted within . The initial 
battery capacity of EV was randomly generated from 

. The user permitted charging time was sampled 
from . 
 
 
 
Table 1. Model Parameters Settings 

Model Parameters Distribution 
Wind power   

Wind power rate   

Charging power   

Charging power rate   

Energy price   

Battery energy level   

Battery capacity   

Allow charging time   

 
As it was assumed in this study that the users’ charging 

demands must be satisfied, the user permitted time also 
must be greater than the needed charging time , which 
was calculated on the basis of time spent in fully charging 
the EV at the maximum power as follows: 
 

                                         (16) 

 
where  is the maximum charging power of the charging 
pile;  is the battery capacity of EV; and is the battery 
capacity of EV at time . 

The hyper-parameter settings of RL are listed in Table 2. 
The total number of training episodes was 40,000. Following 
the test, the number of episodes  in each test set was set 
as 200. Each step size represented 15 min, and the permitted 
maximum charging time was 5 h, so the highest number of 
steps in each episode was set as 20. Learning rates and 

 of two networks in RL were set as 0.001, and the 
discount factor  was set as 0.9. The capacity of 
experience replay buffer, batch training size, and soft 
updating factor were set as 20,000, 32, and 0.01. 

 
Table 2. Hyperparameters Settings. 
Model Parameters Value 
Total number of episodes for training  40000 

Total number of steps for each episodes  200 

Test the model per episodes  20 

Learning rate for actor  0.001 

Learning rate for critic  0.001 
Discount factor  0.9 

Size of replay buffer  20000 

Batch size for learning  32 
Soft update factor  0.01 
 
4.2 Training results of EV charging optimization 
First, Figure 5 displays the training results of Formula (1), 
which is an immediate reward function. To facilitate the 
observation, the average reward of 20 training episodes was 
selected. The reward value began converging at the 13,000th 
episode and tended to be steady at the 18,000th episode until 
all episodes were ended. 

The training results of RN are presented in Figure 6. The 
reward value began converging at the 4,500th episode, 
reached the maximum value at the 5,500th episode, and kept 
steady fluctuation until all rounds were ended. 
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Fig. 5.  The learning curve of DDPG with equation (1) as the immediate 
reward function 
 

 
Fig. 6. The learning curve of DDPG using neural network as an 
immediate reward function 
 

By comparing Figure 5 and Figure 6, the learning curve 
of the improved method could be converged fast, and the 
convergence process was reduced from 5,000 to 1,000 
episodes. After the maximum reward was reached, the 
learning curve fluctuated greatly because the improved 
immediate reward contained more state quantities. 

 
Fig. 7.  Line chart of forecasted wind power output and energy price 

 
The trained agent had good performance in the test set. 

Besides the current electric quantity of EV and user 
permitted charging time, the agent needed to acquire the 
predicted wind power quantity and electricity price, as 
shown in Figure 7, where the dotted line denotes the 
predicted wind power. Although the predicted value within 
150 min was given, the agent could only acquire the 
predicted value within 15 min in the training process 
because of the uncertainty of wind power. The solid line 
represents the electricity price. Figure 7 also shows that the 
electricity price was highly correlated with wind power. In 
the test case, the initial SOC level was set as 0.06 and the 
battery capacity as 59 KW. The user permitted time was 
5.75 h. 

After being optimized through the improved DDPG, the 
charging pile, namely, the agent, could complete the EV 
charging within the user-permitted time and optimize it 
under different proportions of wind power fluctuation and 
electricity price. As shown in Figure 8, it took different time 
for the charging pile to complete EV charging under 
different  values, and the charging power was changing 
with the wind power fluctuations, thereby reducing the 
fluctuations of wind power. The charging power under 

experienced no obvious change in comparison with 
that under . Figure 7 shows that the trend of wind 
power was approximate to that of electricity price. As shown 
in Figure 9, the change rate of charging power was also 
changed with the change rate of wind power, the functions 
of EVs, as generalized energy storage units, could be fully 
exerted, thereby buffering the wind power consumption. 

 
(a)                                                                                   (b) 

Fig. 8.  Wind power and charging power in the proportion of: (a) . (b)  
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(a)                                                                                   (b) 

Fig. 9.  Wind power rate and charging power rate in the proportion of: (a) . (b)  
 
As it was difficult to predict user behaviors, the user 

uncertainty was simulated by changing the permitted 
charging time in the above case. To be more specific, the 
permitted time was altered into 2 h when the charging 
proceeded to 60 min, namely, 8 step sizes of agent. The 
optimization results are presented by the dotted line in 
Figure 10. The agent did not rely upon the complete 
charging period, but instead, they could perform appropriate 
action by only needing the data in similar cases. Therefore, 
the agent could serve individual users. 

The above experiments have proved the effectiveness of 
the proposed PSO-net algorithm. The turbulence operator 
and the local search strategy account for the good 
performance  
 

 
Fig. 10.  Diagram of charging power and SOC for changing the 
allowable time during charging 
 
5. Conclusions 
 

Deep reinforcement learning requires an interactive 
environment to provide effective feedback. To improve the 
convergence of DRL training and obtain effective agent 
through training, an instant reward function was designed in 
this study, and an EV charging control strategy based on 
DRL was proposed for the real-time feedback of 
environmental state and overcoming the influences of 
uncertain factors on the charging process. The following 
conclusions were drawn: 

(1) The instant reward function based on neural network 
can contain all state quantities of EV environment, and the 
network itself is of plasticity, so it can be used to improve 
the learning performance of DRL. 

(2) The EV charging control strategy based on improved 
DDPG can change the control strategy according to the 
changes in optimization objectives and also adjust it 
according to the changes in EV environment. 

The proposed charging control strategy based on DDPG 
can realize the optimized EV charging control under 
uncertain wind power, electricity price, charging pile, EV, 
and user requirements. However, the control strategy is not 
extended to multiple agents; hence, its extensibility remains 
to be further tested. 
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