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Abstract 
 
A wide class of chemical - technological processes is characterized by a random nature of the change in parameters that 
affect the change in the characteristics of control objects. The characteristics of the process itself are random, which 
include physicochemical constants, heat and mass transfer coefficients, rates of chemical reactions, concentration of 
substances in input flows, etc. The development of control systems in conditions of uncertainty of the parameters of 
chemical-technological processes with guaranteed provision for the fulfillment of all restrictions is a significant problem. 
Existing approaches can lead to inaccurate solutions and increased computation time and do not guarantee the fulfillment 
of technological and technical constraints. Development of a method for solving problems of optimization of chemical 
technological processes in conditions of uncertainty with a guarantee of the fulfillment of technological limitations. A 
method for solving problems of guaranteed optimization of chemical-technological processes in conditions of uncertainty 
was proposed, which allows to significantly reduce the time for solving such problems. Algorithms for the synthesis of an 
auxiliary mathematical model and the choice of a method for solving the problem of ensuring optimization under 
uncertainty, formulation and results of solving the problem of guaranteed optimization of the process of obtaining 
Scheffer's acid in a microwave reactor under uncertainty are presented. 
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1. Introduction 
 
Development chemical productions characterized by tighten-
ing requirements for finished product quality and environ-
mental cleanliness, introduction of technologies providing a 
high level of energy and resource conservation. This leads to 
the fact that errors in the management of chemical-
technological processes (CTP) can lead to huge economic 
losses and contribute to emergency situations. Therefore, 
there is a need to consider management tasks, the solution of 
which would ensure the implementation of technological and 
technical requirements ji with a given guarantee ai, i =  
(n – number of technological requirements) [1,2]. 
 Obviously, the information received directly from the 
control object is often inaccurate (uncertain), which is 
caused not only by errors in the technical means of measur-
ing and transmitting information, but also by the stochastici-
ty of the objects themselves or of the transmission channels 
material and energy impacts [3,4]  Parameters related to 
CTP can also be undefined (thermophysical characteristics 
of materials, heat and mass transfer coefficients, concentra-
tion of impurities in raw materials, etc.) [4,5]. 
 Existing theoretical principles and methods for solving 
the problems of guaranteeing optimization and control of 
CTP using the apparatus of mathematical statistics and in-
terval analysis to formalize uncertainties cannot be applied 
to most modern chemical productions. Moreover, it is im-
possible to use these methods for newly designed produc-
tions. Thus, well-known approaches can lead to inaccurate 

solutions, increase the computation time and do not guaran-
tee the implementation of technological and technical limita-
tions [6,7]. 
 Existing approaches can lead to inaccurate solutions and 
increase the computation time and do not guarantee the im-
plementation of technological and technical limitations [7-
10]. 
 It is obvious that under these conditions it is reasonable 
to use the mathematical apparatus of the theory of fuzzy sets, 
which allows one to formalize the uncertainty of the parame-
ters of chemical-technological processes, using the accumu-
lated knowledge and expert estimates. 
 The aim of the research is development of a method for 
solving problems of optimization of chemical technological 
processes in conditions of uncertainty with a guarantee of 
the fulfillment of technological limitations and verification 
of its effectiveness in the management of technological pro-
cess. 
 
 
2. Main part 
 
We formulate the problem of guaranteeing optimization of 
CTP under uncertainty presented in [1] in the following sim-
plified form: it is necessary to find a control vector u*, such 
that the objective function Q(u) takes a minimum value  
 
u* = ,                                           

 
where D = { uïu Î U Ù ji

b (u) ³ ai,   i =  } - area admis-
sible management,  
 

1, n

argmin
u∈D
Q(u)

1, n
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ji
b (u) = ji , 

 
Ei = {ji ï i (ji êu) ³ ei} - significance area a bunch of ji, 
ei - constant magnitude "significance level", 
 

i (ji êu)= min ( (x), (y êu)) 

 
êji = ji (x, y, u), 
 

(y êu) = min ( (x), (b)) 

 
êy = M (x, u, b). 
 The solution of the guaranteeing optimization problem is 
associated with significant difficulties in multiple calcula-
tions, both of the equations of the mathematical model M 
and of the constraint systems due to the need to calculate the 
membership functions of the output quantities and process 
parameters by famous membership function input quantities. 
 Consider the optimization method using a two-model 
complex (two-model optimization), which is a development 
of the theory of α-problems [2]. 
 The idea of two-model optimization is reduced to replac-
ing the α-problem with some “auxiliary” optimization prob-
lem. 
 Will accept the following notation: denote the “auxilia-
ry” mathematical model by the operator m 
 
y = m (х, u). 
 
 We introduce the “auxiliary” objective function q(u, y) 
and the system of operators fi(y, u) 
 

. 
 
 Given the notation, we formulate task the two-model 
optimization: it is necessary to find the vectors α* = (α*

1, α*
2, 

…,  α*
n) and u*, at which the objective function q*(a)     q 

(uα
opt, yα

opt) 
 
a* = arg q (uα

opt, yα
opt)      

subject to the conditions 
 
ji

b (ua
*) ³ ai,   i = , 

 
where ji

b (ua
opt) = ji,      

Ei = { ji ï i (ji ê ) ³ ei },  
 

i (ji ê )= min( (x), (y ê )) 

 ê ji = ji (x, y, ), 
 

(y êua
opt)= min ( (x), (b)) 

 
 êy = M (x, u, b), 
 
where ua

opt determined algorithmically by solving the task 
 

 ua
opt = arg  q (y, u),      

where Uα = { u | fi (y, u) ³ ai,   i = , y = m (х, u)}.  
Wherein u* = ua*

opt. 
 
 Two-model optimization can be used as a high-speed 
method for solving the task of guaranteeing optimization of 
CTP under conditions of uncertainty. 
 However, the use of two-model optimization is possible 
only with a certain correspondence between the operators M, 
J, φ and the operators m, q, f. 
 We formulate a theorem defining the identity conditions 
for a two-model optimization task and the tasks of guaran-
teeing optimization in the face of uncertainty. 
 Theorem. Let the task of ensuring optimization under 
uncertainty have a solution and let the models M (x, u, b), m 
(х, u) and functionals Q (u), ji (x, y, u), q (u, y), fi (y, u) 
such, what for any u1, u2 Î U following relations are ful-
filled: 
 
[q (u1, y) ï y = m (х, u1) ] > 
 
 > [q (u2, y) ï y = m (х, u2) ]  Þ 
 
Þ [ Q (u1) = (min J ê (J êu1) > )] >  
 
> [Q (u2) = (min J ê (J êu2) > )], 
 
fi (y, u1) ³ fi (y, u2) Þ ji

b (u1) ³ ji
b (u2), 

 
then there exists an a-task such that its solution coincides 
with the solution of the task of guaranteeing optimization 
under conditions of uncertainty. 
 The proof of the theorem due to cumbersomeness is not 
given. 
 The proved theorem, supplemented by a number of simi-
lar theorems, are used in the synthesis of the auxiliary math-
ematical model m. 
 In solving real task of controlling the CTP, a situation 
may occur when a unified model m  
 In this case, you can use the following. The region U is 
divided into subsets Ui, i = , such that 
 
U = Ui  и  "(i ¹ j) Ui Uj = Æ; i, j = . 

 
 Then, for each Ui , an auxiliary model mi is selected that 
satisfies the conditions of the theorems. 
 The set of models {mi} can be used as an auxiliary mod-
el for solving task two-model optimization. We will call 
such a model a generalized auxiliary model and denote, as 
before, m. Thus, in this case m = {mi}. 
 However, it is necessary that the mathematical models 
satisfy the conditions of the theorems. 
 We will call the conditions of the theorems the condi-
tions of suitability of the operators m and M. 
If the conditions of the theorems are not satisfied, then the 
auxiliary model m should be replaced by another more com-
plex model or a generalized model {mi}, for which the con-
ditions of the  
If the auxiliary model cannot be found, then it is necessary 
to investigate the possibility of using the simulation model 

min
Ei

µ !ℑ

µ !ℑ max
x , y

µ !X µ !Y

Y~µ max
x , b

µ !X µ !B

fi :Y ×U → R

min
α

1, n

min
Ei

µ !ℑ uα
opt

Á~µ uα
opt max

x, y
µ !X µ !Y uα

opt

uα
opt

µ !Y max
x , b

µ !X µ !B

min
u∈Uα

n,1

µ !J µ!

µ !J µ!

1, n

∪
i=1, n

∩ 1, n
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M ( ,u, ) to solve the problem of guaranteeing optimiza-
tion (where , - input magnitude fashion). 
 Model M can be used when fitness conditions are met. 
Otherwise, there remains only the opportunity to solve the 
problem of guaranteeing optimization by direct non-linear 
programming methods. 
 The algorithm for choosing a method for solving the 
problem of guaranteeing optimization under conditions of 
uncertainty is as follows. 
1. The auxiliary model m is synthesized, including the sys-
tem of auxiliary models {mi} (that is, the generalized auxil-
iary model). 
2. If a model m is found, then it is possible to use the a-
optimization method with an auxiliary model m (two-model 
optimization method). 
3. If a generalized model {mi} is not found, then the condi-
tions of suitability of the model M are checked. 
4. If the conditions for the suitability of the model M are 
satisfied, then the a-optimization method with the simula-
tion model M can be applied. Otherwise, they proceed to the 
solution of the problem by the direct method. 
 Let us describe the block diagram of the algorithm for 
the synthesis of a generalized auxiliary model, i.e. item 1 of 
the algorithm for choosing a solution method. 
 In block 1 in quality multitude manager  influence 
assigned to multitude U. 
 In block 2, the auxiliary model m, which is designed to 
work on the whole set, is selected and sequentially com-
plicated. 
 In block 3, the suitability conditions for model m are 
checked.  If the suitability conditions are satisfied, then the 
problem of guaranteeing optimization is solved by the method 
of two-model optimization with the found model m (block 4). 
 Otherwise, in block 5, the question of the advisability of 
complicating the mathematical model m is solved. 
 If the search possibilities for the model m suitable for the 
entire area  are exhausted, then control is transferred to 
block 6. 
 In block 6, the results of testing the suitability conditions 
performed in block 3 are analyzed, and based on this analy-
sis, the area managers (subsets) multitude manager Ui for 
which the suitability conditions are satisfied. 
 If this area is empty (block 7), then this means that the 
auxiliary model m could not be found. In this case, control is 
transferred to block 8. 
 Otherwise, this subset is remembered and at the same 
time the corresponding mi model mi found for it is remem-
bered. 
 In block 9, the multitude  is formed, which is equal to 
the difference of the previous set and the selected subset Ui. 
Then, in block 2, the selection and subsequent complication 
of the model m begins on the new multitude . 
 This iterative process ends either when, at the next itera-
tion, the subset Ui is empty (block 7), or when the validation 
of the suitability conditions is successful (block 3). 
 In the latter case, the auxiliary model m is synthesized 
 As follows from the synthesis algorithm, the model m 
can be both the only one acting on the whole set of control 
actions  and the generalized model m = {mi}, that is, set 
of mi models mi, each of which acts on the corresponding 
subset Ui. 
 If the next subset Ui is empty and the generalized model 
{mi} is not found, then in blocks 8 and 10, the fulfillment of 
the conditions for the suitability of the simulation model M 
is checked. 

 If the suitability conditions are fulfilled, then the solution 
of the guaranteeing optimization problem under uncertainty 
is performed by the a-optimization method with the simula-
tion model M. Otherwise, the initial problem is solved by 
direct methods in block 12. 
 The choice and subsequent complication of the auxiliary 
model m, carried out in block 2, is a complex task that must 
be solved interactively using mathematical methods of se-
quential complication of the model. 
 Such methods are the modified Chebyshev method of 
subsequent complications with the estimation of residual 
variance [11,12], used to construct algebraic models, the use 
of aggregation methods [13] or reduction [14] for differen-
tial operators, and the use of integral operators with increas-
ing complexity for the integral type of the operator m. 
The choice of operator type (algebraic, differential, integral) 
is carried out by the decision maker in an interactive mode. 
 In the interactive mode, a decision is made on the correc-
tion of mathematical models, as well as on the use of mixed 
types of operators. 
 To test the effectiveness of the proposed method, let us 
consider the problem of guaranteed optimization of the pro-
cess of obtaining Scheffer's acid in a microwave reactor, 
which is formulated as: for a given particle size distribution 
of 2-naphthol  entering into a chemical reaction, it is 
necessary to find the consumption Gs  and concentration C0  
sulfuric acid at the entrance to the microwave reactor, at 
which the degree of conversion of 2-naphthol into Scheffer's 
acid  C reaches its maximum value, i.e.  
 
Q (u*) = ,  

 
where Q(u)= С½ (С½u) ³ µз,  µз – the set value of 

the membership function of the degree of conversion of 2-
naphthol into Schaeffer's acid; when satisfying the relation-
ships determined by the mathematical model [4]; with 
guaranteed fulfillment of technological requirements  
 s £ , where  – border of significance of the content 
of by-products and sulfones in the finished product, deter-
mined by the formula 
 

 = s,  

 
where  Es = {s½µ (s½u) ³ es – significance region; es – 
significance level the content of by-products and sulfones in 
the finished product. 
 Region control actions U determined by the following 
restrictions: 
 

;   .  
 
 Below is an analysis of the influence of the particle size 
distribution of 2-naphthol  on optimal control actions 
Gs and C0 and values of the degree of conversion of 2-
naphthol into Schaeffer's acid. As an example Fig. 1 shows 
the results of solving the optimization problem. 
 Analysis of the calculated data shows that the optimal 
values of control actions significantly depend on the average 
radius of 2-naphthol particles. With an increase in the con-
sumption of sulfuric acid, the temperature of the reaction 
mixture, the residence time of the reaction mixture in the 

x b
x b

U

U

U

U

U

U

φ ( r )

max
u∈U

Q( u )

min
!

µ !K

σ b σ b

σ b min
Eb

C0
min ≤C0 ≤C0

max Gs
min ≤Gs ≤Gs

max

φ r( )
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reactor, and the amount of 2-naphthol disulfonic acids de-
crease, which leads to an increase in the conversion of 2-
naphthol into Scheffer's acid for 2-naphthol particles with an 
average size of 5 ... 7 μm. An increase in the concentration of 
sulfuric acid leads to a more rapid dissolution of 2-naphthol 
particles, however, the formation of 2-naphthol disulfonic 
acids, which are by-products, significantly increases. As a 
result, the degree of conversion of 2-naphthol to Scheffer's 
acid is reduced.  
 

,kg/h 

r0, μm                 
Fig. 1. Dependence of the optimal consumption of sulfuric acid  

from the average particle size of 2-naphthol 
 
 Experimental studies of the optimal regimes for the syn-
thesis of Scheffer's acid in a microwave reactor were carried 
out. A fragment of the research results are shown in Table 1. 
 Analysis of the data in Table 1 shows that the degree of 
conversion of 2-naphthol to Scheffer's acid under optimal 
conditions of sulfonation of 2-naphthol to Scheffer's acid 
ranges from 81 ... 88%, while the formation of resins and sul-
fones not exceed 0.3%, and synthesis time no more than 10 
min. Good agreement between the calculated and experi-
mental data confirms the reliability of the results obtained. 
 

Table 1. Experimental data on the synthesis of Scheffer's 
acid 
Control actions  Parameter values 
Gs, kg/h C0, % r0, μm С, % σ, % 
22,10 83,5 2,8 87 0,19 
22,10 84,4 4,2 84 0,25 
22,10 83,5 6,7 81 0,32 
22,15 83,5 2,8 88 0,21 
22,45 84,4 4,2 86 0,23 
22,45 84,4 6,7 83 0,29 
22,80 83,5 2,8 82 0,28 
22,80 85,8 4,2 84 0,23 
 
 Thus, the optimization of the static regimes of the mi-
crowave sulfonation reactor makes it possible to increase the 
degree of conversion of 2-naphthol into Scheffer's acid and 
to reduce the content of resins and sulfones in the finished 
product. 
 
 
3.Conclusion 
 
A method is proposed for solving problems guaranteeing the 
optimization of chemical-tech-nological processes under 
conditions of uncertainty, which can significantly reduce the 
time to solve such problems. Algorithms for the synthesis of 
an auxiliary mathematical model and the choice of a method 
for solving the problem of guaranteeing optimization under 
uncertainty are given. Using the α-optimization method with 
a simulation model reduces the time required to solve the 
problem of guaranteeing optimization under conditions of 
uncertainty by an order of magnitude, and the two-model 
optimization method by two or more orders of magnitude. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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