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Abstract 
 

In conventional block compressed sensing (BCS), the images are divided into small fixed-size blocks sampled at the 
same sub-rate. The sparsities and high-frequency components of the images are ignored, and the reconstruction qualities 
of the complex texture images are poor. An adaptive multiscale variant of the block compressed sensing was proposed to 
reconstruct the texture details of the images. The texture features of the images were obtained from the high-frequency 
components by the three-level wavelet transform and analyzed on the basis of the gray level co-occurrence matrix. A 
mathematical model was established to adjust the block sizes of the images automatically and allocate the limited 
sampling resource adaptively. The smoothed projected Landweber (SPL) was utilized to reconstruct the images. The 
accuracy of the proposed algorithm was verified by the simulation experiments. Results demonstrate that the texture 
details of the reconstructed images are abundant. The image edges are also clear, and the blocking artifacts are effectively 
eliminated. The reconstruction qualities of images, especially the partial images, are considerably improved at different 
sub-sampling rates. The proposed algorithm achieves a 2.42–3.3 dB gain in reconstruction PSNR for the Barbara image 
over the original BCS-SPL at a sub-sampling rate of 0.3. No remarkable differences are noted between the reconstructed 
and original texture blocks in visual sensation. The proposed algorithm provides evidence for the compression and 
reconstruction of the images with complex texture details. 
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1. Introduction 
 
Compressed sensing (CS) [1-2] overcomes the limitation 
that the sampling frequency must be at least twice as fast as 
the signal bandwidth. The sampling and compression 
processes are integrated, which considerably decreases the 
sampling cost. The original signal is first transformed into 
the sparse array and then projected onto a low-dimensional 
space by the measurement matrix at the transmitting end. 
The less measured data can be reconstructed using the 
convex optimization method at the receiving end. CS has 
become an important reform in the field of information in 
recent years, thus attracting considerable attention and 
demonstrating its wide application in image processing, 
wireless sensor networks, communications, optical/remote 
sensing imaging, and applied mathematics [3-5].  

However, the order of the measurement matrix 
correspondingly increases with the image pixels when 
compressed sensing is applied to two-dimensional images. 
The storage and calculation of the matrix face massive 
challenges. The storage requirements are high, the 
reconstruction time is long, and the reconstruction qualities 
are poor. The images in block compressed sensing (BCS) [6-
7] are divided into fixed-size blocks. Each block is 
independently sampled by the same measurement matrix and 
reconstructed. The size of the measurement matrix is 
decreased, the reconstruction time is shortened, and the 
sampling efficiency is improved. Nevertheless, the sparsities 
of the images are not fully utilized, and the allocation of 

sampling resources is unreasonable due to the fixed block 
size and same sub-sampling rate for each block. The 
blocking artifacts are introduced during the reconstruction 
process, and the rough block edges are produced in the 
reconstructed images with complex textures.  

Scholars have conducted extensive studies on image 
partition and blocking artifact elimination to improve 
reconstruction qualities of the images [8-14]. However, the 
high-frequency components of the images are ignored in the 
reconstruction process, and the reconstruction qualities of 
texture details are poor. Therefore, accurate measurement of 
the texture complexity, multiscale block division, and 
adaptive allocation of sub-sampling rates are urgent 
problems that must be solved. 

This study obtains the high-frequency components of the 
images and analyzes the texture complexity. A mathematical 
model is established to partition the images into variable-
size blocks automatically and allocate the sub-sampling rates 
adaptively. Moreover, the images are reconstructed. The 
blocking artifacts are effectively eliminated, and the 
reconstruction qualities of the images, especially the texture 
details of blocks, are improved. Thus, a reference for 
developing and optimizing the adaptive multiscale block 
BCS of images is provided. 
 
 
2. State of the Art 
 
At present, scholars have performed numerous studies on 
BCS. The sparsity is crucial in CS reconstruction. The 
reconstruction qualities of images can be improved by fully 
utilizing the sparsity of the images. The BCS-SPL algorithm 
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was suggested by Mun S. [7] to enforce sparsity via dual-
tree complex wavelet transform and bivariate shrinkage. The 
smoothed projected Landweber (SPL) and Wiener filtering 
were applied to reconstruct the images rapidly and eliminate 
the blocking artifacts. However, the distributed sub-sampling 
rates to image blocks were unreasonable, and the 
reconstruction qualities were poor. Spurthi S. [8] employed 
the discrete cosine transform, discrete wavelet transform, 
and contourlets as the sparsity transform. However, the 
influence of texture distribution on the reconstruction quality 
was not considered. Haltmeier M. [9] improved the sparsity 
transform. Unde A. S. [10] adjusted the sparsities of the 
original images based on -norm minimization to increase 
the sampling efficiency. However, the reconstruction 
qualities of texture details were poor. Cao Y. [11] adopted 
the optimized sequence and weighted sampling to adjust the 
sparsities of image blocks and improve the reconstruction 
qualities. Nevertheless, the texture complexity was 
disregarded. Eslahi N. [12] enforced local and non-local 3-
dimensional sparsity to obtain the local smoothing and non-
local self-similarity information. However, the high-
frequency components of the images were not considered. 
Bigot J. [13] and George S. N. [14] designed a random 
measurement matrix, but the texture complexity of the 
images was not calculated. The variable sub-sampling rates 
should be set in accordance with the texture complexity of 
the image blocks. The MS-BCS-SPL algorithm was 
presented by Fowler J. E. [15] to decompose the images by a 
three-level wavelet transform. The different sub-sampling 
rates were set to different levels of the wavelet 
decomposition. However, the same sub-sampling rate for 
each level of blocks caused an unreasonable allocation of 
sampling resource. The rough block edges are found in the 
reconstructed images with complex textures. The ED-MS-
BCS-SPL algorithm was suggested by Li Y. [16] to allocate 
the total sub-sampling rates to each block of the levels 
following the edge structures and direction characteristics of 
the images adaptively. The reconstruction performance was 
improved. Nevertheless, only the edge structures of low-
frequency components were measured. The image blocks 
were classified into texture and plain blocks [17-18]. The 
blocking artifacts were eliminated by adaptive weighted 
filtering based on two-dimensional neighborhood features. 
The reconstruction qualities of the edge details were 
improved. However, the detection time of the plain blocks 
was long. The adaptive sampling can be employed to adjust 
the sub-sampling rate of each block based on the texture 
feature. Accurately measuring the texture complexity of the 
image blocks is important. Li R. [19] utilized spatial entropy 
to measure the texture features of image blocks. However, 
this method is unsuitable for images with complex textures. 
Wang Y. [20] promoted the reconstruction quality by 
adaptively assigning the sub-sampling rates due to the gray 
entropy of the image blocks. Nevertheless, the correlation 
between image elements was not considered. Cai X. [21] 
measured the texture structures by the total variation 
difference method, but the accuracy of the method was poor.  

The simulation experiments were performed to improve 
the sparsities of the original images. Few studies have 
explored the adaptive sub-sampling rate and texture 
complexity measurement to reconstruct the texture details of 
the images. The texture information of the images was 
obtained in the present study through a three-level wavelet 
transform. The entropy of the gray-level co-occurrence 
matrix was utilized to calculate the texture complexity of the 
image blocks accurately. Furthermore, a mathematical model 

was established to determine the block size and allocate the 
sub-sampling rates to each block adaptively according to the 
image textures. The natural images were compressed and 
reconstructed, and the blocking artifacts were effectively 
eliminated, thereby providing a basis for the optimization of 
the adaptive multiscale BCS of images. 

The remainder of this study is organized as follows. 
Section 3 describes the measurement method of texture 
complexity and establishes the calculation model to achieve 
multiscale blocks and adaptive sub-sampling rates. Section 4 
reconstructs the natural images with different texture 
complexities and analyzes the reconstruction quality. Finally, 
Section 5 summarizes the conclusions. 
 
 
3.  Methodology 

 
3.1 CS theory 
CS theory is based on the concept of signal sparsity. Let 

 be the real-valued N-dimensional signal. Suppose 
that the coefficients are sparse or compressible under a set of 
orthogonal bases . The signal 
can then be sub-sampled by the measurement matrix , and 
the obtained vector is as follows: 
 

                                     (1) 
 

where  is an  measurement matrix,  is 
an  original input signal, and  is the  
measurement vector. The signal  can be accurately 
recovered from  assuming that the measurement matrix  
satisfies restricted isometry property and  is sparse. When 
CS is applied to two-dimensional images, the scale of the 
measurement matrix is substantially large, which is up to the 
magnitude of 104–106. The storage requirements are 
relatively high, and the related calculation cost is huge. 
 
3.2 BCS theory 
In the sampling process of BCS, the original image (N pixels) 
is partitioned into b non-overlapping blocks with a size of 

. The block is arranged in a column, which is denoted 
as , and independently sampled by the same measurement 
matrix. The obtained vector sets are as follows: 
 

                   (2) 
 

where  is an  measurement matrix,  
is the number of samples, (M samples from N 
pixels) is the sub-sampling rate, and  is the ith block of 
the original image. 

Each block in BCS is independently sampled and 
reconstructed. The storage and calculation are performed on 
the measurement matrix . The scale of the measurement 
matrix no longer increases with the size of the original 
image. Moreover, each block adopts the same measurement 
matrix. Only the matrix is stored at the receiving end. 
The storage resource is saved, the calculation cost is reduced, 
and real-time performance is improved. However, the 
differences in textures are present among the blocks, and the 
sparsities are uneven. The reconstruction effects of the 
blocks are different. False boundaries and fuzzy shadows 
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between adjacent blocks appear when the blocks with 
different reconstruction effects are reconstructed into an 
image. The brightness of each block is different, 
demonstrating a blocking artifact. 
 
3.3 Proposed adaptive multiscale BCS 
The reconstruction effect is closely related to the texture 
complexity of the image. Limited sample data can obtain 
good reconstruction qualities for the plain blocks, while 
additional sample data are required for the complex texture 
blocks. The image is divided into fixed-size blocks in most 
of the literature, which is convenient for operation. However, 
the reconstruction qualities of the complex texture blocks are 
poor, thereby decreasing the effect of the entire image. The 
block sizes and sub-sampling rates should be adaptively 
adjusted in accordance with the texture features of the image 
blocks. The large block sizes and low sub-sampling rates are 
set to increase the compression ratios of the plain blocks, 
while the small block sizes and high sub-sampling rates are 
set to increase the reconstruction qualities of texture blocks. 
The texture feature of each block is fully utilized to allocate 
the limited sampling resource effectively, thereby improving 
the reconstruction quality of the entire image. The original 
image is decomposed by wavelet transform to generate low- 
and high-frequency components. The low-frequency 
component concentrates on the energy of the original image, 
while the high-frequency component represents the texture 
information of the image. The algorithm for BCS is 
improved in the present study, and the high-frequency 
component of the image is employed in the reconstruction 
process. The block sizes and sub-sampling rates are adjusted 
on the basis of the texture complexity of the image blocks. 
The PSNR of the proposed algorithm is also increased. 

The entropy of the gray level co-occurrence matrix is 
utilized to measure the texture complexity of the image. The 
texture feature of an image is determined by the number of 
pixels with different complexities. Therefore, two pixels 
with the same complexity must be available, that is, a certain 
spatial relationship exists between the pixels. The spatial 
relationship is statistically analyzed, and a matrix 
representing the texture information is obtained, which is a 
gray-level co-occurrence matrix. The gray-level co-
occurrence matrix is described as the probability that a pixel 
with gray level i reaches another pixel with gray level j 
along a predetermined path d, that is, 

: where L is the gray level, and 
d indicates the distance and direction between the two pixels. 
The commonly adopted direction angles are 0°, 45°, 90°, 
and 135°. The gray level of the original image is quantized 
to 0–15 to decrease the computational burden. The gray-
level co-occurrence matrix is expressed as follows: 

 

    (3) 

 
 The entropy of the gray-level co-occurrence matrix is: 
 

                   (4) 

 
 The texture complexity of the image block is: 
 

                                    (5) 

 
The multiscale block and adaptive sub-sampling rate are 

realized on the basis of the texture complexity of the images. 
The blocks with complex textures are subdivided and 
allocated with high sub-sampling rates, while those with 
plain textures are allocated with low sub-sampling rates. The 
detailed steps are presented as follows. 
Step 1) The image is decomposed by a three-level wavelet 
transform. The low-frequency coefficients are set to zero, 
and the high-frequency components are subjected to wavelet 
inverse transform to obtain the image T. 
Step 2) The image T is divided into blocks with a size of 

, where B is 32. The texture complexity  of each 
image block is calculated in accordance with formula (5). 
The threshold  of the texture complexity is set. If  is 
less than , then the sub-sampling rate is adaptively 
allocated: 
 

(6) 

 
where  is the number of image blocks with the size of 

, and  is [17]:  
 

                        (7) 

 
 If  is more than , then the block is divided into 
four sub-blocks with a size of . 
Step 3) The texture complexity  of each image sub-block 
with the size of  is calculated in accordance with 
formula (5). The threshold  of the texture complexity is 
set. If  is less than , then the sub-sampling rate is 
adaptively allocated: 
 

(8) 

 
 If  is more than , then the block is divided into 
four sub-blocks with a size of . 
Step 4) The texture complexity  of each image sub-block 
with the size of  is calculated in accordance with 
formula (5). The threshold  of the texture complexity is 
set. If  is less than , then the sub-sampling rate is 
adaptively allocated: 
 

  (9) 
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 If  is more than , then the block is divided into 
four sub-blocks with a size of . The sub-
sampling rate is adaptively allocated: 
 

  (10) 

 
where 
 

(11) 

 
 The sampling number of the sub-block is calculated 
following the corresponding sub-sampling rate, and the 
measurement matrix is determined. All the sub-blocks are 
synchronously sampled, and the measurement vector sets are 
obtained. 
Step 5) The high-frequency components of the image are 
reconstructed by the SPL [7], which is normalized and 
combined with the low-frequency pre-reconstructed image 
to obtain a high-quality reconstructed image. 

The flow diagram of the proposed algorithm is shown in 
Fig. 1. 

 
 

4. Result analysis and discussion 
 

The gray images with different texture complexities are 
reconstructed, and the reconstruction qualities are analyzed 
in accordance with the proposed method in Section 3.3. The 
test gray images are Lena, Mandrill, Barbara, and 
Cameraman. The size is 512 × 512 pixels as shown in Fig. 2. 
The discrete cosine transform (DCT) is adopted as the 
measurement matrix. The test images are decomposed by a 
three-level 9/7 orthogonal wavelet transform. The high-
frequency components of the images are pre-reconstructed 
and divided into non-overlapping image blocks. The texture 
complexity of the image blocks is measured by the gray 
level co-occurrence matrix to determine the block sizes and 
allocate the sub-sampling rates adaptively. The image blocks 
with complex textures are small and sampled at high sub-
sampling rates, while those with plain textures are large and 
sampled at low sub-sampling rates. The sparsities of the 
images are considered, and the limit sampling resource is 
effectively utilized. The images are reconstructed by the SPL 
method. The reconstruction quality of the proposed 
algorithm is compared with BCS-SPL-DCT, BCS-SPL-
DWT, and BCS-SPL-DDWT [7]. 

  
 

 
Fig. 1. Flow diagram of the proposed algorithm 
 

 
Fig. 2. Test gray images (a)Lenna (b)Mandrill (c)Barbara 
(d)Cameraman 
 
 
4.1 Parameter settings 
The variable block sizes are 32, 16, 8, and 4. The threshold 
of texture complexity is determined in accordance with the 
simulation experiments and set at the average value of 
texture complexity in this study. The gray levels of the 
images are quantized to 0–15 to reduce the calculation cost. 
The distance d is 1, and the angle is 0°. 
 
4.2 Performance comparison of different reconstruction 
algorithms 
The PSNR at the sub-sampling rates (M/N) of 0.2, 0.3, 0.4, 
and 0.5 is listed in Table 1. The table reveals that the 
reconstruction quality of the proposed algorithm is 
improved. The advantage is particularly evident with the 
increase in the sub-sampling rate. The PSNR of the proposed 
algorithm at the sub-sampling rates of 0.2–0.5 is 0.6–5.34, 
0.5–5.57, and 0.07–4.77 dB higher than BCS-SPL-DCT, 
BCS-SPL-DWT, and BCS -SPL-DDWT, respectively. The 
comparison results with the three other test images reveal 
that the reconstruction PSNR for Barbara image is 
substantially increased. At the sub-sampling rate of 0.3, the 
PSNR of the proposed algorithm is 2.42, 3.3, and 2.71 dB 
higher than BCS-SPL-DCT, BCS-SPL-DWT, and BCS-
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SPL-DDWT, respectively. The global views and local 
details of the reconstructed images at the sub-sampling rate 
of 0.3 are shown in Figures 3–5. The images reveal that the 
blocking artifacts are effectively eliminated, the texture 
details of reconstructed images are abundant, and the image 
edges are clear. Good visual qualities are also yielded. The 
reconstruction effect of blocks with complex textures, such 
as the hair in the Mandrill image, the scarf in the Barbara 
image, and the camera in the Cameraman image, is 
considerably improved. This phenomenon is due to the 
allocation of high sub-sampling rates to the complex texture 
blocks with small block sizes. The sampling resource is 
efficiently utilized, and the texture details of the images are 
fully reconstructed. At the sub-sampling rate of 0.3, no 
remarkable differences are noted between the reconstructed 
and original texture blocks in visual sensation. 
 
Table 1. Reconstruction PSNR in dB 

Image Algorithm Sub-sampling rate(M/N) 
0.2 0.3 0.4 0.5 

Lena 

BCS-SPL-DCT 30.45 32.47 34.23 35.78 
BCS-SPL-DWT 30.79 32.89 34.70 36.28 

BCS-SPL-DDWT 31.29 33.40 35.16 36.74 
Proposed 32.38 35.22 37.43 38.72 

Mandrill 

BCS-SPL-DCT 21.32 22.32 23.35 23.67 
BCS-SPL-DWT 21.62 22.64 23.65 24.74 

BCS-SPL-DDWT 21.85 22.89 23.95 25.09 
Proposed 21.92 23.57 25.19 27.11 

Barbara 

BCS-SPL-DCT 24.42 25.98 27.38 29.01 
BCS-SPL-DWT 23.77 25.10 26.51 28.02 

BCS-SPL-DDWT 24.15 25.69 27.23 28.82 
Proposed 25.54 28.40 30.88 33.59 

Cameraman 

BCS-SPL-DCT 29.97 32.95 35.68 37.84 
BCS-SPL-DWT 29.74 32.94 35.57 37.91 

BCS-SPL-DDWT 30.34 33.71 36.44 38.93 
Proposed 32.84 34.71 39.02 43.18 

 
 

 
Fig. 3. Reconstructions of the Mandrill image at a sub-sampling rate of 0.3 (a)BCS-SPL-DCT (b)BCS-SPL-DWT (c)BCS-SPL-DDWT (d)Proposed 
algorithm 
 

 
Fig. 4. Reconstructions of the Barbara image at a sub-sampling rate of 0.3 (a)BCS-SPL-DCT (b)BCS-SPL-DWT (c)BCS-SPL-DDWT (d)Proposed 
algorithm 
 

(a) (b)

(c) (d)

(a) (b)
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Fig. 5. Reconstructions of the Cameraman image at a sub-sampling rate of 0.3 (a)BCS-SPL-DCT (b)BCS-SPL-DWT (c)BCS-SPL-DDWT 
(d)Proposed algorithm  
     
 
5. Conclusion 
 
A mathematical model was developed to reconstruct the 
texture details of the images accurately. The texture features 
of the images were extracted by the three-level wavelet 
transform, and the texture complexity was analyzed by the 
gray level co-occurrence matrix. The block sizes of the 
images were automatically adjusted, and the sub-sampling 
rates were adaptively allocated due to the texture 
complexity. The following conclusions could be drawn: 
(1)  The texture details of reconstructed images are 
abundant, and the image edges are clear. Superior visual 
qualities are also achieved. The reconstruction effect of 
blocks with complex textures is substantially improved, and 
the blocking artifacts are effectively eliminated. 
(2) The reconstruction qualities are improved for images 
with different texture complexity at different sub-sampling 
rates. The advantage is particularly evident with the increase 
in the sub-sampling rate.  

(3) At the sub-sampling rate of 0.3, a 2.42–3.3 dB gain in 
reconstruction PSNR for Barbara image over the original 
BCS-SPL is achieved, and no visual differences are noted 
between the reconstructed and original texture blocks. 

Thus, the variable block size and adaptive sub-sampling 
rate are adopted in the proposed algorithm to reconstruct the 
texture details of the images accurately. However, the 
threshold of texture complexity is determined by the 
simulation experiments. The efficient determination of the 
threshold should be considered in future studies. 
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