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Abstract 
 

The tool servo system of the computer numerically controlled (CNC) machine milling process is a complex nonlinear 
system composed of a servomechanism, a cutting process, and a detection device. In the actual machining process, 
accurately establishing a system model is difficult due to the coupling of parameters and nonlinear factors. 
Simultaneously, system parameters change with the working environment (e.g., resistance increases with an increase in 
temperature), leading to a decrease in the surface quality of the work piece. To improve the online identification accuracy 
of milling process model parameters and effectively increase the influence of parameter changes on system performance, 
a tool speed model prediction adaptive tracking method based on forgetting factor least square identification was 
proposed in this study. First, the model was discretized in accordance with the structure and characteristics of the tool 
servo feed system in the machining process, and the model parameters of the system were identified using the forgetting 
factor least square method. Second, a model predictive tracking method based on adaptive parameter estimation was 
designed on the basis of the discrete model of the system. Lastly, the effectiveness of the proposed method in model 
parameter identification and tool speed tracking was verified via numerical simulation. Results show that when uncertain 
factors, such as noise exist in the system, the least square identification method based on the forgetting factor can more 
quickly and accurately realize the model parameter identification of a tool servo feed system in the milling process than 
the stochastic gradient (SG) identification method. Moreover, identification accuracy is 30 times higher than that of the 
SG identification method. The model predictive tracking control method based on forgetting factor least square 
identification can quickly track tool speed without overshooting in 0.035 s. By contrast, the traditional minimum variance 
predictive control is completely invalid in the actual stage. The proposed method exhibits high accuracy in tool speed 
tracking and strong robustness to changes in model parameters. 
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___________________________________________________________________________________________ 

 
1. Introduction 
 
Milling refers to fixing a blank and using a high-speed 
rotating milling cutter to cut out the required shape and 
characteristics, which is one of the most important processes 
in computer numerically controlled (CNC) machining. 
Milling is typically composed of multiple axis movements, 
and the tool servo feed motion is a single axis motion in the 
depth direction, which plays a decisive role in the surface 
quality. In the common milling process, the tool servo feed 
motion system is driven by a direct current (DC) motor 
through the coupled ball screw to drive the cutter into the 
tool holder for cutting. This system exhibits the 
characteristics of a simple structure, low cost, and easy 
maintenance, and it can basically meet the requirements for 
conventional CNC machining servo motion, which is widely 
applied to automobile parts, coal mining machinery, 
petroleum machinery, construction machinery, and other 
fields [1-3]. 

With the increase of processing complexity and working 
environment, the requirements for the servo feed system of 
CNC machine tools have become increasingly higher. The 

drive formation of this system is developing toward the 
direction of high speed, high acceleration, and high 
precision. The tool servo system composed of a DC motor 
and a ball screw has a simple structure and low cost, which 
is the most commonly applied transmission mode of existing 
CNC machine tools. However, the torque signal is 
transformed into the tool motion signal by the power system 
of the DC motor. Consequently, multiple signals are 
designed during the transmission process, the system 
exhibits the phenomena of multiparameter coupling and 
magnetic circuit saturation, and it is difficult to establish an 
accurate model of the system. Simultaneously, the system 
model parameters will change with changes in the working 
environment (e.g., temperature and humidity), and thus, 
controlling the system is a challenging task. 

Considering the aforementioned issues, scholars have 
conducted numerous studies on the influences of model 
parameter uncertainty and external disturbance on system 
performance [4-7]. However, their methods are based on a 
deterministic model of a system. An accurate mathematical 
model of the tool servo feed system is difficult to establish in 
a complex and changeable environment. Therefore, 
determining how to realize the online identification of model 
parameters and the high-precision control of servo feed 
motion in the milling process on the basis of changes in 
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model parameters has important practical significance for 
improving the machining accuracy of parts. 

The forgetting factor least square identification method 
is adopted to identify the model parameters of a discrete tool 
servo feed system. A model adaptive tool speed tracking 
method is also designed to solve the problem of high-
precision tracking of the milling process tool servo feed 
system under the condition of uncertain parameters. Thus, 
the proposed methods provide a scheme for the design and 
development of a high-performance servo system of CNC 
machine tools. 
 
 
2. State of the art 
 
To address the difficulty in accurately establishing the 
milling process model, most existing studies have focused 
on the motor power source in a machining servo system [8-
23]. Odhano et al. [8] provided theoretical guidance for 
different motor identification methods, but did not present a 
specific identification process. Xu et al. [9] proposed a 
stochastic gradient (SG) model parameter identification 
method based on the forgetting factor for the regression 
model of a permanent magnet synchronous motor. The 
proposed method involved a considerable amount of 
calculation, and its convergence speed and accuracy were 
limited. To improve the estimation accuracy of a motor 
system, Qu et al. [10] developed a method for estimating the 
energy consumption parameters of cluster motors. Only the 
current information was used in the estimation process, and 
the dynamic estimation capability should be improved. 
Accetta et al. [11] applied a genetic algorithm to realize the 
optimal estimation of a linear motor. However, the size of 
the initial population was difficult to determine. If the scale 
of the proposed method was too small, then accuracy was 
low; if too many rules existed, then convergence was poor. 
Fagiano et al. [12] used the circuit breakers of industrial 
sensors to estimate motor parameters, but the introduction of 
circuit breakers reduced the reliability of the system. To 
improve the convergence speed and estimation accuracy of 
identification, Zhang et al. [13] introduced an adaptive linear 
neural network into the parameter identification of a 
permanent magnet synchronous motor. The structure and 
node number of the neural network resulted in design 
difficulties and were frequently difficult to determine. 
Scholars had conducted considerable study on machining 
process control [14-26]. Chatter was an unstable self-excited 
vibration phenomenon that leaded to tool wear, poor surface 
finish, and downhill milling operation. To improve the 
machining quality of the parts of the machining process, 
Paul et al. [14] presented an active flutter suppression 
strategy that combined proportional-derivative/proportional-
integral-derivative (PID) control with type 2 fuzzy logic 
control, and performed system stability analysis and 
experimental verification on the basis of Lyapunov stability 
theory. Although the proposed method improved the 
robustness of the system to external disturbances and model 
parameter changes, the controller used error and error rate as 
the control input and control gain as the output, making the 
structure complex and reducing dynamic response 
capability. Angel et al. [15] proposed a fractional-order PID 
controller that increased the self-use of the controller design 
and the capability to suppress system parameter 
perturbation. However, its effect was not good when a 
parameter suddenly changed. To improve the trajectory 
tracking capability of a controller, Corapsiz et al. [16] 

studied the performance of three PID control methods, PID 
based on the observer and feedforward compensation torque 
control for a three-axis CNC manipulator. The three 
aforementioned methods based on the system model were 
sensitive to changes in parameters. To minimize the contour 
error of 2-axis and 3-axis CNC machine tools, Hanifzadegan 
et al. [17] adopted a design method of multiple-input and 
multiple-output linear parameter change feedback controller. 
The proposed method applied a controller design technique 
based on linear matrix equality to the linear time-invariant 
CNC machine tool model. Simulation and experiments in the 
frequency and time domains showed that the proposed 
control method exhibited higher potential for reducing 
roaming errors than the traditional contour control method. 
However, the proposed control method was strongly limited 
in parameter variation and suffered from difficulty in 
meeting the high-precision requirement. To solve the 
optimal process planning problem of minimum turning time, 
Heydari et al. [18] adopted an optimal time control method 
when various equipment and process constraints are present. 
Zhou and Wu et al. [19-20] applied a modern robust control 
to the cutting process to improve the robustness of a system 
to parameter perturbation. Their simulation and experimental 
results showed that although the proposed method was 
robust to system parameter perturbations, its design was 
based on the maximum robust boundary, which required 
high control cost and affected the dynamic performance of a 
system. To reduce the influences of uncertainties, such as 
modeling errors, parameter changes, friction, linear and 
nonlinear measurement errors on the motion accuracy of a 
system, Huang et al. [21] successfully applied a state-space 
disturbance observer to the parameter variation of the servo 
motor’s speed and current loops and to the uncertainty 
estimation and compensation of the current measurement 
problem, and then proposed a self-tuning method. Predictive 
control was a modern robust control method that used the 
information of the previous time to predict and estimate the 
current time. Cairano et al. [22] applied the proposed method 
to the motion control of a machine tool’s machining process. 
The proposed method optimized the product quality and 
flexibility of the manufacturing process by coordinating the 
actuator and developing the operating range of the entire 
actuato, satisfied the actuator range and dynamic constraints, 
and ensured correct processing. Finite time processing for a 
given spatial pattern was implemented in real time even 
when computing resources were limited. However, the 
proposed method was sensitive to changes in model 
parameters and unsuitable for high-precision servo motion. 
Yuan et al. [23] combined Bayesian estimation with model 
predictive control to estimate model parameters. However, 
the control performance of the method was highly dependent 
on estimation accuracy. Moreover, Bayesian estimation was 
relatively complex and was not used in industrial 
applications. 

On the basis of the preceding studies, a tool servo feed 
rate tracking method based on forgetting factor least square 
identification was proposed for the milling process. 
Forgetting factor least square identification was employed to 
identify the model parameters of a tool servo feed system, 
and an adaptive model predictive controller was designed to 
realize the precise tracking of the tool servo feed system in 
an uncertain milling process to improve the robustness and 
tracking capability of the system. 

The remainder of this study is organized as follows. 
Section 3 describes the mechanical structure of the tool 
servo feed system in the milling process, constructs a 
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dynamic model of the system, identifies the nominal 
parameters of the system model on the basis of forgetting 
factor least square identification, and designs a model 
predictive speed controller based on the adaptive 
identification of model parameters. Section 4 compares the 
proposed method with the SG identification method and the 
traditional minimum variance predictive control method by 
using MATLAB numerical simulation, and then verifies the 
validity and superiority of the proposed method. Lastly, 
Section 5 provides the conclusions. 

 
 

3. Methodology 
 
3.1 Mathematical model of tool feed servo system used in 
the milling process 
Fig. 1 shows the structure diagram of the short arc milling 
process. The DC motor drives a ball screw through the 
coupling to drive the cutter on the cutter holder for cutting. 
In the model,  denotes the DC motor,  indicates the 
moment of inertia of the DC motor,  represents the 
internal resistance of the DC motor, DC denotes the DC 
power supply, and  indicates the equivalent load rotation 
inertia for the system that acts on the rotating shaft of the 
DC servo motor.  denotes the rotation angle of the 
transmission mechanism,  indicates the length of the ball 
screw guide rail, and  represents the transmission 
stiffness.  denotes the transmission force received by the 
executive part, and its driving force is exerted by the ball 
screw.  indicates the external load,  represents the 
quality of the executive part, and  denotes the viscous 
friction coefficient of the guide rail.  and  represent the 
input and output displacements, respectively. 
 

 
Fig. 1. Structure diagram of the short arc milling process 
 

The servo motion model of the milling process can be 
expressed as follows: 

 

                        (1) 

 
where , , , and  respectively represent the 
electromagnetic torque, load torque, viscous friction 
coefficient, and electromagnetic torque coefficient of the DC 
motor. , , , , and  respectively denote the 
input voltage, input resistance current, resistance, 
inductance, and potential coefficient of the DC motor.  
indicates the position of the rotor, and  is the angular 
velocity of the rotor. 

Disregarding the influences of the external load and the 
load torque, Eq. (1) can obtain the transmission function of 
the system tool speed to input voltage. Its transmission 
function can be expressed as follows: 

                          (2) 

 

where , , and  

represent the gain coefficient, mechanical time constant, and 
electrical time constant of the servo system in the milling 
process. In this model, motor resistance , viscous friction 
coefficient , moment of inertia , and motor inductance 

 will change with a change in the working environment 
of the servo system during the milling process, forming an 
uncertain milling servo system. The least square method 
exhibits the advantages of a simple principle, fast 
convergence, and easy understanding and programming; it is 
a highly effective estimation method for system parameters. 
Section 3.2 discusses the use of the forgetting factor 
recursive least square method in the online identification of 
system model parameters. 
 
3.2 Servo system model parameter forgetting factor least 
square identification during the milling process 
The least square method exhibits the advantages of a simple 
principle and fast convergence; it is also easy to understand 
and has been programmed. This method is highly effective 
for estimating system parameters. The following equation 
presents the online identification of system model 
parameters by using the forgetting factor least square 
method. 

The following controlled auto-regressive model is 
considered as follows: 
 

                     (3) 
 
where  indicates white noise, and the structural 
parameters , , and  are known. Thus, the following 
equations can be obtained as follows: 
 

               (4) 

 
The purpose of parameter estimation is to determine 

 parameters in accordance with measurable input 
and output. Eq. (3) can be written in the form of least 
squares as follows: 
 

        (5) 

 
According to the existing  group input/output 

observation data, the least square estimation of the system 
parameters satisfying the specified performance index is 
obtained by batch processing method as follows: 
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                               (6) 
 
where  and 

. 
When Eq. (6) is applied to parameter estimation, the 

amount of data processed per time is considerable, 
consuming a large amount of memory but still cannot be 
used for online parameter estimation. In an adaptive control 
system, the controlled object can always provide new 
input/output data, and new information is expected to be 
used in improving estimation accuracy to realize online real-
time estimation of plant parameters. The least square 
solution is changed to a recursive form; that is, the recursive 
least square parameter estimation algorithm can realize 
online estimation, and the estimation formula can be 
expressed as follows: 

 

         (7) 

 
The object of study is an uncertain milling servo system; 

thus, the system parameters satisfy parameter mutation, 
although not frequently, or the parameters change slowly. 

Meanwhile, the parameter mutation problem can be 
solved by resetting matrix . In recursive least squares, the 
matrix is periodically reset to a sufficiently large number. 

To address the problem of slow time-varying parameters, 
the so-called data saturation phenomenon with an increase in 
data will occur in the recursive least square method; that is, 
the sum becomes increasingly smaller with an increase in k, 
and thus, the correction capability becomes increasingly 
weaker, causing the newly collected input/output data to 
exert minimal effect on updating the parameter estimation 
value. When system parameters change, the recursive least 
square method cannot track the changes, resulting in the 
failure of real-time parameter estimation. 

Therefore, the forgetting factor is introduced to improve 
the performance of the recursive least square method when 
the dynamic parameters of the milling process are changed. 
The estimation formula for the recursive least square method 
with a forgetting factor can be expressed as follows: 

 

          (8) 

 
where  is the forgetting factor. Thus, the following 
equations can be obtained as follows: 
 

      (9) 

The performance index function is obtained as follows: 
 

                        (10) 

 
The flowchart of the process identification of the cutting 

process parameters by using forgetting factor least square 
identification is illustrated in Fig. 2. 
 

 
Fig. 2. Flowchart of parameter identification in the milling process 
 

By using MATLAB, the identified model parameters can 
be transformed into the model parameters of the continuous 
system in Eq. (2) to determine model parameters  and  
of the milling process. 
 
3.3 Design of model predictive tracker 
The reference trajectory is set as follows: 
 

        (11) 

 
where  denotes the expected output for k time,  
indicates the output softening coefficient, and  represents 
the reference trajectory vector. 

For the discrete system model, Eq. (3) is based on the 
principle of minimum variance, and the output prediction 
model can be expressed as follows: 
 

                           (12) 
 
where  is the parameter matrix. Thus, the following 
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       (14) 
 

        (15) 
 

              (16) 
 
where  denotes the pure delay constant, and  is 
completely determined from the previous control input and 
output. The following formulas can be deduced as follows: 
 

 (17) 

 

                       (18) 

 

                         (19) 

 
                           (20) 

 
The performance objective function is expressed as 

follows: 
 

              (21) 
 

When parameter uncertainty occurs in the system, the 
forgetting factor least square algorithm presented in Section 
3.2 is employed to estimate the parameters. The structure is 
illustrated in Fig. 3. 

 
Fig. 3. Model predictive controller based on the forgetting factor least 
square algorithm 
 
 
4. Result analyses and dscussion 
 
To verify the effectiveness of the identification and control 
methods, the following is based on the MATLAB simulation 
platform. 

The nominal parameters of the milling cutter servo 
system are as follows: the moment of inertia of the DC 
motor rotor is Jn = 8×10-3 kg∙m2, the friction coefficient is Bn 
= 0.2 N∙m/s, the motor resistance is 2.5 Ω, the inductance is 
5 mH, the back electromotive force constant is 0.1 V∙s/rad, 
and the torque coefficient is 10 N∙m/A. The milling tool 
servo system model can be expressed as follows: 
 

                      (22) 

 

When the sampling period of the system is Ts = 1 ms, Eq. 
(22) is discretized, and the influence of external disturbance 
is not considered in parameter identification. The discrete 
model can be obtained as follows: 
 

            (23) 

 
4.1 System model parameter identification 
By considering the influence of measurement noise and 
other factors during identification, Eq. (23) can be expressed 
as: 
 

                                 (24) 
 
where  
is the innovation vector.

 
 is the parameter 

vector, and its real value is 
. 

 applies zero mean, and variance is uniformly 
distributed white noise . 

The SG method and the forgetting factor least square 
method are employed to identify system parameters. The 
identification results are presented in Fig. 4. 

The following conclusions can be drawn from Fig. 4. (1) 
The least square identification method based on the 
forgetting factor achieves higher estimation accuracy than 
the SG method. Parameter  reaches -1.980, and its 
estimation error is only . The error of the SG algorithm 
is . (2) The least square identification method based on 
the forgetting factor exhibits faster convergence speed than 
the random gradient identification method. The former 
reaches the specified parameter value at , while 
random gradient identification requires 750 ms. 
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(b) Parameter estimation output signal 
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(c) Parameter estimation curve 
Fig. 4. Input and output signals and parameter estimation curve in the 
milling process 
 

 
4.2 Control performance analysis without model 
parameter uncertainty 
The rotor position command signal is a step command, i.e., 
in a speed cycle k ϵ [0 300]. When 0 ≤ k ≤ 150, yr = 10 rad/s. 
When 150 ≤ k ≤ 300, yr = −10 rad/s. The simulation results 
are presented in Fig. 5. 

 
(a) Minimum variance predictive control tool speed tracking and control 
input curve 

 
(b) Proposed tool speed tracking and control input curve 
Fig. 5. Milling tool speed tracking and control input curve without 
model parameter uncertainty 
 

As shown in Fig. 5, when the system exhibits no model 
parameter uncertainty, the traditional minimum variance 
predictive control and the proposed adaptive model 
predictive control methods can realize tool speed tracking 
within 10 ms (k = 10). However, the traditional minimum 

variance predictive control method has a large fluctuation 
current when speed changes suddenly. 

 
4.3 Controller performance analysis with model 
parameter uncertainty 
The simulation conditions are the same as those without 
model parameter uncertainty. The tool speed tracking and 
control input curves during the milling process are shown in 
Fig. 6, and Fig.7 presents the least square parameter 
estimation curve based on the forgetting factor. 

 
(a) Minimum variance predictive control tool speed tracking and control 
input curve 
 

 
(b) Proposed tool speed tracking and control input curve 
Fig. 6. Milling tool speed tracking and control input curve with model 
parameter uncertainty 
 

Fig. 6 shows that when the model parameters are 
uncertain in the system, the following conclusions can be 
drawn. (1) The traditional minimum variance predictive 
control results in a large speed tracking error during the 
initial stage, reaching a saturation value of 20 rad/s and 
indicating that the method is completely invalid during the 
actual stage. By contrast, the proposed adaptive predictive 
control method can still accurately track speed, and only the 
tracking error at the starting time is relatively large. (2) The 
proposed adaptive predictive control method exhibits faster 
dynamic response capability, realizing speed tracking at k = 
35 (i.e., 35 ms) and no overshoot occurs during the entire 
tracking process. Meanwhile, the traditional minimum 
variance predictive control requires 200 ms to realize speed 
tracking, and the tracking process fluctuates considerably, 
reaching 8 rad/s. (3) The adaptive predictive control has 
smaller control input current fluctuation than the traditional 
minimum variance predictive control, and the control input 
current fluctuation is 0.5 A. Meanwhile, the traditional 
minimum variance control input current fluctuation reaches 
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2 A, and thus, the proposed method exhibits better dynamic 
performance. 

 
Fig. 7. Parameter online estimation curve. 

 
Fig. 7 shows that the proposed adaptive predictive 

control method based on the forgetting factor least square 
identification algorithm can quickly realize the identification 
of model parameters and can cooperate with the adaptive 
predictive control to realize the fast tracking of tool 
parameters in an uncertain milling process, and the proposed 
method is convenient for practical engineering application. 
 
5. Conclusions 
 
To effectively improve the influences of milling process 
model inaccuracy and parameter uncertainty on control 
system accuracy, this study started from a milling process 
dynamic model based on system identification and model 
predictive control theories. Then, a new tool speed servo 
tracking method for the milling process was designed by 
combining theoretical derivation and numerical simulation. 
The following conclusions could be drawn as follows: 

(1) Under the influence of random noise in a system, the 
least square identification method based on the forgetting 
factor achieves higher identification accuracy and speed. 
The accuracy of the least square identification method based 
on the forgetting factor is 30 times higher than that of the 
random gradient. The error of the former is 0.01 rad/s in 3 s, 

and that of the latter reaches as high as 0.3 rad/s. 
Identification speed is increased 2.1 times. 

(2) When model parameter uncertainty does not occur in 
the system, the proposed adaptive model predictive control 
method has smaller control input current fluctuation when 
tool speed changes suddenly. 

(3) When the parameters of the system model are 
uncertain, the traditional minimum variance control fails 
during the initial stage and it requires 200 s to track tool 
speed. By contrast, the proposed method can still track tool 
speed accurately and rapidly in 35 s. 

(4) When the system model parameters are uncertain, the 
proposed method exhibits a small control input current 
fluctuation, which is 1/4 that of the traditional minimum 
variance predictive control. 

On the basis of the structure model of a tool servo feed 
system during the milling process, a tool speed tracking 
method is proposed by combining theory with numerical 
simulation. The proposed method can improve the time-
varying model parameters of the system and meet the 
requirements of high speed and high precision for the servo 
system of CNC machine tools, and thus, this method has 
certain application value. Given the limited experimental 
conditions, the proposed control method should be further 
verified and optimized through subsequent experiments. In 
particular, the proposed method disregards the influence of 
external disturbance on the tool feed servo system for the 
milling process during identification and control. A study 
under the influence of this factor will be more accurate in 
accordance with the experimental platform. 
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