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Abstract 
 

GPS devices generate huge number of spatial trajectories and understanding common patterns in these trajectories is an 
open problem. In this paper, Reduced String based Trajectory Clustering Algorithm (RSTCA) for clustering trajectories by 
transforming trajectories to a string-based representation is proposed. Trajectories are pre-processed and made into equal 
length by using the Douglas – Peucker algorithm. Spatial grid is generated to map the trajectories which convert trajectories 
from GPS based representation to string format. N-gram representation identifies sequential patterns in strings and increases 
the features of trajectories. Both string-based mapping and N-gram representation aid in clustering spatially close 
trajectories into the same cluster. Singular Value Decomposition (SVD) and t-Distributed Stochastic Neighbour Embedding 
(t-SNE) are applied on trajectories to reduce the dimensionality of trajectories. The reduced trajectories are clustered using 
hierarchical clustering by various linkage strategies. Performance analysis of RSTCA is done using Cophenetic Correlation 
Coefficient, Davies Bouldin Index and Dunn Index. Experimental results demonstrate that RSTCA can cluster trajectories 
efficiently. 
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1. Introduction 
 
Trajectory is spatiotemporal data that represents activity 
and movement of an object. Trajectory information 
represents spatial position of object at a specific 
timestamp, generated by many moving objects like car, 
human, animal, natural phenomena (hurricane, clouds) etc. 
With several technological improvements in tracking and 
surveillance devices, these applications generate massive 
amount of data. There are challenges in dealing with 
spatial and temporal dimensions of trajectory data [1,2]. 
Problem of trajectory computation starts with storage of 
spatial trajectories, analyzing them and extracting patterns 
to understand their behavior. Trajectories are encoded as 
2D geo-referenced coordinates with time information. 
Machine learning techniques are applied to extract useful 
information from trajectory data. Clustering is done based 
on various models including description models, distance-
based models, density-based models and semantic-based 
models. Trajectory clustering can be unsupervised, 
supervised or semi-supervised. Traditional clustering 
algorithms like k-means, faces a problem of varying length 
features in case of trajectory clustering and existing 
clustering algorithms cannot be directly adopted for 
trajectory clustering [3]. 
 This paper proposes a method Reduced String based 
Trajectory Clustering Algorithm (RSTCA) for clustering 
trajectory data by representing it in reduced dimension by 
using summary representation. Trajectories are 
represented using string instead of GPS coordinate format. 
Trajectory is converted into an N-gram format to capture 

common sequence pattern between trajectories. The N-
gram representation increases dimensionality of data. 
Dimensionality reduction is applied to overcome increased 
dimensionality of data and summary format of trajectories 
are obtained. Summary based representation provides 
better information about trajectories and aids in better 
clustering.  
 The paper is organized into following sections: Section 
2 presents the related works; Section 3 presents the main 
definitions and concepts of trajectory clustering and the 
algorithm is presented in Section 4. Section 5 discusses the 
experimental results on data. Finally, section 6 concludes 
the paper. 
 
 
2. Related Work  
 
Trajectory cluster analysis is grouping of similar data to 
show hidden grouping patterns and correlation in data. 
Several research efforts have been done to build cluster 
model and cluster algorithms for trajectories. Y. Zheng 
conducted a survey on trajectory data mining and reviews 
the techniques for pre-processing, indexing and retrieval, 
pattern mining and transformation for trajectory data [4]. 
J. D. Mazimpaka et.al broadly classified trajectory data 
mining into two approaches: prediction-based methods and 
description-based methods. In prediction-based method 
using independent variables in the data unknown target 
variable value is determined. Description based methods 
focus on finding hidden structures describing the data [5].  
 These methods are further classified as primary and 
secondary, where primary methods deal with the algorithm 
for preparing the data, and secondary methods analyze the 
data relating to its application. J. G. Lee et al. proposed the 
partition-and-group framework method for clustering 
trajectories, where trajectories are partitioned into a set of 
line segments and then discovers common sub trajectories 
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by grouping similar line segments. Trajectories are 
represented using minimum description length and 
partition the line segments. Similarity between trajectories 
is calculated from three dimensions including 
perpendicular, parallel and angle distance between 
trajectories. From the clusters generated, a representative 
trajectory is used to represent overall behavior of the 
cluster. Quality of cluster is calculated as sum of squared 
error and noise penalty of the cluster [6].  
 C. Jiashun proposed a clustering algorithm Shielding 
Parameter Sensitivity Trajectory Clustering (SPSTC), an 
improved version of partition and clustering framework, 
which includes extraction phase [7]. SPSTC tries to 
identify and neglect set of trajectories which does not 
reflect the behavior of trajectory. S. Gaffney and P. Smyth 
applied clustering based on probabilistic regression model 
and expectation maximization algorithm to estimate the 
parameters of the model [8].  
 J. I. Won et.al used clustering and classification 
methods to characterize travel patterns in road network, 
where grouping of trajectories is done using DBSCAN 
algorithm. Characteristics of a network are analyzed from 
the cluster group representatives and new trajectories are 
classified to this cluster group to predict travel patterns [9]. 
M. Debnath et al. proposed a clustering approach using 
spatial geometry and string processing, where trajectory is 
represented using spatial and non-spatial features. 
Trajectories are mapped to grids in which each grid 
represents a spatial region which is uniquely identified by 
grid numbers. Trajectories are transformed from GPS 
representation to a sequence of grid numbers and similarity 
is measured by using Longest Common Sub-Sequence 
(LCSS) algorithm, it also considers non-spatial 
characteristics of trajectory [10]. M. Werner and M. 
Kiermeier, proposed an alignment free method for 
trajectory classification where trajectories are mapped to 
string sequences using shape features. String 
representation is applied through a summary 
representation using N-gram analysis which generates a 
sparse matrix with higher dimension from which low 
dimensional feature space is created using single value 
decomposition. Similarity is measured using Euclidean 
distance between N-gram feature representations [11].  
 Q. Zhao et al. proposed a grid growing clustering 
algorithm to cluster geospatial data, where the complexity 
of the algorithm is lesser and number of clusters need not 
be specified by the user. Grid growing methodology starts 
with each trajectory point and identifies neighbors using 
density-based algorithm [12]. P. C. Besse et al. proposed 
symmetrized segment-path distance metric which is a 
shape-based distance metric which compares two 
trajectories as a whole and find distance between them. 
Hierarchical and affinity propagation methods are used for 
clustering where trajectories with similar shape and near 
proximity are grouped into same cluster [13]. A. T. Palma, 
et.al proposed a representation of trajectories using stop 
and moves by identifying intersection of trajectories. It 
classifies trajectory points as stop, move, candidate stop 
and unknown stop and works based on density-based 
clustering [14]. C. C. Hung et.al proposed Clue Aware 
Trajectory Similarity (CATS) framework of clustering 
trajectories using clue measure which extracted the 
behavior based on silent duration (when moving object is 
static). CATS framework generated a weighted directed 
graph based on points, co-located between trajectories. 
Core set is identified by ranking trajectories based on a 
strong clue value which represent maximum correlation 
phase. Core set is merged together to create a single cluster 
to provide maximum information gain [15]. C. Sung et.al 

framed a technique to identify minimum number of 
patterns (sub-trajectories) to approximate the route. 
Similar trajectories are grouped together by means of line 
simplification (smoothening trajectories) and projection 
methodologies. Clustering is done based on Expectation 
Maximization algorithm [16].  
 C. Panagiotakis et.al investigated an efficient way to 
summarize the trajectory by identifying representatives 
and non-representatives. Major problem of trajectory 
clustering includes the process of identifying 
representative and non-representative points. Global 
voting-based method is used to select representative sub-
trajectory from available trajectories. Representative 
trajectories are identified based on the number of objects 
that follow the same pathlet generated. Segmentation and 
classification of trajectories are done based on the results 
of general voting process irrespective of shape information 
[17]. J. J. C. Ying et.al proposed a measure for computing 
similarity between the semantic trajectories using Maximal 
Semantic Trajectory Pattern Similarity (MSTP-
Similarity). In this framework trajectories are annotated 
using semantic representation and similarity is calculated 
based on LCSS algorithm [18]. X. Xiao et.al proposed a 
framework for semantic representation of trajectories 
which measures similarity using maximum travel match 
algorithm. It addresses the problem of semantic and 
geographic overlap in trajectories. Trajectories are 
represented by using Semantic Location History (SLH) 
which tries to capture complete information about the 
movement of objects including uncertainty and behavior 
pattern [19].  
 Sabarish et.al proposed a framework for hierarchical 
clustering named as Trajectory Clustering Algorithm 
(TCA) using agglomerative principle for sampled 
representation of trajectories. Trajectories are represented 
as raw GPS points and trajectories sampled using Douglas-
Peucker algorithm and similarities between trajectories are 
measured using Dynamic Time Warping (DTW) method. 
Hierarchical clustering is analyzed for various linkage 
methodologies and result shows that centroid linkage 
provides better clustering [25]. 
 String based Clustering Algorithm (SCA) is proposed 
by Sabarish et.al to overcome problem of considering raw 
GPS points for grouping similar trajectories into various 
clusters. In SCA, trajectories are projected onto spatial 
grids and converted into sequence of grid cell numbers 
which converts trajectory into a string-based 
representation. In this representation, GPS points in the 
same region are represented as single grid cell number, 
which solves problem of small variation between 
trajectories. Similarity between trajectories is calculated 
using the string-matching algorithms and hierarchical 
clustering is applied to group trajectories [26].   
 From the literature, we understand that many authors 
have used trajectories for clustering without preprocessing 
them and minor variations in position may affect 
clustering. In this paper, we focus on techniques for 
trajectory representation, and analyze its effects on 
clustering. Trajectory is represented using string and N-
gram formats and its dimensions are reduced to capture 
trivial features. Hierarchical method is applied for 
clustering using these modified trajectory representations.  
 
 
3. Problem Statement 
 
Given a collection of trajectories, the proposed work is to 
cluster trajectories such that trajectories that are spatially 
close are grouped into same clusters. Our proposed 
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methodology for solving the problem is based on spatial 
grid mapping and N-gram representation technique for 
trajectories. By applying the spatial grid mapping process, 
we achieve higher consolidated representation of GPS 
points, suppressing minor variations in position of GPS 
points. The N-gram representation helps in identifying 
sequential pattern which provide much more identical 
representation for original trajectory that is spatially in 
close proximity. Dimensionality reduction is applied to 
overcome sparsity and clustering is performed on 
transformed trajectories. 
 
Table 1. Notations used in this paper 

Notation  Meaning 
 The set of trajectories.  

m Number of trajectories 

 The 𝑖"# trajectory in the set  

 Number of points in trajectory  

 Sampled representation of Trajectory  

 Set of trajectories 
 

 Clustered set of Trajectories 
 

 Number of clusters 

 Cluster i containing a set of trajectories 

 Distance between trajectory i and j 

 String representation of Trajectory  

 Set of trajectories in string representation 
 

 Character N-gram representation of string 
  
 Matrix of m rows and q columns 
 Reduced TFM 

 Reduction number 
p Size of N-gram model 
q Number of N-grams generated by the model 

 
 
4. Trajectory Clustering Algorithm 
 
With this approach we transform the geographical GPS 
coordinate points into a text sequence of grid numbers for 
representing trajectory. Common string sequence pattern 
needs to be captured between trajectories to compute their 
similarity. The N-gram model representation support to 
capture sequence patterns present in them. Character N-
gram model for trajectory set is built and all trajectories are 
represented using N-gram feature vector. All trajectories in 
set are represented in N-gram feature frequency matrix 
called Trajectory-Frequency-Matrix (TFM). Character N-
gram model increases number of dimensions used for 
trajectory representation and its sparsity. SVD and t-SNE 
is applied to reduce the dimensionality of TFM. After 
reduction, similarities between trajectories are calculated 
using Euclidean distance measure and distance matrix is 
generated. Hierarchical clustering is applied to cluster 
trajectories using distance matrix and dendrogram shows 
the results of clustering. The block diagram for trajectory 
clustering is outlined below and is shown in fig. 1. Each 
step of the clustering process is described below. 

 
Fig. 1. Trajectory Clustering Algorithm 
 
4.1 Trajectory Transformation 
4.1.1  DP algorithm 
Trajectory	𝑇𝑅'  is of varying length and are transformed to 
uniform length by sampling using Douglas-Peucker (DP) 
algorithm which makes computation and representation 
efficient [3]. DP algorithm is chosen to transform 
trajectories to equal length because it retains source and 
end of trajectory. This algorithm takes raw trajectories and 
number of points needed to represent complete trajectory 
as arguments and generate trajectory using the principle of 
DP. Fig. 2 shows original trajectory representation and 
sampled trajectory after applying DP-Algorithm. Blue line 
represents original trajectory which is represented using 
100 spatial points. After sampling trajectory with DP 
algorithm, red line represents the same trajectory using 10 
spatial points. From Fig. 2, we infer that DP captures the 
trajectory using lesser points compared to original 
trajectory data. Transformed trajectories using DP 
algorithm is represented by 𝑇𝑅'(.  
 
4.1.2 Spatial grid mapping 
Transformed equal length trajectories are converted to 
strings, by mapping trajectory to a spatial grid. Spatial grid 
is generated by constructing boundary region covering 
complete trajectory dataset. Spatial grid is divided into 
cells (K X K) based on required granularity of application. 
The spatial points are assigned to appropriate grids 
according to its locations on the grid and each spatial point 
is assigned a grid number. Each trajectory is represented as 
sequence of grid numbers. The string representation of 
trajectory remove minor variations in trajectory due to 
sampling. Results are shown below in Fig.2 and Fig.3. 
 

 
Fig. 2. Trajectory Representation 
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Fig. 3. Trajectory Transformation 

 
Trajectory transformation algorithm 

 
Input:  Set of Trajectories = [𝑇𝑅+, 𝑇𝑅-,… . . 𝑇𝑅0] , where 𝑛  
is total number of trajectories. 
Output: Trajectory string representation 𝑇𝑅'3 =
{𝑛+, 𝑛-, …𝑛'}, 𝑛' ∶ 𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙_𝑛𝑢𝑚𝑏𝑒𝑟	 where 𝑛' represents 
grid cell number 
Step 1: Pre-processing 
Apply Douglas–Peucker (DP) algorithm to generate sampled 
trajectory. 𝑇𝑅'( 
Step 2: Trajectory mapping 
            Generate a grid of size K X K in K2 space, such that 
it covers all spatial points in trajectory set. 
            Map spatial points to grid and generate grid number 
for each spatial point. 
            Represent trajectory as a string sequence of grid 
numbers. 𝑇𝑅'3 
Trajectory in 𝑻𝒔 is converted to grid numbers according to 
the cell in grid through which trajectory passes and 
trajectory is converted as string (sequence of cell 
numbers). In Fig. 3, Trajectory (TR1) is represented along 
cells {1,9,8,7,15}, Trajectory (TR2) is represented as 
{11,12,13,17,16}. All trajectories are transformed into 
strings and represented by 𝑻𝑹𝒊𝑪. Transformed string 
trajectories 𝑻𝑹𝒊𝑪 generated is given to TFM matrix 
generation phase for next level of computation. 
 
4.2 Trajectory Frequency Matrix (TFM) Generation  
Processing N-gram helps in extracting pattern of 
movement and represents successive locations traversed in 
trajectories. N-gram is a continuous sequence of ‘N’ items 
from a sample of data.  By converting sequence of items 
into N-gram, computing similarity between sequences can 
be done effectively. In trajectory representation, character 
is basic representation, which represents grid number 
where each spatial point is present in the grid.  
 N-gram is sequence of characters. ‘N’ value is selected 
based on granularity of information which is needed for the 
application. Bigrams and trigrams representation convey 
better summary of string while comparing to unigrams. In 
a trajectory, it is a sequence of grid numbers, N-gram 
traced by the trajectory, 𝑇𝑁'  captures the N-gram string 
representation for each trajectory. Trajectory Frequency 
Matrix (TFM) is a matrix that records the number of times 
each N-gram appears in each trajectory. From N-grams, 
TFM is generated to represent trajectories. In TFM, each 
row representing the trajectories and columns representing 
frequency of occurrence of N-grams occurring in each 
trajectory. TFM generated for trajectories using N-gram 
increases number of dimensions in the trajectory. TFM 
matrix generated for trajectories are given for 
dimensionality reduction in order to represent trajectory in 
precise way. 
 Consider the following set T of 4 trajectories each 
represented with 5 features. T= {{1,9,8,7,15}, {1,2,3,7,6}, 
{2,8,7,14,17}, {10,12,18,24,25}} which is given for N-

gram analysis to generate the TFM for a N=3. Table 2 
shows the trajectories in string representation. 
 
Table 2. Trajectories in string representation 

Trajectory Representation 
TR1 1 9 8 7 15 
TR2 1 2 3 7 6 
TR3 2 8 7 14 17 
TR4 10 12 18 24 25 

       
 Unique unigram, bigram and trigram are generated for 
the trajectories in T. The values in each cell in Table 3 
represents unigram, bigram and trigram generated for the 
trajectory1, where p represent the maximum N-gram 
value. 
 
Table 3. Unigram, bigram and trigram generated for the 
trajectory 𝑇𝑅+ 

N 
= 
1 

Unigrams generated 
are 

 

1 9 8 7 15 

N 
= 
2 

Bigrams generated 
are 

 

1,9 9,8 8,7 7,15 

N 
= 
3 

Trigrams generated 
are 

 

1,9,8 9,8,7 8,7,15 

 
Trajectory Frequency Matrix generation algorithm 
Input: Set of Trajectories 𝑇𝑅3  , where m is total number of 
trajectories. Each trajectory is represented as 𝑇𝑅'3 =
{𝑛+,, 𝑛-	, … . 𝑛'},where 𝑛'  is the grid number, 𝑝 is maximum 
size of N-gram model.  
Output: Trajectory Frequency Matrix 𝑇𝐹𝑀	of 𝑚𝑋𝑞 
dimension, where 𝑚	 is total number of trajectories and 𝑞 
represents number of N-grams.  
Step 1: for  𝑖 = 1,2,…𝑝 for each point in 𝑇𝑅'3 
 Generate all possible ith gram sequence 
 Append sequence to 𝑇𝑁' 
Step 2: For each trajectory 𝑇𝑁' 
            Generate the set of {N-gram} which has unique N-
grams from all trajectories. The size of set is q. 
Step 3: For each trajectory 𝑇𝑁N 
                   For 𝑖 = 1,2,…𝑞. Search sequences in 𝑇𝑁N with jth 
sequence in N-gram 
  If match is found update matrix 
  Set 𝑇𝐹𝑀[𝑖, 𝑗] = 1 else 𝑇𝐹𝑀[𝑖, 𝑗] = 0 
 
 The complete set of unigrams generated for the 4 
trajectories are given by the set: {1, 2, 3, 6, 9, 8, 7, 10, 12, 
15, 17, 18, 24, 25} and sample bigrams generated are 
{{1,9}, {9,8}, {8,7}, {7,15}, {1,2}, {2,3}, {3,7}.. }, 
trigrams generated are {{1,9,8}, {9,8,7}…} as shown in 
Table3. The N-gram model generate a total of q N-grams, 
by varying N from 1 to p. Each trajectory is represented in 
N-grid gram string representation using 𝑇𝑁' . TFM of 4 
trajectories is shown in Tab 4. Sparsity of TFM can be 
removed using dimensionality reduction methods. TFM 
matrix with m rows and q columns are given as input to 
dimensionality reduction algorithm. 
 
Table 4. Trajectory Frequency Matrix for N-grams of T1 
and T2 

` N-grams 
T 1 9 8 . 1,9 9,8 8,7 . 1,9,8 9,8,7 8,7,15 . 
1 1 1 1  1 1 1  1 1 1  
2 1 1 1  1 1 1  1 1 1  
3 1 0 0  0 0 0  0 0 0  
4 0 0 1  0 0 1  0 0 0  
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4.3 Dimensionality Reduction 
4.3.1  Singular Value Decomposition  
N-grid-gram representation of TFM is very sparse and 
SVD is applied to represent data in a compact way of 
approximation. SVD reduces each trajectory into features 
that is sufficient to represent the trajectories [11]. Process 
generates rank-reduced matrix compared to the original 
TFM, where TFM has 𝑚 rows representing trajectories and 
𝑞 columns representing number of N-grams generated. 
SVD reduces each trajectory into features that is sufficient 
to represent the trajectory.  
 
𝑇𝐹𝑀 = 𝑈𝑆𝑉T 
 
 U and V are unitary matrixes in which U represents 
trajectories and V representing features of N-grams and S 
diagonal matrix with values in decreasing order. From this 
information, reduced dimensional matrix is generated with 
k-dimensional column space making other values in matrix 
S to zero. Various k values are chosen (k=5, 10, 25, 30, 50) 
to identify optimum number of features needed for 
representation. Transformed trajectories are represented as 
matrix of reduced dimensionality model 𝑇𝐹𝑀U .  
 
𝑇𝐹𝑀U = 𝑈𝑆VW 

 
4.3.2 t-Distributed Stochastic Neighbor Embedding 
(t-SNE) 
t-SNE is implemented in two phases using conditional 
probability as basic principle. First phase, starts by creating 
probability distribution over the pairs which represent 
similarity between the points.  
 

𝑃N|' =
exp	(−||𝑥' − 𝑥N||-/2𝜎'-)

∑ exp	(−||𝑥' − 𝑥d||-/2𝜎'-)0
de'

 

 
 Higher probability value shows the higher similarity 
between the pairs. 
  
𝑃'N =

fg|hifh|g
-0	

 ,  
 
where 𝑛 represents dimension 
 Second stage, finds the similar probability distribution 
over the low dimensional representation. Low dimensional 
relationship (𝑞N|') is calculated using distance between 
points in probability distribution similar to 𝑃N|' . 
 This tries to reduce Kullback–Leibler divergence 
between the distributions with respect to the locations [27]. 
 

𝑌(") = 𝑌("k+) + 	η
δC
δY +	α

(t)(𝑌("k+) − (𝑌("k-)) 
 
t-SNE converts the trajectory into dimensions of (1,2,3) so 
that the data points can be visualized 
 
𝑇𝐹𝑀U = 𝑅𝑡𝑠𝑛𝑒(𝑇𝐹𝑀, 𝑑𝑖𝑚 = 1,2,3) 
 
4.4 Clustering 
Dissimilarity between trajectories are calculated with 
distance measures using Euclidean distance, which will 
generate dissimilarity matrix	𝑫𝒊𝒔𝒔𝒊𝒎. Dissimilarity 
measures between trajectories are measured as sum of 
distance between points in the trajectories. 
 𝒅y𝑻𝟏,, 𝑻𝟐| = (∑ 𝒅(𝒑𝟏.𝒊𝒏

𝒊�𝟏 , 𝒑𝟐.𝒊))/𝒏, where  
𝒅(𝒑𝟏.𝒊, 𝒑𝟐.𝒊) represents spatial distance. Agglomerative 
hierarchical method is used for clustering and the 

performance of various linkage metric including Single 
(SL), Complete (CL), Average (AL), Median (ML), 
Centroid (CPL) and Ward (WL) are analyzed. Hierarchical 
clustering results are validated using Cophenetic 
correlation coefficient (CPCC), Dunn (DNI) and Davies 
Boudlin Index (DBI) metrics in this study [5][9][12]. 
 
Clustering algorithm  
Input:  Set of Trajectories 𝑇 = [𝑇𝑅+, 𝑇𝑅-	, …𝑇𝑅0], 
represented as Trajectory Frequency Matrix (𝑇𝐹𝑀), where 
n is total number of trajectories. 
Output: Trajectory clusters  𝐶 = {𝐶+, 𝐶-	, …𝐶�}	where 𝐶' 
represents cluster 𝑖, 𝑧	number of clusters  
Step 1: Dimensionality Reduction and similarity 
computation. 
 Calculate using for both reduced representation 
Step 1.1: 𝐷𝑖𝑠𝑠𝑖𝑚[𝑖, 𝑗	] = 𝑠𝑑𝑖𝑠𝑡(𝑇𝐹𝑀U	$𝑈'	, 𝑇𝐹𝑀U	$𝑈N	), 
Where 𝑖 = 1,2,…𝑚	𝑎𝑛𝑑	𝑗 = 1,2,…𝑚,	𝑠𝑑𝑖𝑠𝑡() is the 
Euclidian distance // 𝑇𝐹𝑀U	$𝑈'represent  SVD reduced 
trajectory representation from	𝑇𝐹𝑀U  
Step 1.2: 𝐷𝑖𝑠𝑠𝑖𝑚1[𝑖, 𝑗	] = 𝑠𝑑𝑖𝑠𝑡(𝑇𝐹𝑀U	$𝑌'	, 𝑇𝐹𝑀U	$𝑌N	), 
Where 𝑖 = 1,2,…𝑚	𝑎𝑛𝑑	𝑗 = 1,2,…𝑚,𝑠𝑑𝑖𝑠𝑡() is the 
Euclidian distance // 𝑇𝐹𝑀U	$𝑌'  represent t-SNE reduced 
trajectory representation from	𝑇𝐹𝑀U  
Step 2: Cluster Trajectories 
Apply hierarchical clustering and cut dendrogram at level l 
to generate clusters 
 Validate the clustering using metrics and choose the 
optimal results 
 
4.5 Cluster Validation  
4.5.1 Cophenetic Correlation Coefficient  
Cophenetic Correlation Coefficient (CPCC) is a 
correlation measure of clustering, it’s a measure of 
correlating two major clusters merge together to form a 
single dendrogram [5]. Cophenetic (CP) distance measures 
the dissimilarity measure at which the trajectory objects 
merge together in the same cluster for the first time. The 
dissimilarity matrix is represented as 𝑑𝑖𝑠𝑠𝑖𝑚[𝑖, 𝑗], where 
𝑖 ∈ 1,2,…𝑚	𝑎𝑛𝑑	𝑗 ∈ 1,2,…𝑚. Cophenetic matrix is 
represented using a matrix 𝐶𝑃[𝑖, 𝑗], where	𝑖 ∈
1,2,…𝑚	𝑎𝑛𝑑	𝑗 ∈ 1,2,…𝑚. CPCC measures values range 
from 0 to 1 measured by Eq.1.   
 
𝐶𝐶 = (𝑑𝑖𝑠𝑠𝑖𝑚	𝑋	𝐶𝑃�)/√𝑣𝑎𝑟(𝑑𝑖𝑠𝑠𝑖𝑚)𝑣𝑎𝑟(𝐶𝑃)   (1) 

 
4.5.2 Davies-Bouldin Index (DBI) 
Davies Bouldin Index (DBI) is a measure that takes ratio 
between scatterness within clusters and separation between 
clusters [5]. Smaller value of DBI means that there is a 
better scatterness of clusters and tightness inside the 
clusters. DBI is calculated by Eq.2. 
 
𝐷𝐵� =

+
�
∑ 𝑅'0
'�+          (2) 

 
Where 𝑅 = 𝑚𝑎𝑥'�+,-,…�,'eN	𝑅'N	, 𝑖 = 1,2,… 𝑧. 𝑅'N	is 
measured based on 	𝑑'	N = 𝑑	(𝑐', 𝑐N) the separation between 
clusters and si the within cluster scatter for cluster 𝑖 using 
Eq.3. 
 
𝑅'N = (𝑠' + 𝑠N)/𝑑'	N      (3) 

 
4.5.3 Dunn Index (DNI) 
Dunn Index capture and analyses how intra-cluster 
distance and inter-cluster exist for clustering results [5]. 
Inter cluster distance should be large and intra cluster 
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should be small. Larger value of DNI indicates well 
separated clusters and compact intra-clusters. DNI is 
calculated by Eq.4. 
 

𝐷� = min
'�+,-,,�

� min
N�'i+,..�

�
�(3g,3h)

���
���,�..�

�'��(3�)
��     (4) 

 
Where 𝑑(𝑐', 𝑐N) the dissimilarity measure between two 
clusters 𝑐'  and 𝑐N  is defined as 𝑑y𝑐', 𝑐N| = min

�∈3g,�∈3h
(𝑑(𝑥, 𝑦)) 

and 𝑑𝑖𝑎𝑚(𝑐) is the diameter of the cluster. The diameter 
of the cluster is defined as 𝑑𝑖𝑎𝑚(𝑐) = max

�,�∈¡
(𝑑(𝑥, 𝑦)). 

 
 
5. Experimentation 
 
For performance comparison, trajectory clustering 
algorithm with various linkage methods are experimented 
over three difference trajectory datasets.  Two data sets are 
considered from standard repositories and one dataset 
authors have generated and used for experimentation.  
 
5.1 Dataset Description 
5.1.1 Trajectory dataset: TamilNadu (TN291) 
TN291 considered for analysis which consists of routes 
across 9 districts of Tamil Nadu, India. This dataset 
contains trajectories which are the path traversed 
frequently on road network and contains 291 instances. 
The traces are generated by users mapping their frequently 
travelled routes in google map. Dataset is generated with 
features including id, latitude, and longitude. 
 
5.1.2 GPS Trajectories dataset 
GPS-T dataset is chosen from UCI machine learning 
repository and contains 163 instances. Each trajectory 
contains features id, latitude, longitude, track-id, date, time 
information. Trajectories having lesser than 10 GPS points 
are filtered, 81 individual trajectories are considered for 
experimentation. The dataset is available at 
https://archive.ics.uci.edu /ml/datasets /GPS+Trajectories. 
 
5.1.3 T-Drive Trajectories dataset: T-Drive 
This dataset is chosen from Microsoft T-Drive project and 
contains trajectories of taxis in Beijing city. A total of 2200 
instances are randomly sampled from dataset repository 
and used for experimentation. Each trajectory contains 
features id, latitude, longitude, track-id, date and time 
information. Dataset is available at: 
https://www.microsoft.com/en-us/research/publication/t-
drive-trajectory-data-sample. 
 The effectiveness of clustering algorithms in 
generating clusters and improving the cluster validity 
measures has been studied by experimentation [10]. 
Clustering algorithms are implemented in Rstudio (R 
3.4.2) and tested on the three datasets and validation are 
performed. The following parameters are used for 
experimentation. Trajectory of uniform length is generated 
by sampling 10 points using DP algorithm and a grids of 
size 52x52 is used for trajectory transformation. The N-
grams are generated by varying n from 1 to 5. TFM is 
created with higher dimensionality and reduced 
dimensionality matrix is generated by choosing various 
singular values of k for representing trajectories (k=5, 10, 
15, 20, 25, 50). The clustering algorithms are validated 
using CPCC, DNI and DBI indices and six linkages 
variants (SL, CL, AL, ML, CPL, and WL) are used for 
analysis. 
 

6. Results and Discussion  
6.1 Trajectory Dataset: TamilNadu (TN291) 
The clustering algorithm has been studied by setting sample 
point for DP to be 10. The analysis is done by generating grids 
and varying the N-gram value from 1 to 5 and singular value 
of k is varied from 5-50. The results are presented in Table 5, 
where N-gram is 3 and singular values are varied from 5 to 
50. R-STCA (Reduced String based Clustering Algorithm) is 
compared with TCA [25] and SCA [26]. TFM size increased 
to 291 X 668 dimensions, where 291 represents number of 
trajectories and 668 (unigram, bigram and trigram) represents 
number of N-gram sequences. Table 5 show that AL and CPL 
show the best CPCC value for singular value varying from 5 
to 50. Table 6 shows that AL and CPL show the best CPCC 
value for varying dimension from 1,2,3 using t-SNE. 
 
Table 5. CPCC value for TN291 dataset R-STCA using SVD 
[3-gram] 

TamilNadu—N-gram (1:3) 291 X 668 
 CPL SL WL AL ML CL 
5 0.943 0.831 0.739 0.943 0.922 0.872 
10 0.911 0.85 0.775 0.909 0.869 0.803 
15 0.91 0.853 0.737 0.912 0.869 0.835 
20 0.889 0.795 0.622 0.886 0.845 0.791 
25 0.871 0.784 0.578 0.867 0.84 0.774 
50 0.881 0.784 0.455 0.898 0.855 0.812 

 
Table 6. CPCC value for TN291 dataset R-STCA using t-
SNE [3-gram] 

t-SNE- TN291 N-gram (291 X 668) 
Dime
nsion CPL SL WL AL ML CL 

1 0.710
5901 

0.701
6108 

0.658
176 

0.718
465 

0.691
3662 

0.729
5512 

2 0.675
2243 

0.603
4567 

0.639
3063 

0.680
8531 

0.621
0462 

0.603
6544 

3 0.696
0003 

0.560
5148 

0.634
8205 

0.709
8287 

0.501
9062 

0.627
0162 

 
 Similar analysis is made for 5-gram where dimension is 
increased to 291 X 1652 dimensions, where 1652 represents 
number of N-gram sequences (unigram, bigram, trigram, 4-
gram, 5-gram). Table 7 shows the CPCC measure where 
singular values varied from 5 to 50. Table 7 results show CPL 
and AL provides best CPCC values compared to other linkage 
methods for singular values varying from 5 to 50. Table 8 
shows that AL and CPL show the best CPCC value for 
varying dimension from 1,2,3 using t-SNE. 
 
Table 7. CPCC value for TN291 dataset R-STCA using SVD 
[5-gram] 

TamilNadu—N-gram (1:5) 291 X 1652 
 CPL SL WL AL ML CL 
5 0.948 0.851 0.770 0.931 0.812 0.839 
10 0.931 0.850 0.768 0.922 0.882 0.819 
15 0.915 0.859 0.739 0.915 0.877 0.842 
20 0.889 0.797 0.643 0.893 0.852 0.782 
25 0.856 0.783 0.605 0.870 0.833 0.775 
50 0.858 0.773 0.439 0.875 0.810 0.819 

 
 Correlation Coefficient is compared and analyzed with 
TCA and SCA based algorithms. Table 9 shows R-STCA [5-
gram], provides a better correlation result than TCA and SCA 
when dimensionality reduction using SVD is applied.  
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Table 8. CPCC value for TN291 dataset R-STCA using t-
SNE [5-gram] 

t-SNE- TN291 N-gram (291 X 1652) 
Dime
nsion CPL SL WL AL ML CL 

1 0.729
9192 

0.674
791 

0.668
1197 

0.684
356 

0.679
4211 

0.655
1368 

2 0.702
1255 

0.685
1356 

0.556
2094 

0.730
3041 

0.716
8176 

0.586
2728 

3 0.689
9877 

0.622
441 

0.623
346 

0.703
5331 

0.572
8334 

0.615
844 

 
 
Table 9. Comparison of CPCC with TCA, SCA, R-STCA 

Algorithm Linkage 
Method  

CPCC 

TCA CPL 0.94629
43 

SCA AL 0.87790
69 

R-STCA [3-gram] using 
SVD 

AL 0.94335
42 

R-STCA [5-gram] using 
SVD 

CPL 0.94763
67 

R-STCA [3-gram] using R-
tSNE 

CL 0.72955
12 

R-STCA [5-gram] using R-
tSNE 

AL 0.73030
41 

 
 Clustering using all the linkage strategies were compared 
for different values of k, the number of clusters. The best DBI 
and DNI index values are reported in Table 10, with the value 
of k used for clustering to obtain these optimal values. Table 
10 show that TCA with linkage methodology as complete, 
with k-number of clusters as 9, produced a best result of 
0.4359 for DBI and SCA with linkage measure as centroid, 
with k-number of clusters as 2, provided best value of 1. DBI 
index should be minimized for better clustering, from Table 
10, we infer that proposed R-STCA (using SVD) algorithm 
with 3-gram and 5-gram sequence representation converged 
to minimum values of 0.215 and 0.18. Similarity DNI has 
obtained enhanced value of 6.022 and 6.178 for R-STCA 3-
gram and 5-gram representation respectively.  
 
Table 10. DBI and DNI comparison for TN291 dataset 

Algorithm Linkage 
Method k DBI Linkage 

Method k DNI 

TCA CL 9 0.436 CL 3 1.775 
SCA CPL 2 1.000 CPL 2 1.000 

R-STCA [3-gram] 
using SVD CPL 6 0.215 CPL 6 6.022 

R-STCA [5-gram] 
using SVD CPL 3 0.182 CPL 3 6.178 

R-STCA [3-gram] 
using t-SNE SL 9 0.871

034 CPL 5 1.810
179 

R-STCA [5-gram] 
using t-SNE AL 2 0.818

112 ML 2 1.896
97 

 

 
(a)                                                                     (b) 
Fig. 4. Cluster for TN291 dataset using R-STCA using SVD 

 
 

 
  (a)                                                           (b) 
Fig. 5.  Cluster for TN291 dataset using R-STCA using t-SNE 
 
 TN291 dataset was generated by the authors, and true 
number of clusters considered were 9.  Fig. 4 (a) shows the 
results of clustering algorithm, when k is set to 9 with 5-gram 
representation of trajectory with singular value of 5. The 
trajectories are identified into 9 clusters. From Table 10 R-
STCA [5-gram] with SVD representation yield a minimum 
value and Fig. 4 (b) shows that trajectories are grouped into 
similar clusters.  Fig. 5 (a) shows the results of clustering by 
t-SNE algorithm, when k=9, 5-gram representation of 
trajectory with singular value of 5. Fig. 5 (b) shows R-STCA 
with t-SNE reduction, with 5-gram representation of 
trajectory where k=2. From the figure, we infer that SVD 
based reduction has identified the true clusters, correctly 
compared to t-SNE based reduction.  
 
6.2 GPS Trajectories dataset 
Similar analysis is performed over a GPS dataset. The results 
are presented in Table 11, where N-gram is 3 and singular 
values are varied from 5 to 50. R-STCA is compared with 
TCA and SCA. TFM size increased to 81 X 1135 dimensions, 
where 81 represents number of trajectories and 1135 
(unigram, bigram and trigram) represents number of N-gram 
sequences. Table 11 shows the improved value of CPCC for 
different linkage metrics and shows CPL provides best CPCC 
values compared to other linkage methods for singular values 
varying from 5 to 50. 
 
Table 11. CPCC value for GPS dataset R-STCA [3-gram] 

 GPS—N-gram (1:3) 81 X 1135 
 CPL SL WL AL ML CL 
5 0.934 0.835 0.658 0.931 0.920 0.881 
10 0.917 0.843 0.605 0.903 0.873 0.841 
15 0.890 0.797 0.603 0.871 0.852 0.747 
20 0.837 0.725 0.570 0.815 0.789 0.721 
25 0.862 0.757 0.550 0.861 0.846 0.786 
50 0.895 0.841 0.498 0.903 0.893 0.794 

 
 Table 12 shows the analysis of CPCC results using 
various linkage methodologies for varying dimensions from 
1 to 3 and shows CPL and AL provides better correlation for 
higher dimensions of 2 and 3.  
 
Table 12. CPCC value for GPS dataset R-STCA [3-gram] 

t-SNE- GPS N-gram (81 X 1135) 
Dime
nsion CPL SL WL AL ML CL 

1 0.682
61 

0.606
0012 

0.660
3033 

0.685
0233 

0.659
2156 

0.669
1465 

2 0.683
1928 

0.612
3063 

0.632
694 

0.663
2262 

0.651
4921 

0.606
2525 

3 0.662
5408 

0.532
6317 

0.691
3754 

0.718
3677 

0.662
014 

0.660
486 

 
 5-gram model for GPS data increases the dimension to 81 
X 2009 dimensions, where 2009 represents number of N-
gram sequences (unigram, bigram, trigram, 4-gram, 5-gram). 
Table 13 shows the CPCC values for various linkage 
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strategies for singular values varying from 5 to 50. Table 14 
shows the CPCC values for various linkage strategies for 
varying dimensions from 1, 2, 3. The analysis shows the AL 
and CPL methodologies provides a better correlation value. 
From the results we infer that CPL and AL perform better 
compared to other linkages methods. Table 15 shows the 
comparative analysis of TCA, SCA, R-STCA algorithms and 
we infer that R-STCA algorithm with 5-gram model converge 
to maximum value of 0.946103. 
 
Table 13. CPCC value for GPS dataset R-STCA [5-gram] 

 GPS N-gram (1:5) 81 X 2009 
 CPL SL WL AL ML CL 
5 0.946 0.85 0.692 0.939 0.88 0.909 
10 0.919 0.86 0.747 0.933 0.92 0.894 
15 0.898 0.82 0.677 0.911 0.89 0.825 
20 0.885 0.82 0.61 0.901 0.89 0.822 
25 0.873 0.8 0.553 0.873 0.86 0.621 
50 0.896 0.84 0.5 0.895 0.88 0.798 

 
Table 14. CPCC value for GPS dataset R-STCA [5-gram] 

t-SNE- GPS N-gram (81 X 2009) 
Dime
nsion CPL SL WL AL ML CL 

1 0.712
798 

0.622
8575 

0.700
231 

0.683
3077 

0.627
5875 

0.640
8072 

2 0.591
4788 

0.563
52 

0.603
9526 

0.649
793 

0.577
3114 

0.630
5717 

3 0.682
6412 

0.566
5332 

0.652
5312 

0.682
8812 

0.612
254 

0.631
3372 

 
Table 15. Comparison of CPCC with TCA, SCA, R-STCA 

Algorithm Linkage Method CPCC 
TCA AL 0.7335238 
SCA AL 0.9454568 

R-STCA [3-gram] using SVD CPL 0.9341 
R-STCA [5-gram] using SVD CPL 0.946103 

R-STCA [3-gram] using t-SNE AL 0.7183677 
R-STCA [5-gram] using t-SNE CPL 0.712798 

 
Table 16. DBI and DNI value for GPS Dataset 

Algorithm Linkage 
Method k DBI Linkage 

Method k DNI 

TCA CPL 2 0.845 CL 2 1.39
4 

SCA CPL 2 1.000 CPL 2 1.00
0 

R-STCA [3-
gram] using 

SVD 
CPL 2 0.637 CPL 2 1.57

1 

R-STCA [5-
gram] using 

SVD 
CPL 2 0.664 CPL 2 1.50

5 

R-STCA [3-
gram] using t-

SNE 
CL 3 0.334

2577 ML 3 2.85
4844 

R-STCA [5-
gram] using t-

SNE 
AL 3 0.258

85 AL 3 3.45
9725 

 
 Table 16 show that TCA with linkage methodology as 
centroid, with k-number of clusters as 2, produced a best 
result of 0.845229 for DBI and SCA with linkage measure as 
centroid, with k-number of clusters as 2, provided best value 
of 1. From Table 16, we infer that proposed R-STCA 
algorithm with 5-gram sequence representation using t-SNE 
converged to minimum values of 0.25885 for DBI measure 
and for DNI the algorithm converge to 3.459725 for average 
methodology with 3 clusters. 
 

 
Fig. 6. Cluster for GPS dataset using R-STCA using SVD 

 
 

 
Fig 7.  Cluster for GPS dataset using R-STCA using t-SNE 
 Fig. 6 shows the clustering results of R-STCA algorithm 
with following parameter values k=3, q=3, singular value=5. 
When k=3, algorithm identified all data belonging to each 
cluster appropriately. Each cluster shown in varying colors 
and R-STCA identifies clusters such that trajectory having 
overlapping points are grouped into same cluster. Fig. 7 
shows the clustering results of R-STCA algorithm with 
following parameter values k=5, with 1-dimension in t-SNE. 
 
6.3 T-Drive Trajectories dataset: T-Drive 
The results are presented in Table 17, where N-gram is 3 and 
singular values are varied from 5 to 50. R-STCA is compared 
with TCA and SCA and the TFM size increased to 2200 X 
22377 dimensions, where 2200 represents number of 
trajectories and 22377 (unigram, bigram and trigram) 
represents number of N-gram sequences. Results from the 
Table 17 with 3-gram representation show that as the singular 
values increases for all clustering linkage methods there is an 
improvement on their CPCC value. Results in Table 18 shows 
3-gram representation using t-SNE based dimensionality 
reduction of all clustering linkage methods CPCC value by 
varying from 1 to 3. 
 
Table17. CPCC value for T-Drive dataset R-STCA using 
SVD [3-gram] 

 T-Drive N-gram (1:3) 2200 X 22377 
 CPL SL WL AL ML CL 
5 0.709 0.665 0.414 0.704 0.479 0.443 
10 0.595 0.633 0.255 0.590 0.252 0.327 
15 0.556 0.630 0.234 0.548 0.191 0.247 
20 0.607 0.657 0.236 0.601 0.356 0.333 
25 0.627 0.648 0.251 0.597 0.301 0.323 
50 0.781 0.735 0.317 0.716 0.457 0.370 
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Table18. CPCC value for T-Drive dataset R-STCA using t-
SNE [3-gram] 

RTSNE- TDrive N-gram (2202 X 22377) 
Dime
nsion CPL SL WL AL ML CL 

1 0.692
1247 

0.587
8983 

0.682
5658 

0.692
3544 

0.690
5976 

0.687
117 

2 0.576
4186 

0.370
4069 

0.565
3985 

0.604
1212 

0.556
6745 

0.567
3944 

3 0.476
0643 

0.319
9666 

0.538
8196 

0.537
0501 

0.384
6578 

0.527
1429 

 
Table19. CPCC value for T-Drive dataset R.-STCA using 
SVD [5-gram] 

  T-Drive N-gram (1:5) 2200 X 50874 
  CPL SL WL AL ML CL 
5 0.705 0.665 0.395 0.704 0.469 0.569 
10 0.597 0.634 0.252 0.590 0.328 0.351 
15 0.556 0.630 0.241 0.547 0.224 0.274 
20 0.607 0.657 0.236 0.600 0.342 0.348 
25 0.628 0.648 0.262 0.595 0.397 0.326 
50 0.782 0.735 0.323 0.721 0.467 0.353 

  
Results from Table 19 with 5-gram representation using SVD 
based R-STCA shows CPL that as the singular values 
increases all clustering linkage methods improve on their 
CPCC value. Table 20 with 5-gram, representation using t-
SNE based R-STCA shows as the dimensionality increase, 
CPCC values tend to reduce. 
 
Table 20. CPCC value for T-Drive dataset R-STCA using t-
SNE [5-gram] 

RTSNE- TDrive N-gram (2202 X 50874) 
Dime
nsion 

CPL SL WL AL ML CL 

1 0.696
2542 

0.446
1089 

0.688
0516 

0.689
6069 

0.691
2271 

0.700
6678 

2 0.572
8464 

0.385
0426 

0.582
3056 

0.599
316 

0.564
3295 

0.575
5429 

3 0.422
5344 

0.371
2185 

0.526
5929 

0.560
8251 

0.347
4063 

0.501
5295 

 
 For smaller datasets (TamilNadu and GPS), CPCC value 
decreases as singular value increases. The results infer that as 
the size of dataset increases, the number of features to be 
considered for clustering should be higher. As the number of 
singular values increases the dimension of data increases and 
provide a better representation of trajectory data for 
clustering. Table 21 shows that TCA algorithm finds the best 
value of 0.873549 compared to R-STCA 3-gram and 5-gram 
variants.   
 
Table 21. Comparison of CPCC with TCA, SCA, R-STCA 

Algorithm Linkage 
Method  CPCC 

TCA AL 0.873549 

SCA AL 0.278666
4 

R-STCA [3-gram] using 
SVD CPL 0.78096 

R-STCA [5-gram] using 
SVD CPL 0.78162 

R-STCA [3-gram] using t-
SNE AL 0.692354

4 
R-STCA [5-gram] using t-

SNE CL 0.700667
8 

 
 Table 21 shows the comparative analysis of TCA, SCA, 
R-STCA and shows performance improvement. Table 22 
show that TCA with linkage methodology as centroid, with k-
number of clusters as 2, produced a best result of 1.013345 
for DBI and SCA with linkage measure as centroid, with k-
number of clusters as 2, provided best value of 1. DBI index 
should be minimized for better clustering, from Table 21, we 
infer that proposed R-STCA algorithm with 3-gram and 5-
gram sequence representation converged to minimum values 
of 0.18 and 5.29 for DBI and DNI index for SVD based 
dimensionality reduction.  
 

 
Fig. 8. Cluster for T-Drive dataset using SVD 

 

 
Fig. 9. Cluster for T-Drive dataset using R-tSNE 

 
Table 22. DBI and DNI value for T-Drive dataset  

Algorit
hm 

Linka
ge 

Metho
d 

k DBI 

Linka
ge 

Metho
d 

k DNI 

TCA AL 2 1.013 CL 2 1.211 
SCA CPL 2 1.000 CPL 2 1.000 

R-STCA 
[3-gram] 

using 
SVD 

CPL 2 0.189 CPL 2 5.297 

R-STCA 
[5-gram] 

using 
SVD 

CPL 2 0.189 CPL 2 5.296 

R-STCA 
[3-gram] 
using t-

SNE 

SL 6 0.95611
79 WL 2 1.9638

27 

R-STCA 
[5-gram] 
using t-

SNE 

SL 7 0.95702
07 SL 7 1.0743

8 
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 Fig. 8 shows the clustering results of R-STCA algorithm 
with following parameter values k=7, q=3, singular value=5 
using SVD based dimensionality reduction. Fig. 9 shows the 
clustering results of R-STCA algorithm with following 
parameter values k=5, using t-SNE based dimensionality 
reduction. In overall performance evaluation measures CPL 
provides better correlation of clustering for smaller datasets 
as size of dataset increases AL and CPL provides a better 
correlation in clustering. In process of analysis, various 
sample size is selected in range from 5,10,15,20,25,50 to find 
optimum number of features needed to represent trajectories. 
The relationship between number of features needed to 
represent trajectory and clustering correlation index are 
studied. Higher correlation values are obtained with smaller 
number of reduced features for smaller datasets. As the 
trajectory dimension increases for larger datasets, higher 
correlation index value is obtained with larger number of 
features to represent the trajectory.  
 R-STCA algorithm with reduction methods converge to 
optimal values compared to other algorithm considered in the 
study. For TN291 and GPS dataset TCA and SCA represents 
trajectories using 10 dimensions. R-STCA algorithm with 
SVD based dimensionality reduction represents uses 5 
singular values and capture trajectory with smaller number of 
features. As the dataset dimension increases in T-Drive the 
reduction methods are able to capture the features to represent 
the trajectory with singular value 50 features. R-STCA (using 
SVD) representation of trajectories provides optimum DBI 
and DNI values. 
 
 

7 Conclusion  
 
In this paper a novel clustering framework is proposed for 
grouping spatial trajectories. The algorithm is designed to 
transform trajectories into strings by mapping trajectories on 
to grids and converting to N-gram representation. The 
objective for this representation is that N-gram format can 
captures location movement patterns efficiently. The 
experimental results on different datasets show that our 
method achieves good performance in clustering trajectories 
compared to point based methods. Clustering is performed 
and analyzed over trajectory of various sizes. Proposed 
framework provides better clustering accuracy in terms of 
correlation index, DBI and DNI with varying size of 
trajectory datasets. When comparing to t-SNE based 
dimensionality reduction SVD provides a better clustering. 
Given a collection of trajectories, the proposed work is to 
cluster trajectories such that trajectories that are spatially 
close are grouped into same clusters. Spatial grid mapping 
process, achieve higher consolidated representation of GPS 
points, suppressing minor variations in position of GPS 
points. The N-gram representation helps in identifying 
sequential pattern which provide much more identical 
representation for original trajectory that is spatially in close 
proximity.  
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