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Abstract 

 
Self-discharge is one of the most important considerations in manufacturing supercapacitors. This paper discussed two 
dynamic mathematical models of self-discharge behavior of supercapacitor from the concept of regular capacitor 
mechanisms and impedance of an R-C circuit, and constant phase elements (CPE), impedance of R-CPE, and fractional-
order derivatives. The mathematical model was derived from each other to show their equality and relationships.  
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1. Introduction 
 
Self-discharge behavior is an important performance factor 
in supercapacitors.  The term “self-discharge” is sometimes 
associated with the chemical (faradaic) reactions discharging 
the surface and excluding any physical processes which 
cause the voltage drop like charge redistribution [1]. Self-
discharge rates are often higher in supercapacitors compared 
to batteries which makes self-discharge an important 
consideration in supercapacitors [2]. The practical 
supercapacitor electrodes, however suffer from a self-
discharge at the charged state that is caused by leakage 
currents [3]. This paper discusses two dynamic mathematical 
models simulating the self-discharge behavior of 
supercapacitor from different concepts: (1) concept of 
regular capacitor mechanisms and impedance of an R-C 
circuit and (2) constant phase elements (CPE), impedance of 
R-CPE, and fractional-order derivatives.  

 
 

2. Mathematical Background 
 

2.1. Capacitor Mechanism 
The equivalent circuit for a regular capacitor can be 
modelled by representing a capacitor as capacitance C in 
parallel with resistance R [2].  

 
Fig. 1. Equivalent circuit of RC circuit 

 
 The self-discharge of a regular capacitor can be 
computed as follows: 
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when t = 0, V= Vi 
 
ln 𝑉0 = 	𝜏        (5) 
 
𝑙𝑛		(𝑉0/𝑉5) = 𝑡/𝑅𝐶                                      (6) 
 
𝑉0/𝑉5 = exp	(−	𝑡/𝑅𝐶)                                 (7) 
 
2.2 Fractional Calculus 
The fractional calculus (FC) is the generality of the 
traditional calculus that leads to similar concepts and tools, 
but with wider applicability. It allows the derivative and 
integral operations of arbitrary real or complex order, which 
makes it suitable for modeling ability. 
 The general format of fractional linear time-invariant 
(FLTI) systems equations is as follows: 
 

 
∫ 𝑎>
?
>@A 𝐷CD𝑦(𝑡) = 	∫ 𝑏G𝐷CH𝑥(𝑡)	𝑤ℎ𝑒𝑛	𝛼> <	

O
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where D means derivative and αn (n = 0, 1, 2,…) are 
derivative orders that we will assume to be positive real 
numbers.  
 With the use of this definition, the Impulse Response and 
Transfer Function can be define and compute. Same with 
other shift-invariant linear system the system described has 
the exponential as Eigen function. Letting x(t) = est, where 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: sdfenol@cvsu.edu.ph 
ISSN: 1791-2377 © 2020 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.135.10 



Sheryl Dinglasan Fenol and Felicito S. Caluyo/ 
Journal of Engineering Science and Technology Review 13 (5) (2020) 77 - 81 

 
 

78 

𝑠 ∈ 𝐶  and 𝑡 ∈ 𝑅 , we obtain y(t) = H(s)est, where H(s) is the 
transfer function given by 
 
𝐻(𝑠) = 𝑠C        (9) 
 
 Provided that Re (s) > 0 or Re (s) < 0.  
 With s = jw, the Frequency Response, H(jw) can be 
obtain, and represents bode diagrams like in usual systems.  
 The system represented by sα is called differentiator and 
Reimann surfaces define one function. Therefore, FLTI 
equation can represent an infinite number of linear systems. 
However, only the principal Riemann surface may lead to a 
real system. Constraining sα by imposing a region of 
convergence, a transfer function can be defined. Choosing 
the left half real axis as branch cut line, the transfer function 
of the usual system can be obtained. Its impulse response is 
given by  
 
𝛿U
(C)(𝑡) = %VWVX	Y(%)
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where Γ(.) is the Euler gamma function. 
 With α = -1, the normal integrator impulse responses are 
obtain. Using those impulse responses, the differ integrated 
of a given signal by the convolution are obtain fractional and 
led to:  
  
𝐷U
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 Although this relation was used for defining fractional 
derivative this is not convenient analytical point of view. 
The simplest way of doing it is from the generalized 
difference which is called forward Grṻnwald-Letnikov 
derivative and is given by 
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where h is any complex number in the right hand complex 
plain [4-10].  
 
2.3. Constant Phase Element (CPE) 
CPE is a phenomenological term used by Burg in 1984. It is 
an empirical impedance that its phase angle is independent 
of frequency. CPE is often related to dispersion attributed to 
surface inhomogeneities and distributed time constants and 
obeys Kramers-Kronig relations provided that |α| < 1.  
 In electrical engineering, CPE behavior is explained as 
the frequency dispersion of capacitance by dielectric 
relaxation, where the electric current density follows the 
change of an electric field with a delay [11].  Fractional 
calculus was used to express the phenomenon 
mathematically. In [12], the model of leaky capacitor was 
discussed and explained its behavior, the expression for 
capacitance and current is  

 
𝑖(𝑡) = 𝐶 #DY(%)
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where #

DY(%)
#%D

 was used as the “fractional-order derivative.” 
The mathematical expression of CPE from fractional 
derivative and in frequency domain was represented as  
 
𝑍*qr	 = 𝑄𝑠[C      (14) 
 

 The coefficient Q and the fractional exponent α are the 
parameters of CPE, generally -1 < α <1 [11-15]. 
 
2.4 Impedance as a Function of Frequency 
Impedance of an electrical element is defined as a function 
of frequency 
 
𝑍	(𝜔) = 	 $(u)

v(u)
      (15) 

 
where I(ω) is the electrical response (current) of the element 
on the applied potential V(ω). Impedance can be expressed 
as a complex quantity when the possible phase shift between 
current and applied potential were considered. 
 In polar form 
 
𝑍̅(ω) = |𝑍(ω)|. 𝑒0{	     (16) 

 
 In rectangular form: 
 
𝑍̅(ω) = 𝑍|(}) + 𝑖𝑍"(ω)	     (17) 
 
 The impedance of an electric circuit containing an 
electrical resistance R and a capacitor C, in the case of 
parallel connection is given by  
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Fig. 2. Impedance semi-circle 

 
 Considering Fig. 2, the angular frequency of ω connects 
the real and imaginary parts of impedance, the results is a 
semicircle with diameter equal to the resistance R. The 
angular frequency at the maximum point of the semicircle 
defined as ωp. At this point, the real part of the impedance is 
equal to its imaginary part, and this equality results in  
 
C = ^

(u�
	       (19) 

 
 ESR is the equivalent series resistance that contributes to 
the energy los s during charging and discharging of a 
supercapacitor. RP is the equivalent parallel resistance that 
simulates energy loss due to supercapacitor self-discharge. 
Resistor RP is always higher than ESR and can be neglected 
during fast charge/discharge [2].  
 
 
3. Self-Discharge Modeling 
 
This paper proposed two mathematical model for self-
discharge of supercapacitor. The first model was derived 
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from the self-discharge characteristics of regular capacitors. 
The second model is from the concept of CPE and 
fractional-order derivatives.   
 In the first mathematical model the self-discharge is in 
exponential form. The voltage across the terminal of the 
supercapacitor is; 
    
𝑉%(t) = 𝑉((𝑡) + 𝑉�	(𝑡)     (20)	
 
and the terminal voltage of the supercapacitor in discharging 
is, 
𝑉%	(t) = 𝑉�	(𝑡) − 𝑉((𝑡)     (21) 
 
 The voltage V(t) can be determined from the equation of 
parallel RC circuit (see Fig. 1), subject to the initial 
condition that V(0) = VO, the VC(t) of can be calculated and 
expressed as 
 
𝑉�	(t) = 𝑉�	𝑒[%/(�	*�����		     (22) 
 
and 
 
V(t) = 𝑉�	(𝑡) + 𝑉r�(		(𝑡)     (23) 
 
so that, 
 
V(t) = 𝑉5 	�1 +

r�(
(�
� 𝑒[%/(�	*�����	    (24) 

 
 Converting the equation into self-discharge and adding 
exponent “n” to the time constant 1/RC to consider a 
fractional capacitor.  
 
𝑉�*(𝑡)/𝑉� =∗ exp	−[(𝑡 − 𝑡5/𝑅�𝐶]^[>  (25) 
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 Since 1 + r�(

(�
 is almost equal to 1, the simplified 

mathematical equation is  
 
𝑉�*(𝑡) = 𝑉� ∗ exp	−[(𝑡 − 𝑡5/𝑅�𝐶]^[>               (27) 
 
 In last equation above, VSC(t) is the voltage during self-
discharge, VO is the maximum voltage after charge, t is the 
time of self-discharge, tO is the charging time, Rp is the 
leakage resistance, and C is the maximum capacitance. 
 To compute for value of n  
 
ln(𝑉*/𝑉�*) = exp(𝑡/𝑅�𝐶)^[>    (28) 
 
1 − 𝑛	 = �> [��($�/$��)]
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where VC is the maximum charged voltage, VSC is the self-
discharge voltage, t is the time of self-discharge Rp is the 
leakage resistance, and C is the rated capacitance. 
 In second mathematical model, fractional-order 
derivative was used to convert an impedance formula in 
frequency domain for R-CPE circuit.  
 The formula to compute the total impedance is 
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and when ω is equal to infinity  
 

𝑍	 ≅ 	�
(�

(0u)W*	
					(𝜔	 ⟶ ∞)     (31) 

 
but when ω is equal to zero 
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 CPE can be computed as  
 
𝑍*qr = 		

^
(0u)W*

      (33) 
 
and  
 
𝛼 = 		1 − 𝛾      (34) 
 
 Using fractional order and laplace transform in solving 
for the order of the system 𝛼.  
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 The time domain of ZCPE is now 
 
𝑍(𝑡) = 	 ^

*
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 Transforming the formula from impedance to voltage  
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where ESR and VO  

 
𝐸𝑆𝑅	 = 𝑅� + 𝑅£	      (40) 

 
𝑉� = 𝐼� × 𝐸𝑆𝑅      (41) 
 
and the equation for charging and self-discharge are 
 
𝑉(𝑡) = 𝑉� +	𝐼�

%XVª

	°.		(¬[­)!
	                          - charging   (42) 

 
𝑉(𝑡) = 𝑉� + 𝐼� �
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	°		(¬[­)!
	�     - self-discharge (43) 

 
where V(t) is the voltage self-discharge, VO is the initial 
voltage before self-discharge, IC is the charging current, t as 
the self-discharge time and C is the rated capacitance. 
 
 
4. Derivation of self-discharge mathematical model 
 
The concept of complex number conversion from 
rectangular to polar form can be applied in both potential 
and impedance to prove their equality.  
 
𝑍 = |𝑍(𝜔)|	. 𝑒0{   (polar form) 
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𝑍 = 𝑍|(𝜔) + 𝑖𝑍"(𝜔)   (rectangular form) 
 
 The two mathematical model of self-discharge is almost 
equal to each other, 
 
𝑉�*(𝑡) = 𝑉� + 𝐼* �

%XVª[(%[%³´�Vµ¶¶)XVª

	°		(¬[­)!
	�         ≈      𝑉�*(𝑡) =

𝑉� ∗ exp	−[(𝑡 − 𝑡5/𝑅�𝐶]^[> 
 

equation in the left side is in rectangular form while equation 
at the right side is in polar form. 
 First, consider equation at the left side where 
 
𝑉� = 𝐼*		𝑥	𝐸𝑆𝑅      (44) 
 
while  
 
�%

XVª[(%[%³´�Vµ¶¶)XVª

	°		(¬[­)!
	� = 𝑍(𝑡)     (45) 

 
so  
 
𝑉�*(𝑡) = 𝑉� + 𝑉(𝑡)	     (46) 
 
VO is real part of the potential while V(t) is the imaginary 
part of the potential. 
 Then, consider equation at the right side where VO is the 
magnitude and  
 
exp	−[(𝑡 − 𝑡5/𝑅�𝐶]>     (47) 
 
is the angle in polar form.  
 However, γ is almost equal to n, where γ came from α 
(CPE) with equation 
 
𝛼 = 1 − 	𝛾      (48) 
 
and to prove the relationship between n and α , we can use 
the parallel R-CPE and RC circuit  and plot. 
 

 
Fig. 3. Complex-plane impedance plot with n = 1 and n < 1 

 
 In R-CPE, the total impedance is  
 

𝑍 = �^
(
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 The impedance of CPE (ZCPE) is 
 
^

���·
= 𝑄	(𝑖𝜔)C     (50) 

 
where Q is a CPE parameter that represents a capacity C.  
 However, in an R-C circuit the total impedance is  

 
𝑍 = ^

(
+ 𝑖𝜔. 𝐶														    (51) 

 
 The real and imaginary part of impedance can be written 
as  

 
𝑍′	 = (

^U(u*()�
  ;          𝑍	(𝜔) = u(�*
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 In Fig. 3 where n = 1, the real part of impedance equal to 
its imaginary part and produce an equation of  
 
C = ^
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so  
 
𝜔� =

^
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       (53) 
 
while in R-CPE  
 
𝜔�′ =

^
((¸)X/D

      (54) 
 
 Assuming that ωp and ωp’ for both parallel R-CPE and 
R-C circuits (fig. n) are equivalent  
 
^
(*
= ^

((¸)X/D
      (55) 

 
 To calculate ‘real’ capacity C: 
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 Raised both sides by n : 
 
𝑄 = *D

(XVD
																														    (58) 

 
𝑄 = 𝐶>𝑅>𝑅[^																								    (59) 
 
^

���£
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(
																    (60) 

 
 and if the last equation above ZCPE can be computed 
using a real capacity C and resistance where n is equal to α.    
 
 
5. Mathematical Model vs. Actual Simulation  
 
Three commercially available supercapacitors were used in 
the actual simulation using 580 Battery Test System and 
Bplot software. Both supercapacitors were charge with 
constant current of 1 mA and held in constant voltage of 
2.5V for two hours.  
 
Table 1. Manufacturer’s given parameters 

Component A B C 
Rated Capacitance (F) 3.3 4.7 10 
Rated Voltage (V) 2.5 2.5 2.5 
Temperature Range (oC) -25 to 60 -26 to 60 -40 to 70 
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Fig. 4. Simulation Result of Component A 

 
 

 
Fig. 5. Simulation Result of Component B 

 

 
Fig. 6. Simulation Result of Component C 

 
 The first mathematical model was used to compare with 
the actual simulation done in potentiostat since both model 
and experiment is in time domain. The mathematical model 
is in good agreement with the actual simulation results as 
seen in Fig. 4, Fig. 5 and Fig 6. Table II shows the computed 
and extracted parameters from the mathematical model and 
actual simulation.  
 
Table 2. Extracted parameters 

Component A B C 
n 0.208 0.215 0.215 
ESR (Ω) 2.028 x10-03 3.168 x10-04 4.000 x10-02 
Leakage Current (A) 6.692 x10-06 4.467 x10-06 3.125 x10-02 
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