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Abstract 

 
A computer axisymmetric model, in which periodic vibrations of ring piezoelectric actuators placed on an elastic 
tube of circular cross-section lead to radial deformations of the tube, has been constructed in the form of the 
FreeFem++ solver. As a result of these deformations, a local compression of the microchannel occurs with a 
change in its volume and the corresponding expulsion of the fluid, which induces a flow inside it. The purpose of 
the work is to study the influence of oscillations of piezoelectric actuators on the fluid flow in a microchannel in 
respect to the development of a new technical device, such as a piezoelectric micropump, as well as to carry out a 
numerical analysis of its operation modes. The advantages of the proposed micropump are simplicity of design 
with the possibility of expanding its functionality; small size; fluid flow rate sufficient to supply coolant to the 
micro-gripper chamber; a flexible system for controlling the average fluid flow rate using the number of 
piezoelectric elements involved and their vibration frequency. When testing a computer model, the main sources of 
errors and the limits of applicability of the model were identified. Using the developed profiler, the distribution of 
CPU time is determined depending on the type of physical and optimization problems being solved. To reduce the 
calculation errors, an irregular (matched with the velocity profile) and adaptive (reconstructed at each time step) 
computational mesh for the microchannel was constructed so that the boundary elements on the inner side of the 
tube coincided with the boundary elements of the inner surface of the microchannel. Numerical analysis showed 
that when using an asymmetric scheme for oscillation of a piezoelectric actuators system, it is possible to achieve a 
non-zero average fluid flow rate. The influence of the Dirichlet and Neumann boundary conditions on the 
generated flow is considered, and the propagation of heat into micropipe during its contact with the thermostat is 
analyzed. It was found that the average fluid flow rate is proportional to the number of piezoelectric actuators and 
their frequency; the Dirichlet boundary conditions in comparison with the Neumann ones give a significant 
increase in the average fluid flow rate. An analytical formula that connects the average liquid flow rate with the 
parameters of the micropump operation mode (the number of piezoelectric actuators and their frequency) is 
derived. This formula can be used to calculate the parameters of the operating mode in the software module of the 
device control system in real time.  
 
Keywords: axisymmetrical multi-physics computer simulation, fluid-structure interaction, ring piezoelectric actuator, micropump, micro-
gripper cooling system, FreeFem++ 

 ___________________________________________________________________________________________ 
 
1.Introduction 

 
Recently, mathematical and computer modeling of 
microfluidic systems has been in demand and is actively 
advancing in connection with the development of new types 
of microdevices [1]. The creation of new technical devices 
becomes possible due to the peculiarities of fluid flow in 
microsystems: as the scale of the system decreases, the 
Reynolds Re and Péclet Pe numbers that characterized the 
dynamic properties of the system become small. A small 
Reynolds number (Re < 10) implies a laminar flow, 
corresponding to both most technical microdevices and 
biological systems [2]. Consequently, it becomes possible to 
develop efficient systems for supplying and dosing fluid [3], 
as well as miniature cooling systems [4]. A small Péclet 
number means that during heat transfer the contribution of 
molecular thermal conductivity prevails over convective 
heat transfer, therefore, in microdevices (microheat 

exchanger, cooling system, micro-gripper) in contrast to 
macrosystems both mechanisms of heat transfer must be 
taken into account [5]. The basic performance characteristics 
of microdevices largely depend on the principle of operation 
and design of micropumps as well as hydraulic resistances. 
So, ultra-small cross-sections of channels require a more 
careful adjustment of the boundary conditions between the 
liquid and the working elements in the complete absence of 
the pollution factor. Therefore, the most widespread are 
peristaltic pumps since in them only the deformable element 
has contact with the working fluid [6]. However, when 
calculating operating modes, only empirical formulas are 
used that do not take into account the specifics of the 
application and the scale factor, the magnitude of the 
pulsations is not analyzed, which requires the development 
of accurate theoretical models. 
 The intensive growth in the production of 
microelectromechanical systems [7] and the widespread 
introduction of microrobots [8] are a significant incentive for 
the development of new advansed devices that ensure 
careful handling of microcomponents [9]. The authors of this 
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work have developed and are investigating a capillary 
micro-gripper intended for manipulating flat micro-objects 
and membranes with a sufficient area of a flat side, which 
cannot be held by finger-gripper or other types of 
grippers [10]. The creation of a working model of this 
micro-gripper, built on the basis of a miniature Peltier 
element, requires a cooling system to remove heat from the 
hot side of the Peltier element. Studies by Afshari [11] 
showed that with a decrease in the size of the heat-exchange 
chamber, the efficiency of a fluid cooling system in 
comparison with an air one increases. Removal of excess 
heat power from the Peltier element requires the 
development of a micropump design. Ensuring the stability 
of the micro-gripper operation and the correct synthesis of 
control rules require the development of an appropriate 
mathematical and computer model. 
 The synthesis of the control system [12] of the capillary 
micro-gripper is a complex problem. It is requiring, first of 
all, the solution of the problem of obtaining reliable and 
complete information about the state of the environment and 
the capture itself. The miniature design of the device does 
not allow the use of most sensors typical for robots in the 
classic scale design. The only measuring instruments that 
could be integrated into the micro-gripper are temperature 
sensors, with the help of which the operator or the control 
system obtains information on the degree of heating of the 
"hot" side of the Peltier element and the cooling of the 
working surface [13]. Ambient temperature and humidity 
information is also available through the integration of 
digital temperature and humidity sensors into the work 
environment. This information is not enough to improve the 
performance of the micro-gripper, therefore there is a high 
demand for accurate models describing the operation of the 
device and auxiliary equipment. Condensation of moisture 
from the air occurs only on surfaces cooled below the dew 
point, while the cooling rate and the accuracy of maintaining 
the required temperature directly depend on the efficiency of 
the cooling system [13]. In order to reduce the time required 
for the formation of a liquid film during capture and 
subsequently remove it when releasing a micro-object, it is 
necessary to implement such a micro-gripper operation 
mode when the temperature of its working surface is in a 
vicinity of the operating point (an indirect estimate indicates 
the required range of 0.5–1°C), namely the dew point. To 
synthesize such a high-precision pump performance control 
system, which ensures the stability of the Peltier element, its 
precise characteristics are required. Therefore relevant is the 
realization of complex, computational and natural 
experiments, a good basis for which will serve as an 
adequate computational model implemented without the use 
of empirical data and take full account of the specificity of 
microfluidic systems. Since the final version of the control 
system is planned to be implemented as an intelligent 
system [14, 15], then for its training, adjustment and 
verification due to the absence of measured parameters, it 
will be necessary to use the calculated model data. 
 Note also that the known examples of pumps are 
designed taking into account the specifics of the field of 
application [16] and are fairly large-scale devices. From the 
existing line of pumps it is impossible to select a micro 
pump for the micro-gripper cooling system, which has a 
small size, sufficient fluid flow and a flexible fluid flow 
control system. Besides, the theoretical models developed 
for these micropumps are based on empirical data, which 
does not allow a performed geometric design optimization 
and determine the optimal operating modes. On the other 

hand, the generation of a fluid flow in an elastic 
microchannel belongs to the field of multiphysics, namely, 
fluid-structure interaction (FSI) [17], which requires, when 
developing new technical devices, the construction of new 
mathematical models connecting hydrodynamics, elasticity 
theory, heat transfer process, parametric optimization and 
device control theory [18].  
 With the development of mathematical and computer 
models, the finite element method (FEM) [19] numerical 
simulation software have appeared, which allow modeling 
devices with almost arbitrary geometry [20]. Chiang et 
al. [21] developed an axisymmetric FSI computer model for 
the interaction of a Newtonian fluid with a hyperelastic 
incompressible body and analyzed the stability of 
differential equations written in variational form using FEM 
modeling within the framework of the FreeFem++ numerical 
simulation software [22]. 
 The authors of present work propose the idea of a 
piezoelectric micropump consisting of an elastic tube with 
system of the ring piezoelectric actuators (PEAs) [23]. 
Known models of fluid flow through static hydraulic 
resistance [20] are difficult to adapt to simulate this 
piezoelectric micropump. Therefore, algorithms for 
modeling fluid flow in a channel with a dynamically variable 
geometry have been developed [24]. In the work [25], the 
deformation of the tube was calculated using the equations 
of elasticity, which were solved on its wall. In the 
subsequent work [26], a mathematical and computer model 
of a fluid flow regulator is presented using the dynamic 
forming of hydraulic resistance by compressing an elastic 
tube with a PEA. A model of a micropump that creates a 
fluid flow (with a flow rate up to 50 mkl/s) in a flat channel 
using immersed in it bending PEA was developed [27]. 
Finally, in the work [28], an axisymmetric computer model 
of a piezoelectric micropump was proposed. It is shown that 
an asymmetric oscillation scheme of a system of PEAs 
creates a nonzero average fluid flow in a tube even in the 
absence of an external pressure gradient applied along the 
channel. This model can be used in the development of a 
micropump operating in a closed loop, and become the basis 
for the synthesis method of the software part of its control 
system for the fluid cooling system of the micro-gripper. 
 To determine the parameters of the operating mode of a 
technical device (or change the parameters when switching 
from one mode to another), it is necessary to carry out a 
complete numerical simulation of the device using a 
multiparameter set of input data. By the full factorial 
computational experiment method [29], it is possible to 
determine the degree of influence of the input parameters 
and their mutual influence on the output parameters of the 
device operating mode. The use of factorial computational 
experiments of the second order reveals a nonlinear 
relationship between the parameters [30]. The result of a 
factorial computational experiment is an analytical function 
corresponding with certain accuracy to a complete numerical 
simulation, which can be used in the software of the device 
control system in real time [31]. 
 This paper proposes an extended in comparison with 
work [28] axisymmetric computer model of a piezoelectric 
micropump consisting of an elastic tube and a system of ring 
PEAs with an analysis of its operation modes. This model 
takes into account the boundary conditions of both in 
Dirichlet and Neumann form as well as the processes of 
fluid heat transfer. The advantages of the proposed 
micropump model are simplicity of design with the 
possibility of expanding its functionality (change in the 
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number of PEAs, installation of microvalves, etc.); small 
dimensions (the length of the micropump is 10 mm, and the 
radius is 5 mm); fluid flow rate sufficient to cool the micro-
gripper; a flexible control system of the average liquid flow 
rate by the number of PEAs involved and their vibration 
frequency. 
 
 
2. Problem formulation and governing equations 

 
An axisymmetric flow of a fluid through an elastic tube with 
internal R1 and external R2 radii and length L is investigated. 
A system of annular PEAs of length ℓ is located coaxially on 
the tube. In Fig. 1(a) shows the geometry of the problem and 
introduced the following notation: Γ1 and Γ2  are channel 
inlet and outlet, respectively; Γ3 is axis of symmetry; Γ4, Γ5 и 
Γ6 are inner, side and outer walls of the tube, respectively; 
Γ"
# is contact boundary of the i-th PEA with the outer wall of 

the tube. The dotted lines indicate the geometry extension 
for the heat problem: Γ7 is the thermostat (TS) contact 
boundary with the tube; Γ0, Γ8 are channel inlet and outlet, 
respectively. The cylindrical coordinate system contains the 
radial Or and axial Oz axes of the tube with the origin 
located at its geometric center. The initial prototype of the 
micropump is shown on the Fig. 1(b). The CAD model of 
the updated micropump shell is shown on Fig. 1(c) (up part) 
and Fig. 1(d) (down part). 
 

 
Fig. 1. Geometry and basic notations of a model (a); prototype of the 
micropump (b); CAD model of the up (c) and down (d) parts of the 
updated micropump shell. 

 
 

 An axisymmetric fluid flow is described by the Navier–
Stokes and incompressibility equations [32] 
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where ρ is volume density of fluid; u = (ur, uz) is fluid 
velocity consisting of radial and axial components; t is time; 
p is pressure; μ is fluid dynamic viscosity. 
 Channel deformations are described by the Lamé 

equations [33] 
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where s = (sr, sz) is the deformation vector consisting of 
radial and axial components; λ and η are the Lamé 
coefficients related to Young's modulus of elasticity E and 
Poisson's ratio ν by the expressions 
 

𝜆 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈) , 𝜂 =
𝐸

2(1 + 𝜈). 

 
 Note that the stationary Lamé equations (4) and (5) are 
applicable for the oscillation frequency of PEAs up to 
fe = 100 kHz since the elastic relaxation time is  
𝜏P = 𝑅4R𝜌P/𝐸 ≈ 10UV s, where ρe is the tube material 
density. For a higher frequency, it is necessary to consider 
the dynamic equations. In real PEA the highest operating 
frequency is limited by the resonance frequency fr which is 
usually lower than fe (lead zirconate titanate (PZT) ring 
PEAs has fr order of 20...30 kHz [34], 25 kHz [35], 
50 kHz  [36], 40...90 kHz [23]). Thus the upper limit for the 
frequency, when the model applicable, is defined as 
min(fe, fr). The relative deformations are up to 0.28% so the 
error of linear equations is small. 
 Since the investigated design of the micro-pump is 
supposed to be used in the micro-gripper cooling system, 
then to check the degree of influence of the heated liquid 
from the micro-gripper on the cooling fluid of the micro-
channel, the equation of thermal conductivity is solved  [32]: 
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where T is the fluid temperature; cp is the isobaric specific 
heat of fluid;  is the nabla operator; λT is the coefficient of 
thermal conductivity depending on the temperature of the 
fluid. 
 Equations (1)–(6) were solved numerically by FEM in 
the FreeFem++ package [22], where the integration is 
performed in Cartesian coordinates over the area element 
dS = dxdy. Therefore, it is necessary to transform a given 
area element into cylindrical coordinates (with an area 
element dΩ = dzdr) according to the rule dS = JdΩ, 
according to the rule J = r is the Jacobian of the 
transformation of Cartesian coordinates into cylindrical. 
Time discretization for the heat equation was carried out by 
the implicit Euler method [37] of the first order 
dxn + 1/dt = (xn + 1 – xn)/τ, where for the variable x the indices 
n + 1 and n refer to the current and previous moment in 
time; τ is the time step. 
 The performed numerical analysis showed that when 
using the Euler scheme, the axisymmetric variational form 
of the Navier–Stokes equations quickly becomes unstable. 

Ñ
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The stability of the scheme is provided by the method of 
characteristics-Galerkin for the approximation of the total 
time derivative [21, 22] 
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 Multiplying the equations of fluid dynamics (1)–(3) by 
the Jacobian r, an axisymmetric variational form can be 
obtained 
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where w = (wr, wz) and wp are trial functions. The 
corresponding FreeFem++ code is as follow: 
 
Code 1. Navier-Stokes equations. 
// [uz,ur,p] - variables 
// [vz,vr,vp] - trial functions 
// ThF - channel mesh 
// x denotes the axial component of z  
//    and у the radial component of r 
// convect - Characteristics-Galerkin Method 
problem NavierStokesAS 
([uz,ur,p],[vz,vr,vp],eps=1.e-10, solver=Crout) =  
int2d(ThF)( 
 rho/tau*( uz*vz + ur*vr)*y 
 + muf*(dx(uz)*dx(vz) + dy(uz)*dy(vz) 
 +dx(ur)*dx(vr)+dy(ur)*dy(vr)+ur*vr/y^2)*y 
-(p*dx(vz)+p*dy(vr))*y 
 +(dx(uz)*vp+dy(ur)*vp+ur*vp/y 
+p*vp*epsp)*y) 
+int2d(ThF)( 
-rho/tau*convect([upz,upr],-tau,upz)*vz*y 
-rho/tau*convect([upz,upr],-tau,upr)*vr*y) 
 
 Similarly, for elasticity equations (4) and (5), using the 
replacement 
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where v = (vr, vz) are trial functions with the corresponding 
FreeFem++ code: 
 
Code 2. Lame equations. 
problem LameAS 
([sz,sr],[vvz,vvr],eps=1.e-10,solver=LU)= 

int2d(ThE)( 
(lambda+2.0*mu)*( dy(sr)*dy(vvr)*y+sr/y*vvr ) 
+ (lambda+mu)*dy(sz)*dx(vvr) * y  
+ mu*dx(sr)*dx(vvr) * y 
+(lambda+2.0*mu)*dx(sz)*dx(vvz) * y  
+ (lambda+mu)*(dy(sr)*dx(vvz) * y 
- dx(sr)*vvz) 
+ mu*dy(sz)*dy(vvz)*y ) 
 
 Axisymmetric variational form of the heat conduction 
equation (6) 

b=𝑐#𝜌 G
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where vT is a trial function with the corresponding 
FreeFem++ code: 
 
Code 3. Heat equation. 
problem HeatAS 
(Tf, vT, eps=1.e-10,solver=UMFPACK) = 
int2d(ThF)( cp * rho * Tf/tau*vT * y 
+cp*rho*(uz*dx(Tf)*vT+ur*dy(Tf)*vT)*y 
+lambdaT*(dx(Tf)*dx(vT)+dy(Tf)*dy(vT))*y) 
+int2d(ThF)(-cp*rho*Tfp/tau*vT*y) 
 
 The initial conditions correspond to the absence of 
deformations on the outer wall s = 0 and the fluid at rest 
u = 0. 
 The boundary conditions for the fluid velocity are as 
follows: 
Γ4:	𝑢( = 0, 𝑝 = −Δ𝑝/2, 
Γ?:	𝑢( = 0, 𝑝 = Δ𝑝/2, 
Γp:	𝑢( = 0, 
Γq:	𝑢( = 0, 𝑢, = 0, 
where Δp is the pressure difference at the inlet and outlet of 
the tube. 
 The microtube is fixed at the ends 
 
Γ5: sr = sz = 0.     (7) 
  
 Neumann boundary conditions (NBC) for deformations 
are determined from the equilibrium condition 𝜎(( =
−𝑝"

#(𝑡), where the stress tensor component 𝜎(( is balanced 
by the pressure −𝑝"

#(𝑡) exerted on the tube by the i-th PEA 
at the boundary Γ"

#: 
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+𝜆 1JC
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 Since the ends of the micropipe are fixed (7), then in 
condition (8) it is necessary to prohibit the transverse 
displacements uz = 0, therefore, the NBC will take the 
following form 
 
∫ 3(𝜆 + 2𝜂) 1J71( 𝑣( + 𝜆

J7
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− 𝑝"
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 When using the Dirichlet boundary conditions (DBC), 
the displacements of the PEAs are specified by fixed values 
𝑠(,"
# (𝑡), and the DBC are of the form 

 
Γ"
#:	𝑠( = 𝑠(,"

# (𝑡)			(𝑖 = 1,… ,𝑁).     (10) 
 
 For the stability of the numerical scheme, an additional 
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condition is introduced on the boundary Γ3: s = 0. 
 Let's note the physical meaning of NBC and DBC. NBC 
stands for "soft" PEA, the shape of which changes during 
compression (but the contact area does not change), and 
DBC stands for "hard" PEA, the shape of which does not 
change during compression. 
 The dependence of the pressure of the PEA on the outer 
wall of the microchannel is determined as 
pp(t) = max(pp)fp(t), and displacements are determinated in 
the form 𝑠(,"

# (𝑡) = 𝑠(
#𝑓#(𝑡) , where signal form fp(t)) is a 

harmonic function normalized in the region [0, 1] with an 
oscillation frequency f 
𝑓#(𝑡) = [1 − cos(2π𝑓𝑡)]/2. 
 Boundary conditions for the heat conduction equation 
are 
Γ1: T = T0; Γ7: T = T1. 
where T0 is the ambient temperature and T1 is the TS 
temperature. 
 
 
3. Numerical simulation 
 
Numerical simulation was carried out for an elastic tube with 
a length of L = 10 mm with a circular cross section, an inner 
radius of R1 = 1 mm and an outer radius of R2 = 1.75 mm. 
Ring PEAs with ℓ = 1 mm were located symmetrically 
relative to the center of the tube. Configurations with one, 
three and five PEAs were considered (Np = 1, 3, 5). The tube 
material is silicone rubber with Young's modulus E = 5 MPa 
and Poisson's ratio σ = 0.49. Water is used as a working 
fluid at a temperature of T0 = 20°C with a volume density 
ρ = 998 kg/m2 and a dynamic viscosity μ = 1.002 mPa·s. 
 
3.1. Verification of computer model 
The fluid flow in the channel can be created in two ways: 
due to the pressure difference Δp applied to the channel and 
due to the periodic simultaneous oscillations of the Np PEAs. 
Modeling occurs on two matched 2D meshes on a plane Ozr. 
First, the equations of elasticity are solved on the mesh 
defining the tube wall. At each time step according to the 
obtained deformation field, the mesh for the channel is 
remeshed since the inner surface of the tube, deformed by 
PEAs, determines the outer boundary of the channel. Then 
the equations of hydrodynamics and heat conduction are 
solved on the rearranged channel mesh. 
 As a calculation parameter, the radial compression 
amplitude, identical for all PEAs, was set as 𝑠(,"

# = 𝑠#, which 
was directly used in the DBC (10). In order to provide the 
same amplitude in NBC (9) [25], a preliminary calculation 
was carried out with the simultaneous compression of all 
PEAs with a pressure amplitude p0 and the value of 
compression s0 was determined. Since the elasticity 
equations are linear, the value of the pressure pp, at which 
the PEA will be compressed by sp defined as pp = p0·sp / s0. 
The result is a calculated value of pp = 221 kPa. 
 A feature of the problem under consideration is that the 
deformations of the microchannel are small (0.28% of the 
radius) and at high vibration frequencies the fluid flow rate 
is high (several mm/s). Consequently, large errors of 
numerical calculation are possible, depending on the time 
step τ and the size ℓm of the mesh elements. Let’s denote by 
M(m, n, Np) the simulation parameters, where m is the 
number of boundary elements of the tube mesh per one 
PEA; n is the number of time steps for each half-period of 
oscillations of the PEA; Np is the number of PEAs. The 

meshes for the microchannel and the tube are consistent: the 
boundary elements on the contact line of the meshes 
coincide. 
 
3.2. Mesh 
First, we investigate the symmetric case with one PEA 
Np = 1 for f = 1 kHz on the mesh M(12, 40, 1). On the Fig. 2 
the velocity profiles are shown at times t = Tf /4 and 
t = 3Tf /4, when the velocity modulus |uz| is at its maximum, 
as well as t = 0 and t = Tf /2, when the direction of 
compression of the PEA changes. Here Tf = 1/f is the 
oscillation period of the PEA with frequency f. 
 It can be seen that the main change in the axial velocity 
uz occurs near the tube boundary on the interval 
r = [0.65R1, R1]. Therefore, to improve the calculation 
accuracy, it is necessary to use a non-uniform fine mesh near 
the inner tube boundary. To reduce the computation time, 
the mesh near the tube axis, where the velocity profile is 
almost flat, can be made more rarefied. In the modified mesh 
M(n, m, 1), the size of elements on the inner surface is 
ℓm = L/(10·n), and on the axis is ℓm = L/(5·n) (see Fig. 3).  
 When the PEAs are deformed, the channel geometry 
changes and, as a result, it is necessary to rebuild the channel 
mesh at each time step. In the process of remeshing, a 
situation may arise when finite elements, after moving, 
compress adjacent elements by an amount exceeding their 
size, which leads to the appearance of elements with a 
negative volume and an emergency interruption of the 
program. 

 
Fig. 2. Outlet velocity profiles uz at the times:  t = 0 (1), t = Tf /4 (2), 
t = Tf /2 (3), t = 3Tf /4 (4) for parameters: Np = 1; f = 1 kHz. 

 
 

To prevent this situation, the following algorithm is 
proposed: full displacement of finite element nodes is 
replaced by partial displacements by the value of the 
deformation vector [sz, sr] in the contact area of the channel 
mesh and the tube mesh r = rIn with a coefficient 0 < c ≤ 1 
preventing the appearance of negative volumes. The 
displacement coefficient is determined automatically by 
halving until the move is "safe". After each partial 
displacement, the mesh was adapted. Partial displacements 
continue until they add up to a full displacement. Algorithm 
code in FreeFem++ language (algorithm for Cartesian 
coordinates is presented in the paper [27]) as follows: 
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Code 4. Safe remeshing. 
real t = 1.0; 
real c = 1.0; 
while (t > 0) { 
  if (checkmovemesh(ThF,[x+c*sz(x,rIn), 
    y+c*sr(x,rIn)*y/rIn]) > 0.0){ 
      ThF = movemesh(ThF,[x+c*sz(x,rIn), 
          y+c*sr(x,rIn)*y/rIn]); 
      uz = uz; ur = ur; p = p; 
      upz = upz; upr = upr; pp = pp; 
      ThF = adaptmesh(ThF, [dx(uz), dy(ur)], 
          hmin = elementMinSize,  
          hmax = elementMaxSize); 
      t -= coef; 
  } else { 
     c /= 2.0; 
  } 
}  
 
 
 To implement the algorithm, the following FreeFem++ 
commands were used: checking the possibility of the 
appearance of negative volumes checkmovemesh, 
transforming the mesh movemesh and adapting the mesh 
adaptmesh (it is necessary for the sizes of the finite elements 
to lie within the specified range and the mesh density was 
proportional to the fluid velocity gradient). Assignment of 
the form uz = uz is necessary to recalculate the value of the 
FEM variable on the updated mesh. 
 

 
Fig. 3. Pipe (upper) and channel (lower) meshes M(12,*,5) (a) and 
M(24,*,5) (b). 
 
 
3.3. The error analysis and the model applicability limits 
In a symmetric problem with one PEA, the average liquid 
flow rate over the period is equal to zero. To determine the 
systematic error (a nonzero average fluid flow rate), 
calculations were performed for various parameters of the 
mesh for a time interval corresponding to the characteristic 
relaxation time of the velocity [25] (equal to 1 s in the 
considered geometry): 
 
𝜏6 = 𝜌𝑅4?/𝜇.        (11) 
 
 For numerical simulation, the average flow rate is 
introduced as follows 
 
𝑄� = (𝑉]^4 − 𝑉])𝜏,        (12) 
 
where Vn + 1 and Vn are the total volume of liquid passed 
through the outlet in the current and previous periods of 
oscillation, respectively. 
 To check the numerical scheme of the equations of 
hydrodynamics, a numerical simulation of the Poiseuille 
flow in a pipe with a circular cross section was carried out 

and a comparison with the analytical formula [32] was 
performed 
 
𝑄# = 𝜋∆𝑝𝑅4q/(8𝜇𝐿).       (13) 
 
 Additionally, the analytical dependence of the liquid 
flow rate Qa on time is compared with a numerical 
simulation. The amplitude of the velocity versus time in the 
first approximation is [38] 
 
𝑢(0, 𝑡) = ∆𝑝𝑅4?𝑔(𝑡)/(4𝜇𝐿), 
 
where the function of time g(t) is determined by the 
following formula: 
 

𝑔(𝑡) = 1 −
(1 − 𝑎)exp(−𝜆4?𝑡/𝜏6)

8𝜆4p𝐽4(𝜆4)
, 

 
𝜆4 ≈ 2.4 is the first root of the Bessel function of the zero 
kind 𝐽�(𝜆4) = 0; 𝐽4(𝜆4) ≈ 0.52 is the Bessel function of the 
first kind; a = 0.113 is an fitting parameter introduced to 
compensate the discarded expansion terms selected from the 
physical meaning: there is no flow at the initial time  
u(0,0) = 0 (g(0) = 0, then Qa(0) = 0), and there is reachment 
of constant flow rate u(0,t) = const over the time interval 
t >> τu (g(t) → 1, then Qa(t) → Qp). The liquid flow rate is 
related to the amplitude of the velocity u(0,t) by the ratio 
𝑄#(𝑡) 	= 	 (π/2)𝑅4?𝑢(0, 𝑡): 
 
𝑄�(𝑡) ≈ 𝑄�𝑔(𝑡).        (14) 
 
 Fig. 4 shows the dependences of the average fluid flow 
rate Qp calculated by formula (13), the fluid flow rate 
calculated by formula (14), and the numerically obtained 
dependences Qa(t) for a pressure difference Δp = 0.5 Pa in 
the absence of oscillations of the PEA and when it 
oscillating with a frequency f = 1 kHz. It can be seen that 
during the characteristic velocity relaxation time τu 
calculated by formula (11) the values of Qa approach to the 
analytical value of Qp; the analytical dependence Qa(t) and 
the numerical dependences Qa(t) with and without 
oscillations practically coincide. 
 

 
Fig. 4. Dependence of the average fluid flow rate Qa for a Poiseuille 
flow vs. time t for analytical formula (13) (black line), formula (14) (red 
line),  numerical simulation in the absence of oscillation of the PEA 
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(green line) and when PEA oscillates (blue line) with frequency 
f = 1 kHz; Δp = 0.5 Pa. 

 
 
 Let’s determine the sources of errors and their 
magnitude. The systematic error is equal to the steady-state 
average fluid flow rate εai = Qa, where i = N for NBC and 
i = D for DBC. The relative error for the fluid flow rate is 
calculated by the formula 
 
𝜀� = |1 + 𝑄"/𝑄�|,         (15) 
 
where Qi and Qo are the flow rates at the inlet and outlet, 
respectively. Note that the fluid flow rate is positive for the 
fluid flow in the positive direction of Oz and negative for the 
flow in the opposite direction, for example, during the 
compression of the tube Qi < 0 and Qo > 0. 
 Since the tube and the fluid in it are incompressible, the 
change of the channel volume must be equal to the volume 
of the fluid flowing through the ends, when the tube is 
deformed. The relative error in the volume change is 
described by the formula 
 

𝜀� =
|(𝑄" + 𝑄"^4)𝜏 − (𝑉P" − 𝑉P"^4)|

𝑉P�
, 

 
where the superscripts i and i + 1 correspond to the previous 
and current time steps; 𝑉P"  and 𝑉P�  are the volumes in the 
deformed and non-deformed tube, calculated by the 
formulas 
 

𝑉P" = b2π𝑟	d𝑟d𝑧 , 𝑉P� = π(𝑅?? − 𝑅4?? )𝐿. 

 
 Here, the domain of integration Ω is bounded along the 
Oz axis by the interval [0, L], and along the Or axis places 
between the curves R1 + sr(z, R1) and R2 + sr(z, R2) with the 
radial component of deformation sr < 0 (the direction of the 
deformation and Or axis are opposite). In the simulations, 
the relative error εV do not exceed 2.4·10–12% for DBC and 
3.5·10–12% for NBC. 
 Note that the time to reach a constant non-zero fluid flow 
rate and the time to establish a Poiseuille-type flow are close 
to the characteristic time τu, which suggests the possibility of 
reducing the systematic error by specifying a constant 
pressure difference as follow 
 
∆𝑝"� = −8𝜇𝜀"�𝐿/(𝜋𝑅4q).         (16) 
 
 As a check, simulations were carried out with the 
parameters M(12, 20, Np) for Np = [1, 3, 5] PEAs with NBC 
and DBC and frequency f = 1 kHz. The systematic error 
ranges from 2.2 to 72 nl/s depending on the parameters (see 
Table 1). To suppress this error, one need to set the pressure 
difference Δp according to formula (14). Recalculation with 
a constant pressure difference significantly reduces the 
systematic error εai to hundredths or tenths of nl/s (they are 
placed in the lines marked with M* in Table 1), which is 40–
250 times less than the error of the initial simulation Note 
that it is difficult to further reduce the error, since, according 
to (12), the volume change per time step is of the order of 
ΔVm = Vn + 1 – Vn = 4·10–17 m3, which is in the range of 
round-off errors. This value of the volume change ΔVm 
determines the limits of the model applicability. For 
example, with decreasing frequency, if the volume change is 
of the order of ΔVm, then the simulation results will be 

incorrect, and if ΔV = kΔVm, then rounding errors in Qa will 
be order of 1/k. Simulations show that at a frequency of 
oscillations of PEA f ≤ 500 Hz, the systematic errors will be 
εai ≥ 10%. 
 Table 1 show that increasing the time steps 
proportionally increases the calculation time, but slightly 
decreases the error. The increase in the number of FEM-
mesh elements proportionally increases the calculation time 
and reduces the calculation error. The CPU time was 
determined by a profiler written in the FreeFem++ language 
and distributed as follows: solving the hydrodynamic 
equations is 76%, solving the elastic equations is 12.7%, 
remeshing is 8.7%. The remaining time (2.6%) is spent on 
I/O operations (writing 7 data files with a total size of 
25 MB and streaming log-information to the console). The 
calculations were carried out on a 4-core Intel i7-3770K 
processor in the Ubuntu 14.04 OS in the FreeFem++ 3.26 
software. 
 
3.4. Micropump model 
As shown in Section 2.2, with symmetric compression of 
PEAs in the absence of a pressure difference, the average 
fluid flow is zero. In the micropump model, the flow was 
created using an asymmetric scheme of periodic 
compression of Np PEAs: first, all PEAs are simultaneously 
compressed during the time Tf /2; then, a successive 
stretching of the PEAs one by one is performed starting from 
the leftmost one at each subsequent interval Tf /2. Thus, the 
total time of the compression–expansion cycle of the system 
of PEAs is Tc = Tf  for Np = 1, Tc = 2Tf  for Np = 3, and 
Tc = 3Tf  for Np = 5; then the cycle was repeated. Fig. 5 
shows the deformation steps for a system of three PEAs. 
Fig. 6 shows the profiles of the outer boundary of the tube 
deformed by PEAs at the end of each half-period of 
operation of the system of five PEAs for NBC and DBC. 
NBC results in smoother tube deformation, while DBC 
results in stepwise deformation. This is explained by the fact 
that for the stability of the numerical scheme, the outer 
boundary of the tube Γ6, which is not in contact with the 
PEAs, was also fixed in order to avoid conflict with the 
condition of rigid fixation of the tube at the ends. DBC 
provides exact value of maximum compression 
sm = max(|sr|) for each PEA. When using NBC, the exact 
value sm is ensured with the simultaneous compression of 
two or more PEAs. In the last period, when the penultimate 
PEA expands, (~0.1 sm) stretching of the last PEA occurs. 
This is explained as follows. When a nonzero pressure is set 
on adjacent PEAs, deformation is provided by both PEAs in 
the region between the PEAs because the pressure jump is 
less than between the PEA and the free surface of the tube. 
At the same pressure, one PEA should deform the area to the 
left and right of itself, which leads to less compression of the 
tube in the middle of the contact area. 
 Fig. 7 shows the influence of the boundary conditions 
and the number of PEAs in the system on the flow created 
by the micropump. The amplitude of the fluid flow rate 
(Fig. 7(a)) with symmetrical compression of the PEAs 
system is proportional to the number of PEAs Np since the 
volume change during deformation of the tube is 
proportional to Np, and the fluid is symmetrically pushed out 
of the tube. The amplitude of the liquid flow rate decreases 
significantly (by 3–6 times depending on the number of the 
half-period) with subsequent successive expands, and the 
liquid is asymmetrically drawn into the tube. 
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Fig. 5. Pipe and channel deformations (for clarity sr multiplied in 100 
times) on the time t = 0 (a), t = 0.25Tf (b), t = 0.5Tf  (c), t = 0.75Tf  (d), 
t = Tf  (e), t = 1.25Tf  (f), t = 1.5 Tf (g), t = 1.75 Tf (h). Colormap shows 
uz (sm/s) distribution. Parameters: Np = 3; f = 1 kHz; sm = 2.8 mkm. 
 
 
 

 
Fig. 6. Profiles of the outer surface of the tube for the NBC (a) and 
DBC (b) at the end of each half-period of PEAs oscillations t = iTf  /2 in 
the case of Np=5. 
 
 The total volume of fluid passing through the tube outlet 
(Fig. 7(b)) varies over a period within 17% of the mean. 
With DBC compared to NBC, the total volume of fluid is 
more than twice larger due to the greater volume change 
during tube deformation. An increase in the number of PEAs 
in the system proportionally increases the volume of pumped 
fluid. Fig. 7(c) shows the time dependence of the average 
fluid flow rate Qa. It is seen that in a time of the order of 
τu ≈ 1 s, the value of Qa reaches a stationary operating mode 
(filled area). 
 

 

Fig. 7. Comparison of the NBC (1, 2) and DBC (3, 4) for Np = 3 (1, 3) and Np = 5 (2, 4). Depending on the time at the outlet G2: flow rate Q (a), total 
volume of fluid V (b); average fluid flow rate over the period Qa (c) for f = 1 kHz. 
 
 Fig. 8(а) shows the dependence of the steady-state fluid 
flow rate Qa on the oscillation frequency f. With an increase 
in the vibration frequency, the fluid flow rate increases 
nonlinearly. The vibration frequency dependence of the flow 
rate ratio for Np = 5 and Np = 3 PEAs defined as  
N53 = Qa(Np = 5)/Qa(Np = 3) is shown in Fig. 8(b). With 
increasing frequency, this ratio slightly increases except for 
the region of high systematic errors f ≤ 500 Hz. 
 
 Fig. 9(a) shows the dependence of the steady-state fluid 
flow rate Qa on the radius of the microchannel R1. A 
decrease in R1 leads to a decrease in the change in the 
microchannel volume during the oscillation period and, 
consequently, to a decrease in the value of Qa. 
 The maximum radial compression PEA sm is selected for 
real models. When using technical solutions that enhance 
deformation, this parameter may increase. Fig. 9(b) shows 
the dependence of the average steady fluid flow rate Qa on 
the amplitude of radial compression. It can be seen that an 
increase of sm leads to a significant nonlinear increase in Qa, 
which is explained by the fact that compressed PEAs create 
a higher hydraulic resistance. 
 

 Note that in modeling the PEAs system, the systematic 
error εa is determined as the difference between the 
experimental Qe and numerical Qn values of the steady-state 
average fluid flow rate, i.e. εa = Qe – Qn. The systematic 
error can be compensated by an additional pressure 
difference Δp determined by the approximate formula (16). 
 
3.5. Interaction of a micro pump with a micro-gripper 
The geometrical dimensions of the proposed micropump and 
the parameters of the operating mode make it possible to use 
the micropump for supplying coolant to the micro-gripper 
liquid cooling system. Let's estimate the heat distribution by 
the contact of the tube with the heated area near the outlet. 
The tube geometry expands by ΔL = 2 mm at both ends. 
Since the length of the tube has changed, the new length 
denotes by L1 = L + 2ΔL. TS, having a temperature 
ΔT0 = 5 K above the ambient temperature (T0 = 293.15 К) 
and a length of 1 mm, is placed at a distance of 1 mm from 
the tube outlet (see Fig. 10). Additional physical parameters 
of water are isobaric specific heat cp = 4.183 kJ/(kg·K) and 
thermal conductivity λ = 0.599 Wt/(m·K). 
 At the initial moment of time, the temperature of the 
fluid is the same and it is equal to T0. A constant ambient 
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temperature T0 is set at the inlet Γ0; a constant temperature 
T0 + ΔT0 is set at the contact area of the tube with the TS Γ7; 
no-temperature gradient condition is set at the outlet Γ8 
(boundaries are denoted on Fig. 1): 

 

Γ�:	𝑇 = 𝑇�;			ΓV:	𝑇 = 𝑇� + Δ𝑇�;			Γ� :	
d𝑇
d𝑧 = 0. 

 
 

 
Fig. 8. The average fluid flow rate Qa (a) and N53 (b) versus the oscillation frequency f for the NBC (1, 2, 5) and DBC (2, 4, 6) for Np = 3 (1, 3) and 
Np = 5 (2, 4). Symbols are numerical results; lines are approximation (17). 
 
 

 
Fig. 9. The average fluid flow rate Qa versus the radius R1 (a) and the strain amplitude sm (b) for the NBC (1) and the DBC (2) for Np = 5; f = 1 kHz. 
Symbols are numerical results; lines are approximation (17). 
 

Fig. 10. The geometry of the problem and the steady-state temperature 
distribution ΔT for Qa = 0.5 μl/s (up); the channel computational mesh 
(down) at time t = 120 s. 
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 The flow is induced by the pressure difference Δp set at 
L1. 
 Let's analyze the time dependence of the temperature 
distribution under the influence of the fluid flow. The Péclet 
number Pe = 𝑐#ρ𝑢𝑅4/λ  allows one to determine the 
predominant nature of heat transfer (dynamic Pe > 1 or 
diffusion Pe < 1) [39]. Substituting the expression for the 
velocity amplitude 𝑢 = ∆𝑝𝑅4?/(4µ𝐿)  with the pressure 
difference ∆𝑝 obtained from the expression for the average 
fluid flow rate 𝑄� = π𝑅4q∆𝑝/(8µ𝐿),  the condition for 
dynamic heat transfer Pe = 2𝑐#ρ𝑄�/(πλ𝑅4) > 1  is 
obtained, i.e. Qa > 225 nl/s. 
Three series of simulations were performed:  
1) full numerical simulation with a frequency f = 2 kHz with 

DBC on the computational scheme M(12,20,5);  
2) the fluid at rest and heat from TS spreads only due to 

thermal conductivity (computational scheme M(24,500));  
3) numerical simulation of the fluid flow induced by a 

constant pressure difference Δp, which corresponds to 
the average fluid flow rate Qa, i.e. with the replacement 
of the micropump with the computing stand element 
(CSE) (computational scheme M(24,500)).  

 The latter option makes it possible to significantly 
reduce the calculation time due to the fact that in the absence 
of tube deformations it is not necessary to solve the 
equations of linear elasticity, which is uses ~18% of the total 
calculated time; the time step can be chosen equal to τd/N 
(N = 500 was used in the calculations) instead of τd/(6fN) (in 
the simulations of the complete numerical problem the 
frequency f = 2000 Hz and sub-cycle time steps N = 20 with 
6 oscillation sub-cycles were used). Additional savings in 
the estimated time was achieved due to the fact that after a 
certain time (1.5τu = 1 s was used in the simulations) a 
stationary flow is established, and the subsequent solution of 
the hydrodynamic equations is not required (~70% of the 
total simulation time), only the heat conduction equation is 
solved for a given fluid velocity profile (~10% of the total 
simulation time). For comparison, the complete numerical 
simulation for the physical time interval of 5.9 s was ~37 h 
of the CPU time, and the numerical simulation of the same 
time interval using CSE was ~7 min of the CPU time, i.e. the 
CPU time has decreased by about 104 times. 
 At the initial moment, the fluid has an ambient 
temperature T = T0. Heat begins to spread from TS into the 
microchannel with time. Fig. 11 shows the time dependence 
of the fluid temperature on the axis r = 0 at points 
z = 3, 4 mm for three types of simulations. In the absence of 
a flow, the temperature spreads symmetrically with respect 
to the TS and grows exponentially with time at the points 
under study. The symmetry is broken under non-zero flow 
because the heated fluid is displaced by the flow of colder 
fluid. The full numerical simulation for Qa = 754 nl/s is in 
qualitative agreement with the simulation using CSE for 
Qa = 500 nl/s with an accuracy of 10%. The differences in 
values of Qa are explained by the fact that, in contrast to the 
full simulation, in the CSE-simulation the fluid flows only in 
one direction with a constant velocity, i.e. there is no 
additional thermal diffusion which appears then the flow 
direction is reversed. The Péclet number in this calculation is 
Pe = 2.2, i.e. the contribution of fluid flow to heat transfer is 
higher than thermal diffusion. This is clearly seen on Fig 10 
from the stationary-state temperature field ΔT (process time 
t = 120 s) because the transverse temperature profile ΔT 
bends in the positive direction near the tube axis, where the 
fluid velocity is maximum. 

 
Fig. 11. Dependence ΔT at points z = 3 mm (1, 3, 5) and 
z = 4 mm (2, 4, 6) on the axis r = 0 versus time t for the no-flow 
case (1, 2), full numerical simulation (Np = 5; f = 2 kHz; DBC; 3, 4) and 
simulation of the CSE (Qa = 0.5 μl/s; 5, 6). 
 
 
 Numerical simulation of the steady-state values of ΔT for 
the set of coordinates z = 2, 3, 4, 5, 6, 7 mm on the axis r = 0 
versus Qa using CSE are shown on Fig. 12. It can be seen 
that at Pe < 1 the steady-state temperature in the region to 
the left of the TS (z ≤4 mm) is inversely proportional to Qa 
due to diffusion type of the heat transfer (a linear 
temperature distribution is established from the inlet with 
temperature T0 to the TS with temperature T0 + ΔT0). With 
an increase in the fluid flow rate (and the fluid velocity), the 
region of heat propagation is "compressed" close to the TS. 
Starting from the value of Pe = 1 (Qa = 225 nl/s) the 
dependence becomes nonlinear. Namely, the steady-state 
temperature in the region of the most PEA equal to 1.05 K 
(21% ΔT0); at Pe = 2 in the same point decreases to the value 
of 0.27K (5.4% ΔT0); at Pe = 3 the temperature is equal to 
T(z = 2) = 0.067ΔT0 (1.3% ΔT0); and at Pe = 4 the 
temperature change is neglectable T(z = 2) = 0.017ΔT0 
(0.3% ΔT0). In the region to the right of the TS z ≥ 5 mm the 
fluid temperature increases both by diffusion heat transfer 
and the fluid flow. It can be seen on Fig. 12, where for 
Pe < 1 the temperature change ΔT with increasing Qa is 
nonlinear (both diffusion heat transfer and fluid flow), and 
for Pe > 1 it is close to linear (proportional to the fluid flow 
rate). 

Fig. 12. Dependence of steady-state heating ΔT on the r = 0 axis at 
points to the left of the TS (z = 2, 3, 4 mm; blue lines), under the TS 
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(z = 5, 6 mm; red lines) and at the channel outlet (z = 7 mm; green line) 
versus the average fluid flow rate Qa. 
 Thus, the proposed micropump design can be used to 
cool the micro-gripper when operates with Np = 5 PEAs at a 
frequency of f > 2.5 for NBC or f > 2 kHz for DBC. 
 
3.6. Computational stand element of the micropump 
Numerical simulation is time consuming (see Table 1) and 
cannot provide real-time information to control the pump. 
Therefore, on the basis of numerical simulation, a simple 
analytical approximation was derived for the fluid flow rate 
as a function of the boundary conditions, frequency f, the 
number of PEAs Np, the inner radius R1 and the amplitude of 
radial compression 𝑠(�: 
 
𝑄� = 𝑔(𝑓)𝑔(𝑁"�)𝑔(𝑅4)𝑔(𝑠�),        (17) 
 
where the functions g were selected according to the 

physical meaning of the dependence of Qa on the arguments. 
Since with an increase in the frequency f and the amplitude 
of radial compression sm, the fluid flow rate becomes linear, 
the functions g(f) and g(sm) are determined by the 
interpolations as follow 
 

𝑔(𝑓) = 𝑎�𝑓 G1 −
𝑓

1 + 𝑏�𝑓
I, 

 

𝑔(𝑠�) = 𝑎J𝑠� G1 +
10p𝑠�
1 + 𝑏J𝑠�

I 

 
with af = 7.78·10–12, bf = 2.05·10–5, as = –0.529, bs = –
2.52·10–6 for NBC and af = 9.16·10–11, bf = 3.08·10–6, 
as = 0.107, bs = 1.4·10–5 for DBC. 
 

 
Table 1. Errors and CPU time of the simulation versus simulation parameters and boundary conditions: εaD and εaN are 
systematic errors Qa for the DBC and the NBC, respectively; εQD and εQN are relative errors of the inlet and outlet flow rate for 
the DBC and the NBC calculated by (15); Ne and Nl are numbers of the mesh elements for pipe and channel, respectively; Te, 
Tr, Tl, Tt are CPU times used for Lame equations, remeshing, Navier–Stokes equations and total time, respectively; M* is 
compensation of the systematical error by formula (16). Parameters: f = 1 kHz; t = 1 s 

M(n, m, Np) εaN, nl/s εQN, % εaD, nl/s εQD, % Ne Nl Te, s Tr, s Tl, s Tt, s 

M(12,20,1) 3.41 0.220 –19.9 1.76 

1850 1316 

484 328 2363 3264 

M*(12,20,1) 0.0236  –0.0786  

M(12,20,3) –2.19 0.102 –7.89 0.0521 

M*(12,20,3) –0.0276  –0.0485  

M(12,20,5) –31.9 0.099 –72.1 0.0246 

M*(12,20,5) –0.791  –0.825  

M(12,40,1) 3.60 0.0774 –19.7 1.76 

959 652 4682 6516 M(12,40,3) –1.06 0.103 –6.45 0.0535 

M(12,40,5) –28.6 0.100 –68.6 0.0259 

M(18,20,1) –4.23 0.0748 –16.3 1.19 

3974 2635 1076 681 5160 7098 M(18,20,3) 4.25 0.121 –23.0 0.0075 

M(18,20,5) –5.53 0.0159 –23.5 0.0252 

M(24,20,1) –0.693 0.0139 –11.4 0.899 

7276 5218 1945 1323 11660 15261 M(24,20,3) –0.775 0.0179 –4.80 0.0105 

M(24,20,5) –13.8 0.0249 –9.98 0.0154 
 
 The function g(Nij) = Qa(Np = i)/Qa(Np = j) was 
approximated by a third order polynomial using the least 
squares method (LSM) [40], and the function g(R1) was 
approximates by a fourth order polynomial using the LSM 
due to the analytical formula for the Poiseuille flow in a pipe 
with circular cross-section has 𝑅4q term [20]: 
 

𝑔(𝑁"�) =�𝑎� G
𝑄�(𝑁# = 𝑖)
𝑄�(𝑁# = 𝑗)I

�p

�¡�

, 

𝑔(𝑅4) =�𝑏�𝑅4�
q

�¡�

 

 
with a0 = 0.839, a1 = –3.58·10–4, a2 = 1.25·10–7, a3 = –
1.64·10–11, b0 = 1.79, b1 = –1.14·10–2, b2 = 2.63·10–5, b3 = –

2.43·10–8, b4 = 8.63·10–12 for NBC and a0 = 0.72, a1 = –
1.14·10–4, a2 = 2.06·10–8, a3 = –1.1·10–12, b0 = 0.77, b1 = –
4.7·10–3, b2 = 1.04·10–5, b3 = –8.72·10–9, b4 = 3.21·10–12 for 
DBC. 
 
 The approximations by the analytical formula (17) are 
shown by lines on the Fig. 8 and Fig. 9. It can be seen that 
the formula (17) computes the average steady-state fluid 
flow rate Qa with high accuracy. The time of reaching the 
operating mode τu (period-average steady-state) and the 
dynamics of the process are described by formulas (11) and 
(14), respectively. The formula (17) can be used as a CSE of 
the micropump–microgripper system as well as used in the 
software module of the micropump real-time control system. 
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4. Conclusion 
 

An axisymmetric mathematical and computer model of a 
piezoelectric micropump, consisting of an elastic tube and a 
system of PEAs, has been developed. The sources of error 
are analyzed (a method for reducing the systematic error by 
two orders of magnitude is proposed) and the region of the 
model applicability is determined (f = 0.5,…, 100 kHz). The 
parameters of the micropump operating mode were obtained 
(time ≈1 c and average fluid flow rate Qa up to 2 μl/s). It is 
shown that Qa is proportional to the oscillation frequency of 
the PEAs and their number. Qa nonlinearly increases with an 
increase in the inner radius of the tube and the amplitude of 
the radial compression of the PEAs. DBCs provide double 
increase of the Qa over NBC. Average steady-state fluid 
flow rate Qa from 500 nl/s (for f > 2.5 kHz at NBC; for 
f > 2 kHz at DBC) prevents heat spreading from 
microgripper inside the micropump tube. Simulations have 

shown that the proposed model can be used to develop a 
compact micropump with a flexible control system of fluid 
flow rate for cooling a microgripper. The analytical 
formula (17) for calculating Qa depending on the boundary 
conditions, frequency, the number of PEAs, the inner radius 
and the amplitude of radial compression is constructed. This 
formula can be used in a real-time device control system. 
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