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Abstract 

 
In Vehicular Adhoc Network, vehicles need to transmit their original mobility information, in order to maintain the 
communication reliability for efficient performance of the VANET application. However, some factors such as high 
broadcasting rate, affect the information accuracy and network reliability. For an effective broadcasting, which maintains 
network reliability and information accuracy, the broadcasting rate and number of beacons transmitting should be reduced. 
In this paper, a broadcasting algorithm namely, Traffic Condition Aware Customized Beacon Broadcasting Method (TCA-
CBB) is proposed. TCA-CBB method works based on the traffic condition and adaptively fixes the broadcasting rate 
according to the current position of the vehicle. Adaptive Extended Kalman Filter (AEKF) is used to predict the current 
position at broadcasting vehicle side and receiver vehicle side. TCA-CBB is fragmented as (i) Broadcasting Vehicle 
Segment (BVS) and (ii) Adjacent Vehicle Segment (AVS). Each segment runs a position prediction algorithm called 
Adaptive Extended Kalman Filter (AEKF), to predict their current position to maintain position accuracy at both the sides. 
BVS gathers mobility information from Mobility Data Gathering Unit (MDGU) and Traffic Condition Estimation Unit 
(TCEU) supplies model parameters to the mobility information such as position, speed and direction gathered from MDGU. 
Self Position Estimation Unit (SPEU) predicts the current position of the Broadcasting Vehicle (BV). Based on the error 
threshold, the importance of the beacon message is estimated. If the beacon message is important, then it is constructed and 
scheduled for broadcasting by the Beacon construction and Broadcasting Unit (BCBU). Next Adjacent Vehicle Segment 
receives the beacon message by Beacon Message Receiving Unit (BMRU). Adjacent Position Estimator Unit (APEU) 
predicts the current position of the Adjacent Vehicle (AV). The accuracy of the Adjacent Vehicle Position relies on BV’s 
current position. The omitted or lost beacon message is reconstructed using the information shared by the Broadcasting 
Vehicle. The performance of the proposed method is compared with existing methods such as PPBR, ABR and SAB. The 
results obtained by the proposed method shows that, TCA-CBB outperformance the existing works. 
 
 Keywords: Adaptive Kalman Filter, Broadcasting Rate, Mobility Information, Communication Reliability, Position Accuracy, Beacons 
Message, Error Threshold 
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.1. Introduction 
Vehicular Ad Hoc Networks provides various kinds of 
applications for enhancing road safety and entertainment 
facilities [1]. VANET is constructed of vehicles with On-
Board Unit (OBU), Road Side Unit (RSU) and Centralized 
Authority (CA). Vehicles can communicate with nearby 
RSUs (Vehicle-to-Infrastructure) or with each other (Vehicle-
to-Vehicle) [2]. VANET is specifically designed for 
providing safety applications and to spread awareness such as 
cooperative collision warning. Connected vehicles detect the 
emergencies and spread warning messages to the drivers so 
that they can take necessary actions such as accident message 
alters the drivers to take diversion [3]. Modern researchers 
concentrate on V2V communications to provide flexible and 
reliable safety communication [4]. Every year accidents cause 
huge fatalities and losses such as injuries, loss of property and 
loss of time and energy [5]. By enhancing the VANET safety 
applications, human can obtain potential benefits. In order to 
enhance the performance of VANET applications, 
researchers depend on availability and accurate data of recent 
vehicle trajectories [6]. This information is passed in the form 
of beacon messages. Due to the dynamic nature of VANET 
and frequent changes in the environment most of the safety 

application require high range of broadcasting messages. in 
varying vehicle density, high beacon broadcasting is essential 
to maintain network liveliness and performance of the safety 
applications [7]. Beacon packets contain the unit block of 
VANET such as speed, position, direction and acceleration. 
According to the European and U.S. Standards, it is suggested 
that the for 1 km communication range the broadcasting rate 
to be 10 messages per second (10Hz). Regrettably high rate 
of transmitting beacons definitely create congestion in the 
communication channel [8]. This may increase when vehicle 
density is high. In this situation the number of controversy 
also becomes higher and this results in huge possibility of 
congestion, high channel usage and low change of accessing 
the channel. The beacon message containing mobility 
information will expire soon due to the high velocity of 
vehicles [9]. Researchers handled this issue by increasing the 
frequency of the beacon message. But this solution leads to 
high overhead in the channel. In Urban scenarios, continuous 
beacon message broadcasting creates congestion in the 
channel. Other than channel congestion, fading, link breakage 
and hidden nodes are most troublesome in order to maintain 
communication reliability.  The beacon messages can operate 
in 5.9 GHz band according to IEEE 802.11p/WAVE and 
share a channel part called control channel. The hidden node 
problem is considered as the serious problem which affects 
the performance of VANET broadcasting [10]. All these 

 
JOURNAL OF 
Engineering Science 
and Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: sumiphdit@gmail.com  
ISSN: 1791-2377 © 2021 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.142.04 



S. Sumithra and R. Vadivel/Journal of Engineering Science and Technology Review 14 (2) (2021) 23 - 33 

 24 

issues results in high broadcasting rate which is not suitable 
for high vehicle density and ephemeral situations and leads to 
unreliable communication. Final result will be the loss of 
mobility information. Researchers suggested many 
broadcasting solutions for adaptive broadcasting depending 
upon the vehicle density, driving situations and channel 
characteristics. Researchers aimed to minimize the 
broadcasting rate so that communication reliability is 
maintained in a level. But these solutions sacrifice accuracy 
to maintain reliability [11]. This directly affects the 
performance of the VANET applications. Therefore the 
existing broadcasting approaches deals the broadcasting 
scenario and the mobility prediction scenario in different 
manner. 
 The motive of this paper is to concentrate on improving 
accuracy while maintaining reliability by reducing the 
broadcasting rate. A new approach called, Traffic Condition 
Aware Customized Beacon Broadcasting Method (TCA-
CBB) is proposed. As the vehicle status changes frequently, 
the broadcasting rate may also differ. For Example: for high 
vehicle density areas, low broadcasting rate is more 
compatible as well as in low vehicle density areas high 
broadcasting is suitable. Broadcasting rate is customized 
based on the vehicle mobility information such as direction 
and speed. In TCA-CBB, the speed and direction of a vehicle 
is obtained from the Mobility Data Gathering Unit (MDGU) 
which employees OIAE-KF. The proposed TCA-CBB 
method is divided into two major segments. Broadcasting 
Vehicle Segment (BVS) and Adjacent Vehicle Segment 
(AVS). First, Traffic Condition Estimation Unit (TCEU), Self 
Position Estimator Unit (SPEU) and Beacon Construction and 
Broadcasting Unit (BCBU) construct Broadcasting Vehicle 
Segment. TSEU obtains the mobility characters from the 
MDGU and build the mobility model parameters using time 
series Autoregressive Yule Walker method AR(p). SPEU 
predicts the sender vehicle’s current position by using 
Adaptive Extended Kalman Filter (AEKF). This unit 
maintains the accuracy of the sender position estimation by 
fixing a threshold. BCBU is responsible for deciding whether 
to broadcast the mobility message or not. The beacon message 
is constructed only when the prediction accuracy is greater 
than the threshold value. BCBU takes care of the beacon 
message construction and the beacon broadcasting. Such that 
broadcasting rate is reduced according to the vehicle behavior 
and the traffic condition by transmitting the beacon messages 
as per the prediction accuracy threshold. Second, Adjacent 
Vehicle Segment (AVS) is build by Beacon Message 
Receiving Unit (BMRU) and Adjacent Position Estimator 
Unit (APEU). BMRU is responsible for receiving the 
incoming beacons which is constructed using predicted 
sender position, mobility model parameters and the threshold 
value. APEU estimates the position of the adjacent vehicle 
using AEKF. This prediction helps to predict the omitted or 
lost beacon messages.  
 In this paper is organized as following sections. Section I 
explains the introduction part of the research work. Section II 
talks about the literature survey conducted based on the 
research work. Section III demonstrates the proposed work in 
detail. Section IV illustrates the performance evaluation, 
simulation and the results obtained by the proposed work. 
Final section concludes the research work.  
 
 
2. Related Works 
 

Modern research analysis proves that ordinary fixed 
broadcasting rate is not much appropriate for extremely 
dynamic traffic situations such as Vehicular Network. Fixed 
broadcasting rate affects both VANET applications and their 
performance such as communication cost. This results in 
inaccurate measurements. Previous findings shows there are 
many adaptive broadcasting approaches, which can be 
classified based on adapting the broadcasting rate, adapting 
the transmission power, and hybrid adaptation. The first 
approach adaptive broadcasting rate is aimed to take the 
broadcasting rate suitable for specific situations like high 
channel occupying time, high vehicle density and high 
message drop. This approach mainly aims to reduce the 
broadcasting beacons and enhance the communication 
reliability. The second approach of adapting transmission 
power provides high communication reliability by reducing 
the number of communicating vehicles. This is done by 
lessening the communication range with fixed broadcasting 
rate. Chen and Chang [12] suggested that transmission power 
control has an disagreed impact on communication 
trustworthiness. This approach splits the congestion part into 
several broadcasting regions. Due to this divided regions, the 
vehicles are unable to detect each other signals. As the result, 
the hidden terminals may increase and congestion is created. 
Medium access control methods bring homogeneous 
distribution while Transmission power control approach 
brings heterogeneous distribution. The third approach is the 
combination of broadcast rate adaptation and transmission 
power adaptation to enhance the efficiency of communication 
channel utilization. Even though, this approach also has some 
demerits such as not considering information accuracy. 
Yongtae Park [13] suggested an application level messaging 
frequency estimation scheme called Frequency Adjustment 
with Random Epochs (FARE). This approach significantly 
improves the Basic Safety Message (BSM) using less 
bandwidth than IEEE 802.11p. 
 To predict the omitted information from the previously 
received beacon, each object vehicle uses a position deduction 
model called Neighbor-Estimator for each neighbor. Here the 
threshold value is fixed to 0.3 meters lateral and 0.5 meters 
for longitudinal errors. Neighbor estimator model works 
based on dead reckoning by kinematic equations from the 
vehicle. This model is aimed to reduce the rate of 
broadcasting while maintaining the accuracy. But some 
assumptions like ideal communications are unrealistic for 
VANET which produces inefficient results. S. Rezaei et al. 
[14] proposed an adaptive communication scheme for 
Cooperative Active Safety System (CASS). This approach 
uses a vehicle to frequently broadcast safety related 
information for every 100 ms. The simulations shows CASS 
could perform better for every 500 ms. Nevertheless the linear 
vehicle movement and the ideal communication are assumed. 
This produces unrealistic results. Another estimator called 
Remote-Estimator, which predicts present position from 
previous position estimated using Self-Estimator.  Schmidt et 
al. proposed Situation Adaptive Beaconing (SAB) approach, 
which depends on vehicle’s status and the road traffic 
situation [15]. In addition, SAB is categorized into two rate 
adaptation schemes depending on vehicle’s movement and 
the neighbor vehicle movement. However, the minimization 
of broadcasting beacon rate is not concentrated here. Ghafoor 
et al. [16] proposed an Intelligent Adaptive Beaconing Rate 
(ABR) approach depending upon fuzzy logic to maintain the 
frequency of beacon broadcasting by considering traffic 
characteristics. ABR works based on same direction the 
vehicles are travelling. The status of the vehicles is the input 
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of the fuzzy decision making system. This induces to adjust 
the beaconing rate according to the traffic characteristics. The 
ABR system showed improvement in communication 
reliability in dynamic situations for certain point. But in this 
scheme the impact of accuracy of beacon information and the 
communication reliability is not considered. Moreover, the 
ABR scheme cannot cope up with emergency situations such 
as declaration or lane changing behavior. Variables such as 
channel busy time, vehicle density and the rate of collision are 
extremely dynamic even in minimum time intervals. Zemouri 
at al. [17] proposed an approach to handle the congestion 
problem in channel. Authors introduced a novel vehicle 
centric short-term density prediction scheme. This scheme 
estimates the density of the vehicles inside the 
communication range of a given vehicle. The vehicles should 
adapt their current state of network as parameters within the 
next time window. This is a hybrid scheme of adapting both 
power transmission and broadcasting rate. This approach 
enhances the network performance but the accuracy achieved 
is not analyzed.  Liu and Wang [18] proposed a Position 
Prediction Based Beacon Rate (PPBR) approach based on 
position prediction to decrease bandwidth consumption by 
reducing beacon frequency. In this approach instead of using 
periodic beacon broadcasting, the vehicles track their 
neighbors by predicted position. This method induces the 
beacon broadcasting only when the prediction error exceeds 
the predefined tolerance. A switching approach was designed 
based on maneuvering detection to swap between the motion 
types. However this approach doesn’t come up with highly 
dynamic situations.  Yin, et al. [19] proposed an analytical 
model for MAC and Application level performance 
evaluation in dedicated short-range communications (DSRC) 
for periodic beacon message dissemination.  
 On summing up, the performance of the broadcasting 
approaches in VANET clearly depends upon the accuracy of 
the prediction measurements in both sender and adjacent 
vehicles. But due to the ephemeral nature of VANET, vehicle 
mobility characteristics such as speed, direction and position 
may change rapidly. Vehicle may enter in and go out another 
vehicle’s communication range within a second. This creates 
frequent link broken communications which leads to 
asymmetrical arrival of beacons from the sender vehicles. 
Due to this situation the information from the broadcasted 
beacon is highly unreliable. The existing broadcasting 
approaches concentrated on reliability of the information 
skipping the accuracy [20]. In this paper, the accuracy of the 
mobility information is focused. By using this, at highly 
dynamic traffic conditions, broadcasting rate is customized 
based on the threshold. Therefore, the enhanced accuracy of 
sender prediction and the adjacent prediction reduces number 
of broadcasting messages and improving the communication 
reliability automatically. 

 
 

3. Traffic Condition Aware Customized Beacon 
Broadcasting Method (TCA-CBB) 
 
The aim of the proposed TCA-CBB method is to minimize 
unwanted transmissions in VANET while maintaining 
security information accuracy for achieving reliability and 
accuracy at the same time [21].  In dynamic traffic situations 
such as high density and low density environments, high and 
fixed broadcasting rate is not suitable.  Based on the traffic 
condition, each vehicle is allowed to choose their 
broadcasting rate. Therefore broadcasting decision is an 
individual decision. In VANET the mobility information of 

the vehicle is associated with time, so current mobility 
information is calculated from previously received mobility 
information.  In this paper the vehicle which broadcasts the 
mobility information is considered as Broadcasting Vehicle 
(BV) whereas the vehicle which receives the mobility 
information is called Adjacent Vehicle (AV). Both the BV 
and AV segments will be placed in a single vehicle. Because 
a vehicle could broadcast a message as well as receive a 
mobility message. First Segment is the Mobility Data 
Gathering Unit (MDGU), which is responsible for predicting 
the current position of the vehicle. The broadcasting vehicle’s 
position, velocity and direction are obtained here by using 
Optimal Innovation Based Adaptive Estimation Kalman 
Filter (OIAE-KF).  Broadcasting Vehicle Segment (BVS) is 
assembled based on Mobility Data Gathering Unit (MDGU), 
Traffic Condition Estimation Unit (TCEU), Self Position 
Estimator Unit (SPEU) and Beacon Construction and 
Broadcasting Unit (BCBU).  TCEU is used for building 
mobility parameters using the mobility information such as 
current position, velocity and the direction from OIAE-KF in 
MDGU. Traffic Condition based prediction model parameters 
are short term patterns trained from the previously estimated 
mobility models. SPEU uses Adaptive Extended Kalman 
Filter (AEKF) for to estimate the broadcasting vehicle’s next 
mobility state using the short term model parameters from 
TCEU. By comparing the error produced by the self position 
estimator and the error tolerance threshold, the BV decides 
whether to broadcast the mobility information or not.  Beacon 
Construction and Broadcasting Unit (BCBU) constructs the 
beacon message if BV decides to broadcast the message. In 
the beacon message packet, BV attaches the direction and 
speed model parameters along with the noise covariance of 
the AEKF algorithm. Adjacent Vehicle Segment (AVS) is 
responsible for receiving the beacon messages and predicts 
the omitted or lost messages by the mobility model 
parameters received from beacon packets. 
 
3.1. Broadcasting Vehicle Segment (BVS) 
As shown in figure 1, the Broadcasting Vehicle Segment 
(BVS) holds four main units such as Mobility Data Gathering 
Unit (MDGU), Traffic Condition Estimation Unit (TCEU), 
Self Position Estimator Unit (SPEU) and Beacon 
Construction and Broadcasting Unit (BCBU). Optimal 
Innovation based Adaptive Estimation Kalman Filter (OIAE-
KF) is built in MDGU unit, which send the information like 
vehicle’s current position, velocity and direction. This 
information is obtained in an accurate and timely manner. 
OIAE-KF integrates the kinematic measurements and the 
positioning measurements together to produce accurate 
current positioning information.  
 
3.1.1. Traffic Condition Estimation Unit (TCEU) 
Traffic Condition Estimation Unit is indented to obtain the 
short-term model parameters such as speed and direction. The 
speed and direction of a vehicle is converted to an 
autoregressive model with p order. AR(p) model is a 
representation of linear regression process of previous values 
and the current values based on the time series. (i.e.) the new 
output values linearly depend upon the past values. There are 
numerous techniques to estimate AR (p) coefficients. In this 
research article Yule-Walker method is used for modeling 
speed and direction parameters. The value of p is the order of 
autoregressive model, which represents the current value in 
the time series [22]. The value p is a zero mean stationary 
process. The following equation shows the general 
autoregressive process.  
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𝑋" = 𝜙% + 𝜙'𝑋"('     (1) 

 
 A more sufficient and generalized model is AR(p) model 
which is shown in the following equation. 
 
𝑋(𝑡) = 𝜙'𝑋(𝑡 − 1) + 𝜙.𝑋(𝑡 − 2) +⋯ 
+𝜙1𝑋(𝑡 − 𝑝) + 𝑎"     (2) 
 
 As mentioned previously, 𝑝is the order. The value 𝑎"is the 
white noise with constant finite variance 𝜎5. and zero mean. 
The illustration of the AR (p) model contains the form of 
linear regression model when 𝑋"is set as the dependent 
variable. The lagged values 𝑋(𝑡 − 1), 𝑋(𝑡 − 2), . . . . 𝑋(𝑡 −
𝑝)are then set as the advisory variable. Nevertheless, there are 
some variations between the two models. In this paper, the 
past 𝑝 values 𝑋(𝑡 − 1) (i = 1,..., p) decides the  conditional 
expectation of 𝑋"	obtained from the previous data. The final 
AR(p) equation is given as follows.  

𝜙 = 𝐶((')𝑏      (3) 
 

 Where 𝐶 is the auto covariance matrix, b is the 
autocorrelation vector and φ is the vector which holds the 
model parameters which are unknown. It can be shown that: 
 
𝜎5. = ∑ 𝜙"𝜌(𝑡)

1
"=%       (4) 

 
 By solving the above equation, the model parameters are 
obtained for prediction.  The current mobility information of 
the broadcasting vehicle is placed in a measurement vector 
𝑦?@A at time epoch k. The TCEU, outputs the short-term model 
parameters by taking the speed and direction of the 
broadcasting vehicle as the input. Model parameters are 
denoted as  𝜙? and the uncertainties obtained from the model 
parameters are denoted as 𝜎..	 
 

 
 

 

 
Fig. 1. Broadcasting Vehicle Segment (BVS) 
 
3.1.2. Self Position Estimator Unit (SPEU) 
Next Unit is the Self Position Estimator Unit (SPEU) takes 
the coefficients from TCEU as an input along with two 
vectors such as measurement vector 𝑦?@Aof the broadcasting 
vehicle at the time epoch k-1 and the second vector is the 
measurement noise covariance𝑅?('. The output of the SPEU 
is the upcoming position measurement prediction𝑦(?|?(')@A . 
The broadcasting vehicle runs a unit called Self Position 
Estimator Unit (SPEU), which predicts its future position. 
This future position is send to the adjacent vehicle for 
predicting their position so that the adjacent vehicle could 
maintain accurate position. SPEU uses Adaptive Extended 
Kalman Filter (AEKF) to predict the vehicle’s current 
mobility information. OIAE-KF supplies the speed and 
direction measurements to the AEKF obtained at a time 
epoch.  
To drive the Self Position Estimation Unit, have to consider 
the following dynamics: 

 
Priori Mobility State = 𝑥E(?|?(')@A     (5) 

 
Previous State =𝑥E?('|?('@A       (6) 

 

Unknown model parameters vector at time epoch = 𝜙?  
Some parameters need to be initialized before starting the 
AEKF process. These parameters are residing in MDGU. The 
model for prediction is 𝑓?(𝑥E(?('|?(',)@A 𝜙?), the measurement 
noise covariance  𝑅? of measurement noise vector 𝑣?('	and 
the process noise covariance 𝑄?(' of process noise vector 
𝑤?('. The following equation illustrates the AEKF 
measurement process.  
 
𝑥E?|?('@A = 𝑓?J𝑥E?('|?(',@A 𝜙?K + 𝑤?(' 𝑥E?|?('@A =
𝑓?J𝑥E?('|?(',@A 𝜙?K + 𝑤?('     (7) 

 
𝑦E?|?('@A = 𝐻?J𝑥E?|?('@A + 𝑣?('K    (8) 

 
3.1.2.1. Prediction Process 
First, acquire the state 𝑥E?('|?('@A   at k-1 time epoch. Get the 
linear form of the prediction model in the region of vector 
components of the matrix 𝐹?. The mapping matrices 𝑓?(𝑥) 
and ℎ?(𝑥)  both are non-linear from equation 7 and equation 
8.  
𝐹? =

NOP
NQ
J𝑥E?('|?('@A K     (9) 
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𝐻? =
NOP
NQ
J𝑥E?|?('@A K      (10) 

 
 Apply the  and the 𝐻? to the Adaptive Extended Kalman 
Filte 
 
r 𝑥E?|?('@A  and 𝑃S?|?('@A   
 
𝑥E(?|?(')@A = 𝐹?𝑥E(?('|?(')@A      (11) 

 
𝑃S(?|?(')@A = 𝐹?𝑃S(?|?(')@A 𝐹?T + 𝑄?    (12) 
 
 Where 𝑄? is the uncertainty or measurement noise 
covariance, which is equal to𝜎.. 
 
3.1.2.2. Measurement Process 
Current mobility state of the broadcasting vehicle 𝑦E?|?('@A    is 
calculated by SPEU. Now, to obtain the error or residual 
mobility measurement, the actual mobility measurement 
𝑦?@Ais gathered from MDGU. By subtracting the SPEU 
mobility measurement and the actual mobility measurement, 
the innovation error 𝜀?@A is obtained.  
 
𝜀?@A = 𝑦?@A − 𝑦E?|?('@A      (13) 

  
 The innovation error is used for obtaining the error 
tolerance threshold 𝛼?in the Beacon Construction and 
Broadcasting Unit (BCBU). This importance is stored in β. 
When the innovation error exceeds the threshold value, the 
mobility information is considered as important (i.e)(𝛽? = 1 
). If 𝛽? = 0  then the mobility message is not important.  
 
3.1.2.3. Correction Process 
Correction process is used to predict the mobility information 
𝑦?YZ using Dead Reckoning method using vehicle’s constant 
acceleration kinematic model (vehicle sensors 
measurements). This is helpful when the 𝜀?@A  is lower than  
𝛼?for longer time. (i.e) 𝛽? = 1. Once the 𝛽? is set to 1, (i.e) 
𝜀?@A > 𝛼?, the threshold value is updated and trained for a new 
mobility model. Innovation sequence 𝑒? is calculated. 
Kalman Gain is calculated and the corrected phase is applied 
to the AEKF. At the end of the AEKF process, the final 
predicted state 𝑥E(?|?)@A  is estimated at time epoch 𝑘. 𝑥E?|?@A is used 
for estimating the future mobility state 𝑥E?^'|?@A  at the 𝑘 + 1 
time epoch. Uncertainties of the final prediction 𝑃S?|?@A  to be 
send along with the beacon message is also estimated.  
 
𝑒? = 𝑦E?|?('@A − 𝑦?YZ     (14) 

 
𝐾? = 𝑃S?|?('@A 𝐻?TJ𝐻?𝑃S?|?('@A 𝐻?T + 𝑅?K

('  (15) 
 

𝑥E?|?@A = 𝑥E?|?('@A + 𝛽?𝐾?𝜀?@A    (16) 
 

𝑃S?|?@A = (𝐼 − 𝛽?𝐾?)𝑃S?|?('@A      (17) 
 

3.1.3. Beacon Construction and Broadcasting Unit 
(BCBU) 
In the Beacon Construction and Broadcasting Unit (BCBU), 
broadcasting decision is based on the error obtained from the 
SPEU which is denoted as 𝜀? . By subtracting the 𝑦?|?('BV  by 
𝑦?BV, error of SPEU 𝜀? is obtained. Based on the error, the 
broadcasting vehicle decides whether to schedule the beacon 
message or not. When 𝜀?BVexceeds the threshold value𝛼?, the 
mobility message is considered as important and scheduled 

for broadcasting. If 𝜀?BVis less than the threshold value 𝛼?the 
mobility message is not important. If 𝜀?BVis less than 𝛼?for a 
long while, it should reach the maximum updating threshold 
value𝑇d. This happens when vehicle does not change its 
situation. The sampling interval time is counted by a 
variable𝑟?BV, to reach𝑇d. Hence, a mobility message is 
considered as important and ready for broadcasting is any one 
of the threshold condition is reached. i.e (𝜀?BV > 𝛼?||𝑟?@A>Td) 
. At the end of the iteration, the mobility message is set either 
important or not important. This importance is stored in β. 
(i.e) (β=1). The threshold value is updated frequently 
according to the information accuracy obtained from the 
current communication state in order to avoid unwanted 
communication during varying traffic conditions. Threshold 
value is fully depending upon the accuracy achieved from the 
Adjacent Position estimation Unit (APU) after predicting the 
adjacent vehicle position. When all the conditions are 
satisfied (i.e β is set to 1), the beacon message is constructed 
and ready to broadcast. Figure 2 shows the algorithm for 
Broadcasting Vehicle Segment.  
 

𝛼? = g
1, 𝜀?@A ≥ 𝛽?
0, 𝜀?@A < 𝛽?

 

 
𝑦?@A = {𝑦?kYlm, 𝜙?, 𝑅?, 𝑃?|?@A, 𝛽?  
 

 
Fig. 2. Algorithm for Broadcasting Vehicle Segment (BVS) 

 
 

3.2. Adjacent Vehicle Segment (AVS) 
This segment works when an adjacent vehicle receives a 
beacon messages from a broadcasting vehicle. Broadcasting 
vehicles are tending to maintain the status of the adjacent 
vehicles that pass through the communication region of the 

Algorithm 1: Broadcasting Vehicle Segment (BVS) 
 
1 Input   Measurement vector from MDGU  

2 a Measurement noise covariance from MDGU  
3   Model Parameters from MDGU 

4 Estimate   from SPEU   

5    

6 Calculate    

7    

8 Input     

9                

10  DO  
11   { 
12      
13   } 
14  WHILE   

15              ELSE IF  Then 

16  Set    
17              END IF 
18              END LOOP 
19           IF (𝛽? = 1) 
20  Broadcast = Yes  
21  Message = {𝑦n?|?('@A , 𝑅?, 𝑃?|?@A, 𝛽?, 𝜙?} 
22               END IF 

yk
MDGU

φk
⌣yk|k−1
BV yk−1

MDGU ,Rk−1 ,
⌣xk|k−1
BV( )

ŷk|k−1
BV = Hk

⌣xk|k−1
BV

ε k
BV

ε k
BV = yk

MDGU − ⌣yk|k−1
BV

ε k
BV ,α k ,rk

BV ,Tα

IF ε k
BV <α k( )THEN

rk
BV = rk

BV +1

( rk
BV > Tα )

( ε k
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broadcasting vehicle. Vehicles have same service time due to 
the synchronization between them within the vehicle 
communication region.  Synchronization is done based on the 
Local Dynamic Map (LDM). LDM share the mobility related 
information, which are, gathered with various frequency 
intervals from several vehicles. LDM provides reliable and 
real time dynamic view of the traffic situation for the VANET 
applications [23]. As all vehicles are connected with GPS 

which provides a real time service so synchronization is 
possible and valid assumption. It is assumed that the common 
position information of the vehicles is stored in LDM. 
Adjacent Vehicle Segment contains two parts. Beacon 
Message Receiving Unit (BMRU) and Adjacent Position 
Estimation Unit (APEU). Figure 3 shows the diagrammatic 
representation for Adjacent Vehicle Segment. 

 
Fig. 3. Adjacent Vehicle Segment 

 
3.2.1. Beacon Message Receiving Unit (BMRU) 
Beacon Message Receiving Unit (BMRU) receives the 
beacon message from the broadcasting vehicle. The channel 
access time is subdivided into 100 ms. This is called 
Synchronize Interval (SI) [24]. SI is divided as Control 
Channel Interval (CCHI) & Service Channel Interval (SCHI). 
Each contains 50 ms.  All the vehicles in VANET are 
synchronized using GPS transceiver in build in the On Board 
Unit (OBU) of the vehicles. Every vehicle in VANET 
broadcast or receives safety related information through 
CCHI. Non-safety or service related information is 
transmitted through SCHI. Let 𝐿(𝑛)?(' be the vector, which 
holds the list of n number of adjacent vehicle IDs at time 
epoch k-1. 𝜆?('sA is the vector that holds the messages received 
at time epoch k-1 .𝑥E?sAis the vector which holds the total 
beacon messages received at k epochs time. There are two 
situations for each beacon message 𝜆?('sA . One is the 
broadcasting vehicle is previously listed in the AV’s adjacent 
vehicle list 𝐿(𝑛)?(' and second one is not listed. If the 
Broadcasting Vehicle (BV) is already listed in the neighbor 
list of AV,𝐿(𝑛)?(', the beacon arrival status 𝑎?t is set to 1 at k 
epoch time 𝑎?t = 1. The beacon messages which are not listed 
in the AV’s neighbor list 𝐿(𝑛)?(', then the ID of the BV 
which broadcasted the beacon message is enclosed with the 
neighbor list of AV. In some cases, at the end of CCHI 50 ms, 
the BV is present in the neighbor list 𝐿(𝑛)?('but beacon 
message is still not received. In that situation, the arrival 
status is set to zero𝑎?t = 0. A copy of AEKF prediction 
process is applied in the adjacent vehicle for predicting more 
accurate adjacent vehicle position.  
 
 
 

3.2.2. Adjacent Position Estimator Unit (APEU) 
At the adjacent vehicle side, a copy of the SPEU is processed 
as Adjacent Position Estimator Unit (APEU). APEU is fully 
dependent on the reliability of the SPEU. The reliability is 
assured in the SPEU based on the threshold limit. Each 
received beacon message 𝐵?t  assigned as 1 which is a binary 
value.  This is to notify that the beacon message arrival status 
is successful from vehicle 𝑖 in in the adjacent vehicle state 
vector 𝐴𝑉?('. After executing the copy of the AEKF in 
APEU, the following measurement is obtained.  
 
𝑦?
sA(t) = 𝐻?𝑥E?|?('

sA(t) 𝐵?t      (18) 
 

The innovation sequence is obtained by subtracting the 
measured value and the actual value as follows  
 
�̆�? = 𝑦?

sA(t) − 𝑦E?|?('
sA(t)     (19) 

 
 By using the uncertainties such as measurement noise 
covariance𝑅? and final uncertainty𝑃?|?@Aenclosed along with 
the beacons, Kalman gain is calculated. If the beacon message 
is lost or does not arrive, the measurement noise 
covariance𝑅? = 𝜎.𝐼. The covariance 𝜎.grows with time. If a 
beacon is lost, the broadcasting time interval will becomes 
longer. In such case, 𝑅?reaches higher value. Therefore, the 
estimation made by AEKF is stable and moderate. When 
beacon is lost the adjacent vehicle again estimates the𝑅?. The 
final state estimation𝑥E?|?

sA(t)is the prediction result of the 
APEU based on the beacon message at 𝑘time epoch with 
recreating the beacon message𝑦?

sA(t)when it is lost. Figure 4 
shows the algorithm for Adjacent Vehicle Segment. 
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Fig. 4. Algorithm for Adjacent Vehicle Segment (AVS) 

 
 

4. Performance Evaluation 
 
This section describes the simulation setup and the simulation 
process, along with the results obtained from the simulation. 
The simulation starts with two phases, such as traffic 
simulation and network simulation. Simulation for Urban 
Mobility (SUMO) generates road traffic, and Network 
Simulator 2 (NS2) runs the network simulation. MATLAB is 
used for computation. Next Generation Trajectory Data set is 
used to simulate the proposed method [25]. Simulation is used 
to evaluate the effectiveness of the proposed method. Next 
Generation Simulation (NGSIM) data set is the collection of 
the trajectories collected from the real world vehicles. This 
data set is used to build the realistic mobility modes to under 
the driver behavior. The effectiveness of the proposed TCA-
CBB method has been simulated based on fixed broadcasting 
intervals and varying driving behavior [26]. The effective 
performance of the proposed method depends upon the 
robustness of the prediction process of the Broadcasting 
Vehicle (BV) and the Adjacent Vehicle (AV). This factor 
helps to achieve adequate accuracy under varying driving 
behavior and different situations. Two types of broadcasting 
rates such as fixed and customized broadcasting rates are 
conducted for evaluating the proposed method. Three existing 
broadcasting methods such as Situation Adaptive Beaconing 
(SAB) [15], Adaptive Beaconing Rate (ABR) [16] and 
Position Prediction Beacon Rate (PPBR) [18] are used for 
comparison. These existing works are the most related and 
recent works done previously for VANET broadcasting.  To 

setup the VANET wireless channel, 2-ray ground reflection 
model is used. Every vehicle in the VANET environment has 
the communication range of 250 meters. This implements the 
physical layer for transmission. As seen before, SUMO is 
used for establishing the traffic model. An .osm file of 
Coimbatore city is downloaded from the Open Street Map 
(OSM) location which is shown in figure 5. The maximum 
speed of a vehicle is 20 m/s. The simulation area is fixed to 
1000×1000 meters (Coimbatore City area). Totally 200 
vehicles are used for simulation. For MAC layer protocol 
stack, IEEE Standard 802.11 Distributed Coordination 
Function (DCF) is used. Channel Bandwidth is 3 Mbps. The 
interface queue between MAC layer and Data Link Layer 
(DLL) is used for storing packets waiting for channel access 
with maximum of 25 packets. Constant Bit Rate with a value 
of 35 Kbps is the traffic source of simulation [27]. This traffic 
source is the UDP packets generation type. Totally 10 
vehicles are chosen to transmit the data packets. The 
transmitting packet size is 1000 bytes. The simulation time is 
set to 500 seconds. To remove the barriers that affect the 
simulation results, the settling time is set to 25 seconds. 
Figure 6 shows the network file running in SUMO. Table 1 
illustrates the simulation parameters used.  

 
Table 1. Simulation Settings 

Simulation Parameters Values  
Wireless Channel 2-ray channel 
Traffic Simulator SUMO 
Network Simulator NS 2.34 
Map Model OSM (Coimbatore City) 
Max Speed  20 m/s 
Simulation Area 1000×1000 
Number of Vehicles 200 Vehicles 
Transport Protocol TCP UDP 
Routing Protocol DSR DSDV 
Communication Range 250 m 
MAC Layer IEEE 802.11 
Channel Bandwidth 3 Mbps 
Simulation time  500 seconds 

 
4.1. Simulation setup 
In this paper, the noises in NGSIM measurements such as 
speed and acceleration are smoothened using Exponentially 
Weighted Moving Average (EWMA), which places a weight 
and importance to the most recent measurements. The 
position displacement of the vehicle from x-axis to y-axis 
gives the heading angle and the speed of the vehicle gives the 
acceleration. Four different types of clusters such as lane 
changing, car flowing, free flowing and random flowing are 
formed based on the NGSIM dataset. K-means clustering 
method is used for clustering. The advantage of this clustering 
is including all types of traffic behaviors in the simulation and 
committing all driver behaviors in the proposed work. The 
proposed scheme aims to achieve low broadcasting and fetch 
high accuracy. Each cluster contains 50 samples for 
evaluation and totally 200 data samples are used. Samples are 
selected in random based on the distance of the cluster head. 
Beacon message arrival rate is the key factor for 
communication reliability. Few factors influence the beacon 
arrival rate such as beacon size, vehicle density, 
environmental conditions and problems in MAC layer [28]. 
The beacon arrival rate and loss rate depends upon the 
variable scenarios. In this paper, the beacon message loss is 
considered based on different vehicle densities. Table 2 
represents different vehicle density scenario with 100 ms 
sampling time.  

Algorithm 2: Adjacent Vehicle Segment (AVS) 
 
1 Input   Vehicle ID at k-1 time epoch 

2               Status vector of n AVs at k-1 time epoch 

3                Vector for receiving message at k-1  

4                  Vector of beacon received in current time 
k. 
5             Adjacent Vehicle ID 

6 FOR EACH  check  

7             IF ( ) present in  Then  

8                                 = 1 

9                                   

10                                 from BV 

11                                from BV  

12                                from BV 
13              ELSE  
14                                  

15                                  

16                                  

17                                  

18                                    
19             END IF  
20 END LOOP 

L n( )k−1
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AV
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AV i( )
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⌣
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Fig. 5. Street map of Coimbatore city OSM file 
 

 
Fig. 6. Network file running in Simulation for Urban Mobility (SUMO) 

 
Table 2. Scenario number according to vehicle density 

Scenario Number Vehicle Density 
1 Less than 10 
2 10 – 30 
3 30 – 50 
4 50 – 70 
5 70 – 90 
6 90 – 120 
7 120 – 130 
8 130 – 140 
9 140 – 160 
10 16 0 – 180 
11 180 – 200 

 
4.2. Performance Metrics 
The following six performance metrics are considered for 
evaluating the performance of the proposed method: Root 
Mean Square Error (RMSE), Prediction Accuracy, Beacon 
Reduction Rate, Broadcasting Interval, Beacon Broadcasting 
Rate and Beacon Receiving Rate [29].  
Root Mean Square Error: RMSE is used for evaluation the 
level of error caused by the broadcasting algorithms. RMSE 

is the average distance between the predicted position and the 
actual position. Equation illustrates the formulation of RMSE, 
where n is the total number of terms for which the RMSE is 
to be calculated. xi is the observed value, and ^xi is the 
predicted value [22]. 
 

RMSE = ~����
� (QE�(Q�)�

�
     (20) 

 
Position Accuracy: The second metric is the position 
accuracy, which is the variation between the actual position 
of the broadcasting or neighbor vehicle and the predicted 
position using AEKF method. The position is predicted for 
BV before constructing the beacon and AV after receiving the 
beacon message holding BV’s position. To achieve proper 
communication reliability, the position accuracy is very 
important. The efficiency of the broadcasting algorithm is 
determined by its prediction accuracy [23].   
 
Beacon Reduction Rate: The Third metric is the Beacon 
Reduction Rate, which is the number of beacon messages 
granted for transmitting out of the total generated messages. 
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It is important to note that not all the generated messages are 
granted for transmitting. An efficient broadcasting algorithm 
should achieve high Beacon Reduction Rate [24]. 
Broadcasting Interval: The fourth performance metric is the 
Broadcasting Interval (BI), which is the standard time period 
between the beacon messages, which received successfully at 
the neighbor end in a second [25].  
 
Beacon Broadcasting Rate: Fifth performance metric is the 
Beacon Broadcasting Rate (BBR). BBR number of beacons 
broadcasted in a second. A good broadcasting algorithm 
should reduce the broadcasting of beacon messages in 
complicated situations. Increased number of beacons causes 
congestion, so that vehicles could not receive appropriate 
emergency messages. Finally affects the communication 
reliability [26].  
 
Beacon Receiving Rate: Sixth performance metric is Beacon 
Receiving Rate, which is the ratio of beacons received 
successfully at the neighbor vehicle. Some beacons may loss 
due to the dynamic traffic situations. When reducing the 
Beacon Broadcasting Rate, the chance of Beacon receiving 
Rate will increase. This results in improving the 
communication reliability [27]. 
 
4.3. Results and Discussion  
The performance of TCA-CBB is compared with Prediction 
Based Broadcasting Rate Control (PPBR) [18], Adaptive 
Beaconing Rate (ABR) [16] and Situation Adaptive 
Beaconing (SAB) [15]. PPBR decides whether to send the 
beacon message or not based on the prediction accuracy of 
maneuver or non-maneuvering models. ABR is the based on 
the EKF-Baseline prediction algorithm, which is used to 
predict, lost or omitted beacon messages. SAB depends on 
road traffic situation and the vehicle status in consideration 
with the currently available load. The evaluation is based on 
the real communication scenario created by NGSIM dataset 
[30]. The vehicle density is grouped into different scenarios 
as seen in Table 2. First performance metric, RMSE is plotted 
for proposed TCA-CBB method and existing broadcasting 
algorithms such as PPBR, ABR and SAB. As shown in figure 
7, the proposed method appears to be low in RMSE error 
making. According to table 2, when scenario number is 1 (i.e 
vehicle density less than 10), TCA-CBB method produces 
only 7% of RMSE, whereas PPBR, ABR and SAB produces 
12%, 15%, and 20% RMSE respectively. Next, figure 8.a 
shows the position predicted by four broadcasting schemes 
comparing with the actual BV position. It can be seen that the 
proposed TCA-CBB method accurately predicts the BV 
position. The position predicted by other three broadcasting 
algorithms such as PPBR, ABR and SAB varies more than 90 
cm. Likewise; the position is predicted at the Adjacent 
Vehicle (AV) segment is shown in figure 8.b. On seeing the 
graph in figure 8.b, it is clear that the proposed TCA-CBB 

method plots the AV position more accurately. Here, the 
position predicted by other three schemes varies more than 
95cm. Based on BV and AV position prediction, the overall 
prediction accuracy is evaluated. Figure 9 shows the level of 
accuracy gained by each broadcasting algorithm. From this 
graph, it is seen that the proposed TCA-CBB method could 
gain more than 98.99% of prediction accuracy during scenario 
number 11. Other broadcasting algorithms such as PPBR, 
ABR and SAB bring accuracy about 90.31%, 89.6% and 
85.23% respectively. Next performance metric is Beacon 
Reduction Rate.  
 An efficient broadcasting algorithm should reduce the 
number of beacons transmitted in order to maintain 
communication reliability [31]. Figure 10 shows the Beacon 
Reduction Rate estimated by the broadcasting algorithms. 
TCA-CBB produces 98% of Beacon Reduction Rate, whereas 
PPBR, ABR and SAB produce 80%, 85% and 70% of 
Broadcasting Reduction Rate respectively during scenario 
number 11. Beacon Broadcasting Interval is a major factor for 
efficient performance of the broadcasting algorithm [32]. 
Higher broadcasting interval reduces the number of beacon 
packets automatically, which results in network reliability 
[33]. Figure 11 shows the Broadcasting Interval (BI) achieved 
by the broadcasting algorithms. Broadcasting Interval 
gradually decreases from 30.45 seconds 18.26 seconds in 
TCA-CBB method. That means TCA-CBB takes 18.26 
seconds to transmit a beacon packet after a successful delivery 
at the adjacent vehicle side during scenario number 11. Other 
broadcasting algorithms such as PPBR take 13.24 seconds, 
ABR take 10.23 seconds and SAB take 9.2 seconds to 
transmit a packet, not considering about the successful beacon 
delivery. Total number of beacons transmitted for an effective 
communication is mentioned as Beacon Broadcasting Rate 
(BBR). Figure 12 shows the graph of Beacon Broadcasting 
Rate (BBR) generated by each broadcasting algorithm. 
Totally 44 beacons where generated by SAB and 37 beacons 
where generated by ABR. PPBR generated 32 beacons in a 
complete transmission. The proposed TCA-CBB method 
generated 27 beacons at the 11th scenario. This evaluation 
shows that the proposed method gradually decreases the 
Beacon Broadcasting Rate. At the adjacent vehicle side, the 
beacons should receive successfully. However, the lost or 
omitted message is reconstructed at the adjacent vehicle side. 
Even though, the proposed method gives 100% of success rate 
at scenario 1 and gives 94.21% of success rate at scenario 11. 
Whereas the existing methods brings averagely 76.54% of 
success of beacon delivery at scenario 11. The graph of 
Beacon Receiving Rate is shown figure 13. Form these 
simulation results, the proposed TCA-CBB method shows 
effective performance over other three broadcasting 
algorithms used for comparison. Thus, TCA-CBB is proved 
as a good quality-broadcasting algorithm for VANET 
applications.  
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Fig. 7. RMSE (%) Assessment 

 
(a) 

 
(b) 

Fig. 8. (a) Position Prediction Accuracy (cm) in BV. 
(b) Position Prediction Accuracy (cm) in AV 

Fig. 9. Position Prediction Accuracy (%) 

 
Fig. 10. Beacon Reduction Rate (%) 

 
Fig. 11. Broadcasting Interval (s) 

 
Fig. 12. Beacon Broadcasting Rate (number of beacons) 

 
Fig. 13. Beacon Receiving Rate (%) 
 
 
5.Conclusion 
 
In Vehicular Adhoc Network (VANET), each vehicle should 
exchange their mobility information in suitable rate to 
maintain better performance and communication reliability of 
the VANET application . Due to the dynamic nature of 
VANET, high broadcasting rate results in accessing mobility 
information and bandwidth and produces lack of 
communication among the vehicles. Since the traffic 
condition and the environmental behavior changes rapidly, 
fixed broadcasting rate for all sort of traffic situations causes 
unreliable network. There are chances of beacon losing. In 
this paper a broadcasting algorithm namely Traffic Condition 
Aware Customized Beacon Broadcasting Scheme (TCA-
CBB) is proposed. TCA-CBB is introduced to analyze the 
traffic condition and adaptively fix or change the broadcasting 
rate in order to improve the network reliability and accuracy.  
Existing broadcasting schemes scarifies the information 
accuracy to bring effective broadcasting. In the view that, 
each and every individual vehicle mobility in VANET can be 
steady for a while, considering prediction process and driver 
behavior can enhance the network reliability and mobility 
information accuracy. The performance of the proposed 
method is compared with three existing broadcasting 
algorithms such as PPBR, ABR and SAB.  SUMO traffic 
simulator, NS2 with MATLAB, does the simulation of the 
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proposed method. The simulation results show that the 
proposed method TCA-CBB outperforms other three 
broadcasting algorithms such as PPBR, ABR and SAB. 
 

This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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