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Abstract 
 

A permanent magnet synchronous motor (PMSM) servo system is a multivariable, strong coupling, and complex 
nonlinear system. Thus, changing the system parameters and control gains can reduce the control performance of the 
system. To effectively restrain the influence of parameter perturbation on the system performance, a performance control 
method of PMSM was presented in this study. The method based on the nonlinear dynamic model of PMSM was 
employed to analyze the chaotic characteristics of bifurcation diagram, attractor, power spectrum, and Lyapunov 
exponent. The uncertainty model of the system was constructed, two control methods of robust guaranteed performance 
and robust optimal guaranteed performance were designed, and the effectiveness of the proposed method was verified by 
simulation experiments. Results demonstrate that, on the one hand, the two designed control methods can quickly switch 
the system balance point, and the guaranteed performance control method is approximately 1.5 s. Furthermore, the 
optimal guaranteed performance control is within 1 s, and the optimal guaranteed performance control can ensure the 
minimum secondary performance index, that is, the minimum control energy is required. On the other hand, the two 
designed methods have a strong robust performance to the parameter uncertainty of the system. The system parameters 
have 30% random perturbation, but the designed methods can still achieve system control effectively. The proposed 
methods provide certain references for the analysis and control of the machining accuracy of a high-performance servo 
system. 
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1. Introduction 
 
Permanent magnet synchronous motor (PMSM) and 
brushless direct current (DC) motor are the two most 
common types of motors in modern AC servo systems. The 
PMSM with permanent magnets replaces the excitation 
winding in the rotor of a wound synchronous motor. The 
excitation coil, slip ring, and brush are omitted, and the 
electronic commutation is employed to conduct the 
operation without brush, which effectively avoids 
mechanical wear and sparks caused by the mechanical 
commutation sliding contact, thereby reducing the failure 
rate, improving the reliability, lengthening the service life, 
and facilitating maintenance work. The PMSM mainly 
consists of a stator and a rotor. The rotor is made of a high-
performance and affordable permanent magnet material, 
which enables the motor to have high power density and 
efficiency. The servo system composed of PMSM is not 
only employed in the typical equipment of manufacturing 
fields, such as computer numerical control machine tools 
and industrial robots, but is also adopted in the automatic 
aiming and tracking control of radar antenna, aiming control 
of missile launcher, automatic control of torpedo, disk drive 
control, roll reduction position control of rolling mill, 

elevator lifting control, power generation system, solar 
energy system, and other purposes [1-2].  

With the development power electronic, cutting, sensor, 
and digital technologies, the motor drive system is 
developing in the direction of high-speed, high-precision, 
intelligent, and direct drive. However, the servo system 
composed of PMSM is a complex nonlinear system, and a 
strong coupling relationship exists among the internal 
current, flux, speed, and other state variables. In the complex 
working environment, motor parameters change with 
temperature, humidity and other factors. The study shows 
that when the parameters of the motor meet the condition of 
Hough bifurcation, complex nonlinear phenomena such as 
limit cycle and chaos occur, accompanied by violent 
oscillation of speed or torque, irregular electromagnetic 
noise, and other chaos phenomena [3-4]. This condition 
seriously reduces the system performance in the high-
precision servo situation and may even cause a system 
collapse.  

How to effectively suppress the change of motor 
parameters and avoid or suppress chaos is a key concern of 
scholars [5-8], but some problems remain such as poor 
control performance, insufficient system parameter 
perturbation suppression ability, or complex controller 
structure, which causes difficulty in physical realization, 
especially when the system parameters and control gain 
change at the same time, the system performance 
deteriorates, which is the key factor in restricting the 
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application of the controller. Based on the analysis of the 
nonlinear term in the system model and the quadratic 
optimal performance index, the robust optimal control 
theory is employed to design a control method that can not 
only satisfy the quadratic optimal performance index but 
also have strong interference suppression ability to address 
the uncertainty of the system model and gain parameters. 
This study can perfect the motor chaos control theory and 
improve the design so that it can meet the requirements of 
practical application. 
 
 
2.  State of the art 
 
Since the 1990s, chaos has also been found in motor drives, 
and study on this area has gradually advanced to include DC 
motor, induction motor, switched reluctance motor, PMSM, 
and other drive systems [9]. In recent years, many methods 
have been employed to realize the chaos control of motor 
systems. PID control is widely employed in linear system 
control because of its simple structure and easy physical 
realization. Karthikeyan et al. [10] applied PI control to the 
chaos system of permanent magnet DC motor, which 
achieved good control performance under the condition of 
system parameter determination and external disturbance 
free. However, the motor parameters changed with the 
environment temperature and other factors, thereby causing 
difficulties in meeting the requirements of high-performance 
control. Ranjbar et al. [11] combined fuzzy control and PI 
control for chaos stabilization of induction motors. Although 
the study compensated for the disturbance caused by 
uncertain factors of the system in real time by fuzzy control, 
the fuzzy output of the method was based on the speed and 
change rate of the error, forming 49 fuzzy rules. The number 
of rules directly determined the performance of the control 
system. If the rules are extremely few, then restraining the 
parameter perturbation becomes difficult. If the rules are 
excessive, meeting the requirements of fast dynamic 
response becomes difficult and time consuming. To address 
these issues, Liu et al. [12] proposed a simple feedback 
controller with only one state variable on the basis of 
analyzing the characteristics of the permanent magnet 
BLDCM chaotic system. Iqbal et al. [13] adopted the 
method to the chaos control of the permanent magnet 
synchronous motor; this study had good performance in the 
deterministic system, but the robust performance was 
insufficient. Loria [14] proposed a robust linear control 
method that overcame the load disturbance by combining the 
load observer with feedback control; the proposed method 
improved the ability of load disturbance rejection by real-
time observation and feedback of external load disturbance, 
but did not consider the change of system parameters. To 
overcome the change of system parameters, scholars 
employed adaptive control [15], sliding mode control [16-
18], inverse control [19-20], dynamic surface control [21], 
predictive control [22], finite time control [23], and 
Lyapunov exponent method [24]. Han [15] overcame the 
influence of parameter perturbation by online estimation and 
compensation of uncertain parameters of the system, but 
online estimation took a long time and affected the dynamic 
response ability of the system. Sliding mode control was not 
sensitive to the change of system parameters, and became an 
effective means to suppress parameter perturbation. Li et al. 
and Ali et al. [16-17] respectively adopted terminal sliding 
mode control to control and synchronize permanent magnet 
synchronous motor, and used a terminal attractor to improve 

the inherent chattering phenomenon brought by sliding mode 
control, but chattering was not eliminated, and was closely 
related to the influence of system uncertainty. In the work of 
Karthikeyan et al. [18], combined with sliding mode control 
and adaptive control, which fully utilized the parameter 
insensitivity of sliding mode control and real-time estimation 
ability of adaptive control, the chattering of the system was 
effectively improved, but the complexity of the system was 
increased and the response ability of the system was reduced. 
Ye et al. [19] proposed an inverse nonlinear control method 
for the influence of the parameter uncertainty of the PMSM 
chaotic system, and employed particle swarm optimization 
to optimize the control parameters. The proposed method 
calculated the differentiation of state variables many times, 
which leaded to the phenomenon of calculation explosion. 
At the same time, the structure of the controller was complex 
and difficult to be employed in engineering practice. 
Karthikeyan et al. [20] combined sliding mode control with 
inversion control to make full use of their advantages, and 
employed a robust inversion sliding mode control method. 
The proposed method was still unable to avoid the 
computational explosion caused by inversion control. For 
this reason, Luo et al. [21] introduced low-pass filtering into 
inversion control to overcome the computational explosion 
problem caused by differentiation and adopted the adaptive 
method to estimate and compensate the parameters online. 
The structure of the controller was complex and the 
engineering implementation was difficult. The predictive 
control and Lyapunov index methods proposed by Messadi 
et al. [22] and Ataei et al. [24] respectively did not consider 
the influence of the uncertainty of system parameters. Wang 
et al. [23] introduced a terminal attractor into feedback 
control, which ensured that the system achieved the desired 
balance point in a limited time, and had strong anti-
interference ability for the change of system parameters. The 
fractional integral operator was quoted in the proposed 
method, which was more complex in the circuit 
implementation and was not conducive to the application in 
the actual situation. 

In addition, the above method does not consider the 
limitation of control energy in the actual process. In the 
actual physical system, the output capacity of the controller 
is always limited, and the control energy required is 
expected to be as small as possible. Recently, scholars have 
paid close attention to the optimal control of chaotic systems. 
Zhu et al. [25] combined linear matrix inequality method 
and optimal control theory. For the unified chaotic system, a 
simple optimal controller design method was proposed to 
avoid the difficulty of solving the nonlinear Hamilton–
Jacobi–Bellman partial differential equation in the method 
proposed by Marat et al. [26]. Wei et al. [27] extended it to 
the chaos control of PMSM. Although the aforementioned 
method considered the secondary performance index of the 
system, it did not consider the influence of the system 
parameter uncertainty. In fact, the uncertainty of parameters 
widely existed in the actual system, and it was more 
practical to study the optimal control of the chaotic system 
with parameter uncertainty. Awad et al. [28] proposed an 
optimal adaptive control and synchronization control 
strategy for Lorenz chaotic system by combining optimal 
control with adaptive control. However, the structure of the 
controller was complex. The introduction of adaptive 
mechanism increased the cost of the system and reduced its 
response ability. 

The preceding studies mainly focused on the dynamic 
performance of the PMSM control system, while the study 



Chuansheng Tang, Li Bai, Gang Zhang, Jie Yang and Tao Li./Journal of Engineering Science and Technology Review 13 (3) (2020) 181 - 190 

183 

on the uncertainty of its control gain is less, especially the 
study on the limitation of control energy and the uncertainty 
of system model parameters. Based on the analysis of the 
nonlinear term in the system model and the quadratic 
optimal performance index, the robust optimal control 
theory is employed to design a control method that can not 
only satisfy the quadratic optimal performance index but 
also has strong interference suppression ability to the 
uncertainty of the system model parameters and gain 
parameters. The study lays a foundation for improving the 
theory of motor chaos control and aligning the design with 
the actual needs. 

The remainder of this study is organized as follows. 
Section 3 establishes the PMSM model, analyzes the 
nonlinear chaos characteristics of the system, completes the 
design process of robust guaranteed performance control, 
and proves the stability of the system. Section 4 analyzes the 
rotor speed and the current characteristic of the model 
through robust guaranteed performance control method, and 
obtains the dynamic response curves of rotor speed and 
current under the controlled system. Section 5 summarizes 
the conclusions. 
 
 
3. Methodology 
 
3.1 Chaotic model of PMSM  
 
The dimensionless mathematical model of PMSM after 
transformation is as follows [3]: 
 

                          (1) 

 
where and  are the voltages of -axis and -axis after 

transformation, and and  are the currents of -axis 

and -axis after transformation, respectively.  and  are 
the speed and load after transformation, respectively.  
and are motor parameters. 

The chaos phenomenon of the motor is studied 
when , which is equivalent to the dynamic 
characteristics of the system under a certain parameter when 
the motor suddenly loses power after a period of operation. 
The nonlinear characteristics of the PMSM drive system has 
been studied on the basis of modern nonlinear theories such 
as bifurcation and chaos [3]. To effectively understand the 
complex nonlinear characteristics of the system in a certain 
range of parameters, the bifurcation diagram of the system 
state with changing of the system parameter is given, as 
shown in Fig. 1(a). Fig. 1(b) presents a typical chaotic 
attractor when system parameter is 26, system parameter 

is 5.46, and initial state  is , in 

which , , and are all unit values.  
Lyapunov exponent and power spectrum are two 

effective methods to distinguish a continuous system from a 
chaotic system. A 3D continuous system is chaotic if a 
positive Lyapunov exponent exists. Chaos has a wide and 
continuous power spectrum, but this power spectrum has 
many wave peaks, which correspond to the average period 

of each region of the chaos attractor. Fig. 1 (c) and (d) show 
the Lyapunov exponents and power spectra, respectively, 
when and . 

 

 
(a) Bifurcation diagram of state variable with parameter  

 

 
(b) Typical chaotic attractor 

 

 
(c) Lyapunov index 
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(d) Power spectrum of state  

Fig. 1. bifurcation diagram and chaos characteristics of PMSM 
 

Considering the uncertainty of system parameters, the 
model of controlled PMSM driving system can be expressed 
as follows:  

 

               (2) 

 
where , , , and represent the uncertainty of 
system parameters and control inputs, respectively, which 
are all boundaries. and are the control inputs. 
According to the actual operation of the system, this study 
assumes that the fluctuation range of system parameters is 
30%, that is, , , , 

and . 
Eq. (1) has three equilibrium points, which are 

and . 

and are the unstable 

saddle point and focal point, respectively.  is the 
desired equilibrium point, and the non-zero equilibrium 
point  can be transformed into 
zero equilibrium point by coordinate transformation.  

To facilitate the design of the following controllers, Eq. 
(2) is expressed in an appropriate form as follows:  
 

                (3) 
 
where ,

, , , 

, and . 

The secondary performance index corresponding to Eq. 
(3) is  

 

               (4) 

where and are weighted matrices and positive definite, 
respectively.  

The goal of system design is to determine the gain of the 
controller  so that Eq. (3) can quickly stabilize to the 
desired equilibrium point from any initial state, and the 
controller can meet the given performance index Eq. (4) to 
minimize.  
 
3.2 Controller design 
To ensure that the designed control is widely used, a class of 
nonlinear system with the same structure as Eq. (4) can be 
expressed as follows: 

 
,          (5) 

 
where and are the state vector and control 
input vector of the system, respectively.  

and  are the state matrix and control matrix of the 
system, respectively, in which . is the initial state. 

, , and are the nonlinear term and parameter 
uncertainty matrix of the system, respectively, which satisfy 
the following assumptions. 

Assumption 1 (uncertainty condition). The uncertainty 
of system parameter and change of control gain meet 
the following conditions: 
 

                    (6) 
 
where , , and are constant matrices, and 

satisfies: 
 

                            (7) 
 

Assumption 2 (nonlinear condition). The nonlinear term 
of the system satisfies: 
 

,                      (8) 

 
In fact, many chaotic and hyperchaotic systems satisfy 

nonlinear conditions, such as Chen, Liu, Lü, Lorenz systems 
and hyperchaotic systems derived from these systems.  

Definition [29] A control law and an 

integer exist for system Eq. (5) and performance index 
Eq. (4), so that the closed-loop system is asymptotically 
stable for all the allowed uncertainties, and the closed-loop 
performance index satisfies (trace of matrix 

P), in which is called a performance upper bound of 
uncertain system Eq. (5), and  is called a guaranteed 
performance control law of uncertain system Eq. (5).  

The following theorem provides the existence conditions 
of robust guaranteed cost control law for uncertain nonlinear 
system Eq. (5).  
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Theorem 1 For uncertain nonlinear system Eq. (5) and 
performance index Eq. (4), if symmetric positive definite 
matrix , matrix and normal number all satisfy the 
uncertain condition Eq. (6) and nonlinear condition Eq. (8), 
the following equation can be obtained: 

 
   (9) 

 
where is a guaranteed cost control law of system 
Eq. (5), and its corresponding upper bound of performance 
is .  

Proof. If symmetric positive definite matrix , 
matrix , and normal number all satisfy the system 
parameters of uncertain condition Eq. (6), then the matrix 
inequality Eq. (9) holds. If , then the corresponding 
closed-loop system is 

 
,    (10) 

 
Selecting Lyapunov function is derived along 

the closed-loop system Eq. (10), and the following 
expressions can be obtained: 

 

              (11) 

 
Furthermore, 
 

      (12) 

 
Thus, the following equations can be obtained: 
 

 (13) 

 
where . 

As the system satisfies the nonlinear condition Eq. (8), 

that is, , there is and . When 

, there is , so  can be 

obtained. 
Then, the following equations can be obtained: 
 

         (14) 

 
                                 (15) 

 

where and represent the minimum and 
maximum eigenvalues of the matrix , respectively. 

and are symmetric positive definite matrix, 
so  and . 

Then, when , the following equation can be 
obtained: 

 
  (16) 

 
As and  are definite quantities, a 

positive number  exists, and when . 

Thus, the following equations can be obtained: 
 

.                         (17) 
 

Let us prove . 
The two sides of Eq. (16) are integrated, and the time is 

from zero to infinity. When , . Therefore, 

can be obtained. 
Thus, theorem 1 is proved.  
Theorem 2 For uncertain nonlinear systems Eq. (5) and 

performance indexes Eq. (4), if symmetric positive definite 
matrices , matrices , and normal 
number  exist, then the following matrix inequalities are 
true for all the uncertain conditions Eq. (6) and nonlinear 
conditions Eq. (8):  

 

       (18) 

 
where , and  
represents the transposition of the corresponding elements in 
the matrix.  is a guaranteed cost-control 
law of system Eq. (5), and its corresponding upper bound of 
performance is .  

Proof. and are substituted into 
Eq. (17). Then, Eq. (17) and (18) are essentially equivalent 
by using Schur complement lemma. Therefore, its proof 
process can refer to the proof of Theorem 1.  

Theorem 2 only transforms matrix inequality Eq. (17) 
into a form that is easy to solve by linear matrix inequality 
(LMI). 

Theorems 1 and 2 show that the upper bound of the 
system performance depends on the selection of guaranteed 
cost control law. The issues are how to choose an 
appropriate guaranteed cost control law to minimize the 
upper bound of system performance. This is the optimal 
guaranteed cost-control problem of Eq. (5). The control law 
that makes the upper bound of Eq. (5) performance 
minimum is called optimal guaranteed cost-control law.  
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                           (19) 

 

     (20) 

 

                           (21) 

 
If a solution  exists, then  

is the optimal guaranteed cost control law of Eq. (5), and its 
corresponding minimum performance upper bound is . 

Proof. From Theorem 2, Eq. (20) can guarantee 
that  is a guaranteed performance control 
law of Eq. (5), and its corresponding upper bound of 
performance is . 

Schur’s complement lemma shows that Eq. (21) is 
equivalent to , the minimization of 

 guarantees the minimization of  and the 
minimization of the upper bound of system performance. 
The objective function and constraint function in Eq. (19) 
are convex functions of variables. Eq. (19) is a convex 
optimization problem; thus, it has a global minimal value.  

Thus, theorem 3 is proved.  
 
 
4 Results of analysis and discussion 
 
This part mainly employs digital simulation of PMSM 
chaotic system to validate the proposed theorem in Section 
3. First, this study verifies that the PMSM chaotic system 
Eq. (3) satisfies the uncertainty condition Eq. (6) and 
nonlinear condition Eq. (8).  

The following equations can be obtained by assumption 
1 in Section 3.2 as follows: 
 

,          (22) 
 

where ,

, , and . 

Obviously, Eq. (22) satisfies the uncertainty condition Eq. 
(6). 

 

   (23) 

 
where , that is, Eq. (23) also satisfies the 
nonlinear condition Eq. (7), so the controller gain can be 
solved by using the theorems in Section 3.2. 

The MATLAB platform is divided into three cases to 
simulate the PMSM chaotic system. The initial state of the 
system is , the expected equilibrium 

point is when , and the expected 
equilibrium point is when . 

 
4.1 Fixed parameters in system model 
When the parameters in the system model is fixed, the 
simulation results of optimal control (OC), guaranteed cost 
control (GCC), and optimal guaranteed cost control (OGCC) 
are shown in Fig. 2. 
 

 
(a) -axis current response curve 

 

 
(b) -axis current response curve 

 

 
(c) -axis voltage control curve 
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(d) -axis voltage control curve 

Fig. 2. Response curve of system without parameter perturbation 
 

Fig. 2 shows that the parameter change and control gain 
perturbation in the system are both zero, that is, 

. When the optimal control, guaranteed 
cost control, and optimal guaranteed cost control are 
adopted, the following results are obtained, respectively:  
 

                  (24) 

 
Fig. 2 shows that the three methods can quickly 

approach the expected equilibrium point when the model 
parameters in the system are all determined, the 
corresponding performance indexes of optimal control, 
guaranteed cost control, and optimal guaranteed cost control 
are, respectively, , , 

and . The optimal guaranteed cost control has 
the best performance index. 
 
4.2 Uncertainty of system parameters and control gains 
in system model  
 
The simulation results of optimal control, guaranteed cost 
control, and optimal guaranteed cost control are presented in 
Fig. 3 when system parameters and control gains in the 
system model are uncertain. 
 

Fig. 3 shows that the parameter variation and control 
gain perturbation in the system include 30% parameter 
perturbation.  

When the optimal control, guaranteed cost control, and 
optimal guaranteed cost control are adopted, the following 
results are obtained respectively: 
 

               (25) 

 

 
(a) -axis current response curve 

 

 
(b) -axis current response curve 
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(d) -axis voltage control curve 

Fig. 3. Response curve of system with parameter uncertainty 
 
 

Fig. 3 shows that model parameters and control gains are 
uncertain in the system, and the following conclusions can 
be drawn: (1) Guaranteed cost control and optimal 
guaranteed cost control can still guarantee the system to 
stabilize rapidly to the desired equilibrium point . 
Guaranteed cost control method is approximately , 
whereas the optimal guaranteed cost control is within , 
and the optimal control system deviates from the equilibrium 
point because it cannot compensate for the influence of 
uncertainty. (2) The corresponding performance indexes of 
guaranteed cost control and optimal guaranteed cost control 
are and , respectively. The 
uncertainty of model parameters and control gains can 
increase the performance index, but the optimal guaranteed 
cost control still has a smaller index value than the 
guaranteed cost control. 
 
4.3 Switch tracking control among different system 
equilibrium points 
The system parameters and gain system are switched at 
different equilibrium points, and results of simulation are 
shown in Fig. 4.  

According to theorems 2 and 3, the guaranteed cost 
control law and optimal guaranteed cost control law of 
PMSM chaotic system Eq. (3) are obtained, respectively, 
and the initial point of the system is . To compare 
the performance of the guaranteed cost control and optimal 
guaranteed cost control, the control parameters are selected 
as follows: 

 
, ,             (26) 

 
(1) Stable to equilibrium point  
According to theorem 2, the feedback gain and 

performance index of the guaranteed cost-control law of the 
system are obtained as follows: 

 

,    (27) 

 
According to theorem 3, the feedback gain and 

performance index of the optimal guaranteed cost-control 
law of the system are obtained as follows: 

 

,    (28) 

 
(2) Stable to equilibrium point  
According to theorem 2, the feedback gain and 

performance index of the guaranteed cost control law of the 
system are obtained as follows: 

 

,    (29) 

 
According to theorem 3, the feedback gain and 

performance index of the optimal guaranteed cost control 
law of the system are obtained as follows: 

 

,    (30) 

 
(3) Stable to equilibrium point  
According to theorem 2, the feedback gain and 

performance index of the guaranteed cost control law of the 
system are obtained as follows: 

 

,    (31) 

 
According to theorem 3, the feedback gain and 

performance index of the optimal guaranteed cost control 
law of the system are obtained as follows: 

 

,    (32) 

 
Robust guaranteed cost control and optimal guaranteed 

cost control can quickly stabilize the system to the desired 
equilibrium point from the aforementioned results and the 
simulation in Fig. 4, and the change of parameters have 
strong robustness in the system. Although the robust 
guaranteed cost control is more able to ensure that the 
control system meets certain performance indexes than the 
robust optimal guaranteed cost control, it cannot guarantee 
the minimum upper bound of the performance indexes. The 
gain value of the robust guaranteed cost control is larger 
than the robust optimal guaranteed cost control, which 
requires further control energy to achieve the control effect. 
Therefore, the robust optimal guaranteed cost control has a 
higher application value. 
 

 
(a) Phase diagram of PMSM chaotic system with guaranteed cost 

control 
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(b) State response curve of PMSM chaotic system with guaranteed cost 

control 
 

 
(c) Phase diagram of PMSM chaotic system with robust optimal 

guaranteed cost control 
 

 
(d) State response curve of PMSM chaotic system with robust optimal 

guaranteed cost control 
Fig. 4. State response curve of system with different switching points 

 
 
 
5. Conclusions 
 
The characteristics of the nonlinear term system based on the 
structural characteristics of PMSM were analyzed to 
suppress the influence of model parameter perturbation and 
control gain perturbation on the performance of the PMSM 
chaotic system, and the control performance of the system in 
combination with the robust optimal control theory was 
studied. Finally, the following conclusions are drawn:  

(1) The optimal control, guaranteed cost control, and 
optimal guaranteed cost control can effectively stabilize the 
system state to the desired equilibrium point when the 
system does not have model parameter perturbation and 
control gain perturbation, and the optimal guaranteed cost 
control has the minimum upper bound of the performance 
index.  

(2) The change of system model parameters and control 
gains cause the optimal control to deviate from the expected 
equilibrium point, while the guaranteed cost control and 
optimal guaranteed cost control can still effectively track the 
equilibrium point. The upper bound of the performance 
index of the guaranteed cost control and optimal guaranteed 
cost control is increased, and the dynamic response of the 
optimal guaranteed cost control is faster.  

(3) When different equilibrium points of the system are 
switched tracking control, both guaranteed cost control and 
optimal guaranteed cost control can reach the desired 
equilibrium point quickly, but a slight overshoot in the 
switching process occurs. 

Thus, a robust optimal guaranteed cost-control method is 
proposed by combining the simulation experiment with 
theory. The proposed method can effectively overcome the 
influence of the model parameter perturbation and control 
gain perturbation of the PMSM chaotic system on the 
system performance, and the robust optimal guaranteed cost-
control energy can meet certain performance indicators. The 
proposed method is suitable for the actual working 
conditions, and is relevant to the later application in the 
high-performance servo system. 
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