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Abstract 
 
The paper constructs continuous and discrete distribution laws, used to assess risks in information systems. Generalized 
expressions for continuous distribution laws with maximum entropy are obtained. It is shown that in the general case 
the entropy depends also on the type of moments used to determine the numerical characteristics of the distribution law. 
Also, probabilistic models have been developed to analyze the sequence of independent trials with three outcomes. 
Expressions for their basic numerical characteristics are obtained, as well as for calculating the probabilities of 
occurrence of the corresponding events. 
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1. Introduction 
 
At the present stage of the development of society, which is 
characterized by the intensive introduction of information 
systems in virtually all areas of activity, issues related to the 
assessment of the risks that occur during their operation are 
of particular importance. When analyzing and assessing 
risks, issues related to the definition of distribution laws are 
of the greatest importance. The given work is devoted to 
questions of construction of distribution laws. 
 In the modeling of information systems, risk is a random 
variable and is described by a probability distribution on a 
given set [1-3]. In contrast to experiments conducted in 
physics, where there is a possibility of their multiple 
conduct, the conditions of the functioning of information 
systems are characterized by a constant impact of negative 
external influences and are constantly changing [4], and 
consequently the repetition of the experiment under the same 
conditions is practically impracticable. The laws of 
probability distribution of risk events, as a rule, do not 
correspond to the law of the normal Gaussian distribution [5-
6]. 

 
 

2. Construction of continuous distribution laws with the 
maximum entropy 
 
Entropy coefficient is often used [7-8] with the classification 
of distribution laws of random continuous value (RV) with 
number characteristics.                                                       
 

                        (1) 

 

 In the formula (1)  is standard deviation, and 

 is the second central power moment for this distribution 
law; value H – entropy, which is defined by the definition:  
 

,      (2) 

 
 – density of probability distribution (PDD) SV. 

Entropy coefficient has the maximum value for Gaussian 
law ( =2.066), for uniform law - =1.73, for Koshi 

distribution - =0 etc.  
 The entropy value does not depend on shift parameter, to 
simple computation let’s consider, that it is equal to zero. 
Firstly we need to find distribution law from unilateral laws 
of distribution of unlimited RV, for which entropy value 

(2) reaches the maximum with the following limitations, 
imposed on probability density : 
 

,   (3) 

 
where β- scale parameter;  – value of maximum existing 
primary direct moment. Here and next we’ll consider 
positive power moment as a direct moment in accordance 
with (3), and negative power moment as a reverse moment.  

To find the extremum we’ll use the method of 
indefinite Lagrange multipliers [9]. We need to maximize: 
 

    (4) 

 
inserting Lagrange multipliers  and , considering the 
limitations (3) and must be defined. Equating the result of 
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variation integrand expression in (4) when , we’ll 
take the equation relatively to : 
 

.         (5) 
 
 So, the density , which is satisfies (3) and 
maximizes H, can be found from the  
equation (5) 
 

.         (6) 
 
 Substituting (6) in (3) instead of , we’ll take from 
integrating: 
 

        (7) 

 
 From (7) we find, that 

. Consequently  
 

,   (8)  

 
where  – gamma function.  
 From (8) follows, that if exists only the first beginning 
direct moment ( ), than exponential law has the 
maximum entropy; if there are two moments ( ), then 
unilateral Gaussian law; and if all direct moments exist 
( ), than unilateral uniform law. Indeed, the limiting 
moment (8) with ( ) is a unilateral uniform law 

, . So, if all direct moments exist, then 
uniform law has the maximum entropy from unilateral 
distribution laws of RV.  
 Analogically for bilateral symmetry laws of distribution 
unlimited RV can be shown, that if the first  of absolute 
central direct moments, then the probability density has the 
maximum entropy:  
 

    (9) 

 
 From (9) follows, that if only first absolute central 
moment exists ( ), then Laplace distribution has the 
biggest entropy; if there are two moments ( ), then 
Gaussian law; and if all direct moments exist ( ), then 
uniform law. Indeed, the limiting case for (9) is a uniform 
law , . So, if all direct moments 
exist, then uniform law has the biggest entropy from 
bilateral symmetry distribution laws of RV. Considered 
private cases of bilateral laws with the maximum entropy 
coincide with already known laws (Laplace and Gaussian), 
which have maximum entropy, that confirms the correctness 
of received results. 

 From analysis of received expressions (8) and (9) 
follows, that for increasing the amount of information about 
evaluating parameters of distribution laws with big length 
(with long “tails”) with the help of a method of moments is 
necessary to use direct moments of lesser order, including 
fractional order. If the parameters of distribution laws lesser 
length are used, then it is necessary to use direct moment of 
higher order.  
 Let’s find from unilateral distribution laws of unlimited 
RV such distribution law, with which entropy value H 
reaches maximum with the following limitations, imposed 
on probability density :  
 

     (10) 

 
where  – value of maximum existing beginning reverse 
moment. Considering this an entropy is defined by an 
expression:  

,  (11) 

 
where  - a probability density RV , which is 

reverse to , which has the probability density . As a 
result of using the method of indefinite Lagrange numerators 
we’ll receive following expression for distribution law with 
the maximum entropy 
 

  (12) 

 
 The limiting case for (12) with  (all reverse 
moments exist) is a unilateral distribution law of limitations 
down from RV , . 
 Let’s define from bilateral distribution laws of RV such 
distribution law, for which entropy value  reaches the 
maximum with the following limitations, imposed on 
probability density  
 

     (13) 

 
where  – a value of maximum existing primary direct 
exponential moment. Considering this an entropy Η is 
defined by the expression 
 

.    (14) 
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 As a result of using the method of indefinite Lagrange 
numerators we’ll receive the following expression for 
distribution law with the maximum entropy.  
 

  (15) 

 
 The limiting case for (15) when  (all direct 
exponential moments exist) is a distribution law of bordered 
above RV , .  
 Now let’s find from bilateral distribution laws of 
unlimited RV such distribution law, for which the value of 
entropy H reaches maximum with the following limitations, 
imposed on probability density : 
 

   (16) 

 
where  – a value of maximum existing primary reverse 
exponential moment. Considering this an entropy   is 
defined by the expression 
 

.      (17) 

 As a result of using the method of indefinite Lagrange 
numerators we’ll receive the following expression for 
distribution law with the maximum entropy. 
 

  (18) 

 
 The limiting case for (18) when  (all direct 
exponential moments exist) is a distribution law of bordered 
above RV , .  
 From the analysis of expressions (15) and (18) follows, 
that exponential transformation of RV leads to 
transformation of form parameter  in scale parameter, and 

 parameter in shift parameter. 
 Finally let’s define from unilateral distribution laws of 
unlimited RV such distribution law, for which the value of 
entropy H reaches maximum with the following limitations, 
imposed on probability density : 
 

    (19) 

 
where  – a value of maximum existing primary direct 
logarithmic moment. Considering this an entropy  is 
defined by the expression 
 

.   (20) 

 

 As a result of using the method of indefinite Lagrange 
numerators we’ll receive the following expression for 
distribution law with the maximum entropy.  
 

  (21) 

 
 From (21) it follows, that if only two absolute 
logarithmic moments exist ( ), then logarithmic normal 
law has the biggest entropy. If  (all absolute primary 
moments exist), then (21) is transforming in Shannon law 
for limitations from above and down of RV , 

. It is necessary to notice, that with 
logarithmic transformation of RV scale parameter β 
transforms in form parameter and shift parameter transforms 
in scale parameter. 
 In general case, if RV  connected with RV  by a 
ratio  and known PDD  of continuous RV , 
then PDD  can be found by a method of functional 
transformation with the help of expression 
 

.    (22) 

 
 At this an entropy , considering (22) and ratio  
 

  

 
will be defined by an expression 
 

,     (23) 

where ;  and  – areas of existence RV 
 and  respectively. 

 
 

3. Distributions arising in the analysis of the sequence of 
independent tests with three outputs 

 
Next, consider the development of a probabilistic model of a 
sequence of independent trials with three outcomes, which 
becomes particularly important in the formation of estimates 
of the information security of information processing 
systems [10]. 
 Most often during the test, it is taken into account that its 
result is either event A or the opposite event C. The 
probability of event A in any test is independent of the 
outcomes of all other tests (the tests are independent) and 
equal to the probability (this is ensured by the same set of 
conditions for each test). This scheme of tests was first 
considered by J. Bernoulli and bears his name [11-14]. 
 The probability  of the fact, that event A in  
tests will come precisely k times ( ) is defined 
by Bernoulli’s formula [13-15] 
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which represents binomial distribution. In  it 
transforms in Bernoulli’s distribution.   
 

.     (25) 
 
 The limiting case of binomial distribution, when  
and , and product  aims to some positive 
constant value  (i.e. ), is Poisson’s distribution 
[13-15] 
 

.    (26) 

 
 If sequence of tests with Bernoulli’s scheme continues to 
appear m “failures”, then the number of successes k obeys to 
negative binomial distribution 
 

  (27) 

 
where  – gamma function.  
 Main purpose of this work – to invent sequence 
probability model of independent tests with three outputs 
and with it’s help receive formulas, analogic to (24), (26) 
and (27), for defining the probabilities of coming coinciding 
events.  
 Let it be produced N of independent tests. Every test can 
end with three outputs: either event  A with the probability 

 will come, or event B with the probability  will come, 

or event C with the probability   will come. 
Let’s match random discrete value to random output of 
every test, which takes three values: -1, if event A happened; 
0, if event C happened and 1 if event B happened. Positive 
or negative output of every test we’ll consider as a 
“success”, and zero output – “failure”. In this the probability 

 of coming events A, C and B in every test can be 
found by an expression 
 

   (28) 

 
where , , .  
 This distribution of probabilities, analogically to 
Bernoulli’s distribution (25), can be called bilateral 
Bernoulli’s distribution. Let’s find characteristic function for 
distribution (28), using ratio [15] 
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 Substituting in it (28), we’ll get  
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 Since ongoing tests are independent, then characteristic 
function  of distribution laws  in  tests will 
be equal to expression: 
 

   (31) 

 
 In this probability distribution  in  tests can be 
found by a formula:  
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 Substituting (31) in (32) and integrating, let’s find 
obvious expression for probability distribution  in  
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 Expression (10) can be simplified for five private cases: 
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. In this case every test will end in two outputs: 
either coming of event C with a probability , or event 
B with a probability . To those outputs can be matched 
random discrete value, which takes two values: 0, if event C 
happened and 1, if event B happened. In this probability 
distribution (33) as a result of limiting transition transforms 
in binomial distribution (24). That’s why received 
probability distribution (33) can be called generalized 
Bernoulli’s formula, or bilateral binomial distribution.  
5. Let’s view the third limiting case for distribution (33), 
when , , , and products ,  

aim to some positive constant values ,   (i.e. 

, ). In this probability distribution (33) 
in result of limiting transition transforms in probability 
distribution 
either  

   (37) 

 
or 
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     (52) 

 

      (53) 

 
 Probability  of fact, that event B in  tests will 
come k times can be found from formula (33), or from it’s 
private cases (34), (35), (36), (37) or (38). In this we 
suppose, that , .  

 Probability  of fact, that event A in  tests will 
come k times can be also found from formula (33), or it’s 
private cases (34), (35), (38), (37) or (38). In this we 
suppose, that , . 

 Probability  of coming event C in  tests can be 
found using formula (33), or it’s private cases (34), (35), 
(36), (37) or (38). In that we suppose, that . 

Probability  matches to probability of fact, that in  
cases events A and B won’t come.  
 Let’s view the example. Two symmetric coins are being 
thrown for ten rimes. In every throw three outputs are 
possible: two “eagles” with probability 0,25; two “tails of 
coin” with probability 0,25 and “eagle and tail of coin” with 
probability 0,5. It’s necessary to find: 1) probability  of 
fact, that precisely five times two “eagles” drop; 2) 
probability  of fact, that precisely three times two “tails of 

coin” drop; 3) probability  of fact, that precisely five 
times two “eagles” and three “tales of coin” drop.  
 Solution: In the match with example’s condition we have 
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- Hypergeometric Gaussian function. 
 
 Characteristic function of distribution (54) or (55 has the 
view 
 

(56) 
 
 Primary moment of the first order and central moments 
of the second, the third and the fourth orders for expressions 
(54) or (55) are defined by expressions  
 

     (57) 

 

                     (58) 

 

 (59) 

 
 Let’s view limiting case for distribution (31) or (32), 
when probability , and probability . In this 
probability distribution (31) or (32) as a result of limiting 
transaction transforms in negative binomial distribution (4). 
That’s why received probability distribution (31) or (32) can 
be called bilateral negative binomial distribution. 
 Choosing from bilateral binomial, Poisson’s and 
negative binomial distributions we can use following 
properties of those distributions: Binomial – , 

Poisson’s – , Negative binomial - . 
 So, there was developed probability model for sequence 
of independent tests with three outputs, were received 
expressions for it’s general number characteristics, and also 
for calculating the probabilities of coming matched events 
precisely k times. Was shown, that limiting cases of received 
bilateral distributions are binomial, negative binomial and 
Poisson’s distributions. 

 
 

4. Conclusion 
 
In this way, the following results are obtained. 
 
 - Generalized expressions for one-way and two-way 
continuous distribution laws with maximum entropy 
depending on the number of existing power, exponential or 
logarithmic moments. With their help, one can more 
reasonably choose the a priori distribution under the 
conditions of a priori uncertainty in the analysis of the risks 
of information systems. From the analysis of expression (23) 
and its particular cases (2), (11), (14), (17), (20) at the 
appropriate values  it follows that in the general case 
the entropy depends also on the type of moments used to 

m1 = λ2 − λ1,
M2 = λ1 + λ2 ,
M3 = λ2 − λ,

M4 = λ1 + λ2 + 3M2
2 ,

Ka =
λ2 − λ1
λ1 + λ2( )1,5

,

Ke =
1

λ1 + λ2
.

PB (k) N

PB (k) = P(k) k = 1,2,...,N

PA(k) N

PA(k) = P(k) k = −1,−2,...,−N

PC N

PC = P(0)

PC N

Pee

Ptt
Pet

p1 = p2 = p = 0.25,
N = 10; Pee = PA(−5),
Ptt = PB (3); Pet = PA(−5)PB (3).

p1 = p2

Pee ≈ 0,015;
Ptt ≈ 0,074;

Pet ≈1,093⋅10
−3;

P k( ) = 1− p1 − p2( )m ×
p2

p1

⎛

⎝
⎜

⎞

⎠
⎟

k

× p1p2( ) k Γ m+ | k |( )
Γ m( ) F k( ),  −∞ < k < ∞,

F k( )= 2F1(0,5 m+ k( ),0.5 m+ k +1( ),1+ k ,4p1p2 )

θ ( jϑ ) = [(1− p1 − p2 )× (1− p1 exp − jϑ( )− p2 exp jϑ( ))−1]m.

m1 =
m p2 − p1( )
1− p1 − p2

;

M2 =
m p2 + p1 − 4p1p2( )
1− p1 − p2( )2

;

M3 =
m p2 − p1( )
1− p1 − p2( )3

× 1+ p2 + p1 −8p1p2( );

M4 = m[
6 p2 − p1( )4
1− p1 − p2( )4

+
4 p2 − p1( )2
1− p1 − p2( )3

+
p1 + p2( )

1− p1 − p2( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

× 2p1 + 2p2 +1( )]+ 3M2
2.

p1→ 0 p2 = p

KeM2 <1

KeM2 = 1 KeM2 >1

q(x)
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determine the numerical characteristics of the distribution 
law. 
 - Probabilistic model for a sequence of independent trials 
with three outcomes, which acquire special significance in 
the formation of information security assessments of 
information systems. Expressions for its basic numerical 
characteristics are obtained. It is shown that the limiting 

cases of the obtained two-way distributions are the binomial, 
negative binomial and Poisson distributions. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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