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Abstract 

 
The forms of bridge cracks vary widely, but the automatic classification and identification of the effects of these cracks 
are difficult to achieve. Many recognition systems developed all over the world are based on recognition results and carry 
out human–machine dialogues. These systems rely on the manual recognition of crack types, but the manual approach not 
only has a low working efficiency but also a high error rate. In this study, a classification algorithm for cracks on bridge 
substructures based on multi-characteristic parameters was proposed to accurately identify cracks on concrete bridges and 
objectively and accurately evaluate the state of the bridge cracks. The geometric characteristics of the cracks in the 
substructure were extracted, and the projection vector, crack area, distribution density, and Euler number were obtained. 
Projection and wavelet denoising algorithms were used to first distinguish the linear cracks from the network cracks, and 
the number of holes in the crack image was employed as a parameter to further determine the crack type. Then, the Euler 
number was introduced to retain the image characteristic when the image required to be changed. Finally, the back 
propagation (BP) neural network system was used to achieve an accurate crack classification. This study was verified by 
experiments. Results demonstrate that the classification algorithm can effectively identify four types of cracks, namely, 
transverse, longitudinal, reflective, and meshed cracks. In the identification of transverse, longitudinal, and reflective 
cracks, the corresponding classification accuracies in this study were 12%, 3%, and 4% higher than the classification 
algorithm with the canny operator. This study can meet the requirements of crack classification accuracy in practical 
engineering and provide a scientific reference for the maintenance of bridges. 
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1. Introduction 
 
The most common manifestation of early diseases of 
reinforced concrete bridges is the appearance of visible 
cracks, while the final adverse performance of other bridge 
diseases is usually attributed to the appearance of 
unacceptable cracks. Therefore, a timely detection of the 
occurrence and expansion of cracks on concrete bridges is 
important in effectively reducing the disease status of 
bridges and its influence. The classification of crack targets 
on concrete bridges is difficult and thus has become the key 
point of bridge-crack identification research. Only by 
accurately classifying bridge cracks can the crack parameters 
be further extracted, after which the state of the bridge 
cracks can be objectively and accurately evaluated. This 
scheme further indicates that a highly scientific and accurate 
basis for bridge maintenance should be provided. Scientific 
and effective bridge maintenance is achieved by conducting 
a reasonable method to evaluate the bridge’s structure and 
by selecting a comprehensive inspection approach. However, 
due to the insufficient accuracy of conventional inspection 
methods, the damage caused during detection is usually 
large, which renders the detection work somewhat 
ineffective. Many accidents consequently occur, as bridge 
maintenance cannot be timely and effectively implemented. 

In view of the abovementioned limitation, crack 

recognition algorithms represented by neural network 
systems have become the mainstream topic in the field in 
recent years. Huang et al. [1] proposed an algorithm based 
on a fuzzy filter to extract the image characteristic vectors of 
cracks in a substructure, and then the crack types were 
identified using an artificial neural network. In the domain 
of crack recognition algorithms, Xiao et al. [2] adopted a 
moment invariant as the image characteristic of the crack 
and used a moment characteristic vector for description. 
Lins and Givigi [3] refined the target area of a crack image 
and extracted the intersection point of a skeletonized crack 
target, and then the perimeter and the number of the crack 
area were used to describe the crack image. 

The above methods focus on crack target areas, but the 
calculation of the eigenvalue required by these methods is 
complicated, and the results eventually cannot meet relevant 
requirements. The classification accuracy of the traditional 
artificial measurement method is accompanied by a time-
consuming and laborious process. Moreover, existing crack 
detection systems have low detection efficiency and poor 
measurement precision. Consequently, improving the 
classification efficiency and classification accuracy of bridge 
cracks has become an urgent endeavor. 

Based on the above analysis, this study adopts the 
method of extracting the geometric characteristics of cracks 
in substructures and uses the neural network to classify the 
cracks. The aim is to construct a crack identification method 
that is as suitable for different conditions as possible. The 
accurate identification of transverse, longitudinal, meshed, 
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and reflective bridge cracks can help in the rapid and 
accurate evaluation of road conditions and provide a highly 
scientific reference for the maintenance of bridges. 

 
 

2. State of the art 
 
Cracks can only be classified if they are extracted. The 
extraction of cracks on a bridge requires an extraction of the 
crack edge of the bridge image and a description of the data 
structure. He et al. [4] proposed the use of the histogram 
analysis algorithm, in which the gray histogram of an image 
containing the crack area is assumed to have double peaks, 
and then a threshold was determined to split the crack image. 
This method is generally suitable for images with obvious 
cracks [5]. Li et al. [6] proposed the sobel edge detection 
algorithm and assumed that the perimeter pixel of the noise 
area is less than 20, whereas that of the crack area is greater 
than 20, then a threshold was used to remove the noise and 
obtain the crack segmentation image. However, due to the 
complex characteristic of the collected images for bridge 
cracks, the single fixed threshold was insufficient for the 
efficient splitting of the images. Grivas et al. [7] discussed a 
regional growth technology to split crack images, while Yan 
et al. [8] adopted a mathematical morphology to identify 
crack targets. However, as their algorithms did not consider 
the geometric correlation of crack images, their application 
scope was limited. Linsa et al. [9] employed a fuzzy 
segmentation method for crack images, in which the main 
idea was to set the pixels’ gray value [10] in the crack image 
region smaller than that in the non-crack image region, 
hence ensuring continuity. In this scheme, a membership 
function for the image pixels’ gray value to be obtained by a 
differential operation was utilized. Then, the parametric 
value was determined by using a genetic algorithm, and the 
target of the crack image was blurred. Finally, the crack 
image was split by connecting the pixels in the crack area 
according to their continuity characteristics. The artificial 
population algorithm [11] was a crack recognition algorithm 
widely searched at present, whose principle was based on 
the use of binary organisms, and operationalized by dividing 
images into blocks with different sizes. The deviation 
between the pixels’ gray value and the pixels’ gray mean 
value was calculated by using the sub-blocks as a means to 
obtain the crack area. This method could achieve a certain 
recognition effect, but its calculation was extremely large 
and hence limited in engineering applications. Zhu et al. [12] 
used the four basic operations of mathematical morphology 
(corrosion, expansion, and open and close operations) to 
handle linear crack targets. This method, which required 
crack targets to have a strong edge and multiple thresholds 
to be set, can reduce the availability and recognition effect. 

Other image segmentation algorithms include the 
statistical filtering, cell unit, and texture analysis algorithms. 
The parametric description of crack image regions was 
usually based on moment descriptors. Jovisa et al. [13] 
adopted the Hu moment invariant to describe an image. 
Gishkori et al. [14] used the zermike moment invariant as 
the image characteristic to describe a crack. Qian et al. [15] 
refined the highway disease target and utilized the extracted 
skeletal bridge crack intersection, the perimeter of the crack 
area, and the area itself as a characteristic parameter to 
describe the crack image. The commonly used crack 
classifiers were the Bayesian [16-17], linear, and nonlinear 
classifiers [18]. Owing to the variety of bridge cracks and 
the difficulty of describing the degree of cracks with a 

unified analytic formula, the topic on nonlinear classification 
algorithms based on artificial neural networks has become 
popular in the research of automatic recognition of bridge 
cracks. Sakshi et al. [19-21] studied the above classifiers and 
neural network classifiers and determined that neural 
network classifiers were significantly better than traditional 
classifiers. 

The common problem of the abovementioned algorithms 
is that they can only derive a good recognition effect for a 
single crack, but they have a poor recognition effect for 
complex meshed cracks and block cracks. Thus, the 
application of such methods is greatly limited. Our present 
study, which is based on the geometric characteristics of 
cracks, including the projected area, distribution density, 
number of holes in the crack image, and the Euler number of 
the image, employs a neural network classifier to uniformly 
classify transverse, longitudinal, meshed, and reflective 
cracks. Projection variance and wavelet denoising are used 
to determine the transverse and longitudinal cracks. The 
ratio of the total number of crack pixels to the total number 
of crack pixels in the rectangular area surrounding the crack 
in the image is calculated. The results indicate that the 
distribution density of linear cracks (transverse and 
longitudinal cracks) is small, the distribution density of 
reflective cracks is large, and the distribution density of 
network cracks is the largest. When the image scale is 
changed and the crack of the adjacent pixels is used to 
calculate the Euler number, the projection variance, pixel 
distribution density of the crack area, Euler number, number 
of holes (such as the meshed cracks’ target edge area 
surrounded by pixels) are combined to determine the crack 
types. The number of holes of the linear cracks is less than 
or equal to 1, whereas the number of holes of reflective and 
meshed cracks are greater than 1. Moreover, the number of 
holes of the reflective cracks is much lesser than that of the 
meshed cracks given the same image per unit area. 

The remainder of this study is organized as follows. 
Section 3 describes the characteristics of the four types of 
cracks with different geometric shapes, and discusses the 
method of extraction of the projected areas and the 
distribution densities of the cracks. In this section, the 
number of image holes is used as a parameter for further 
identifying the types of cracks, then the images of the cracks 
on the bridge substructure are further classified using a 
classifier based on the back propagation (BP) neural network. 
Section 4 presents the analysis of the experimental results 
and discusses the variations in the calculation error with the 
increase in distance. Section 5 concludes the study, 
highlights the shortcomings of the research, and offers future 
research prospects. 
 
 
3. Methodology 

 
In this study, a classification algorithm based on the back 
propagation neural network is proposed for cracks on bridge 
substructures. In the proposed algorithm, Multi-
characteristic parameters were obtained, including the 
projection vector, crack area, distribution density and Euler 
number. This section will present a detailed description of 
the proposed algorithm. 

 
3.1 Crack-type analysis of bridge substructures 
Asphalt concrete is mainly applied to the construction of 
high-grade highway bridges. The design life of concrete 
bridges is approximately 15 years. In long term usage, the 
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asphalt concrete bridges will gradually manifest various 
damages. Some parts of bridges on local roads can be 
damaged in less than two years. The damages, which appear 
as cracks, loose material, drifting, or water damage, will 
directly affect the service life of the bridge. Among them, 
cracks (the focus of this study) are the most common 
damage pattern in asphalt concrete bridges. Bridge cracks 
can be divided into four kinds based on their geometric 
characteristics, namely, transverse, longitudinal, meshed, 
and reflective cracks. 
 
3.1.1 Transverse crack 
Transverse cracks are caused by improper a degree 
inclination during roadbed compaction, i.e., the direction of 
inclination is nearly perpendicular to the center line of the 
bridge. Eventually, cracks will run through some parts or the 
entire bridge, and the widths will vary. Cracks develop at 
regular intervals. The semi-rigid base material, the crack 
resistance of the asphalt surface, and local temperature can 
determine the size of a crack gap. Transverse fractures are 
caused by numerous reasons, but the most common is 
temperature shrinkage cracking, in which the asphalt can 
neither meet the quality standards fit for local climatic 
conditions nor the operating requirements. Asphalt surface 
shrinkage caused by temperature or temperature fatigue 
stress is much larger than the tensile strength of the asphalt 
mixture. Moreover, cracks are caused by the shrinkage of the 
semi-rigid base. During construction, damage occurs when 
cracks are not buried properly or when joints are not 
positioned closes enough to result in a poor bonding. An 
image of a typical transverse crack is shown in Fig.1 (a). 

 
3.1.2 Longitudinal cracks 
The formation of longitudinal cracks is the same as that of 
transverse cracks; that is, the direction is nearly parallel to 
the driving direction, with varying lengths and widths. 
Longitudinal cracks are mainly concentrated in crowded 
places or driveways. For instance, traffic on a highway is 
clearly channelized, and the position of wheel tracks and the 
range of distribution are both small. Moreover, all kinds of 
vehicles are mostly concentrated on driveways. Longitudinal 
cracks develop at the center of these driveways or near the 
marking lines. The width of the slit is usually 5-10 mm, the 
length is from tens to hundreds of meters, and the fractures 
appear as a single crack. Two reasons can help explain the 
occurrence of longitudinal cracks. First, when the asphalt 
surface is paved according to road width, the stubble 
between these two elements cannot be effectively handled, 
and cracks gradually develop under the influence of 
atmospheric factors and vehicle loads. The second reason 
can be explained by uneven settlement caused by rainwater 
erosion or uneven compaction at the edges of bridge 
foundations. Fig.1 (b) shows an image of a typical 
longitudinal crack.  

 
3.1.3 Irregular meshed cracks 
Rainwater, particularly large amounts of precipitation, 
infiltrates and remains on the surface and middle layers of 
highways. Fast driving can cause asphalt layers on the gravel 
of the asphalt concrete to peel off, resulting in irregular 
meshed cracks on highway surfaces. These cracks appear as 
crisscrossed cracks with slit widths of at least 1 mm, slit 
distances not exceeding 40 cm, and slit areas of at least 1 m2. 
The formation of meshed cracks is caused and accelerated 
by weak or marl layers sandwiched in the bridge structure, 
loose granular layers and poor water stability, poor quality 

of the asphalt and low ductility of the mixture, poor crack 
resistance, insufficient thickness of the asphalt layer, 
interlayer adhesion with poor junction, and infiltration of 
water. The overall strength of the bridge is eventually 
weakened, and meshed cracks are formed in the early stages, 
manifesting as bridge cracks. Subsequently, the cracks 
gradually expand, and the gaps between cracks are decreased. 
Meshed cracks are serious types of cracks. Fig.1(c) shows a 
typical image of a meshed crack.  

 
3.1.4 Reflective cracks 
When the foundation layer of a highway bridge develops 
cracks, these cracks will gradually affect the asphalt bridge 
under the influence of various factors. The position and 
shape of the bridge cracks are nearly the same as those of the 
base cracks. Reflective cracks are mainly caused by the 
uneven settlement of soft base sections, which is directly 
reflected on the asphalt bridge. Fig.1. (d) shows an image of 
a reflective crack. 

The final parameters need to extract the different points 
of four kinds of cracks. Crack length, width, and other 
information need to be extracted as the parameters for 
transverse and longitudinal cracks, whereas crack area, 
width, and shape information need to be extracted as the 
parameters for meshed cracks. Thus, the first problem of this 
study is determining how to use the image recognition 
method to classify the lower-structural cracks. 

 

  
(a) Transverse crack                (b) Longitudinal crack 
 

   
(c) Meshed crack                  (d) Reflective crack 

Fig. 1. Four types of cracks 
 

3.2 Differences in the projection characteristics of linear 
and irregular meshed cracks 
The directions and directions of a projection were 
separately considered for the different types of crack images 
of a bridge foundation. If the cracks are relatively serious, 
then the projections of the  directions and  coordinates 
will increase considerably. The directionalities of the 
transverse and longitudinal cracks are strong. By contrast, 
the block and meshed cracks are evenly distributed in the 
bridge image, but they have weak directionalities, with 
relatively large projections on the directions and  
coordinates. The type and extent of bridge cracks can be 

x y

x y

x y
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identified according to the direction and size of the 
projection. First, the linear cracks were distinguished from 
the irregular meshed cracks. Then, the transverse and 
longitudinal cracks were determined by using the combined 
projection property and wavelet denoising method. The 
process flow employed in this study is shown in Fig.2. 

For a standard transverse crack, the projection of the  
axis produces an obvious peak value, while the projection 
waveform of the  axis is even. As for the standard 
longitudinal crack, the projection on the  axis produces an 
obvious peak, while the projection on the  axis waveform 
is even. Irregular transverse and longitudinal cracks with tilt 
angles of 45° are called oblique cracks. As crack targets are 
generated at a certain angle, the corresponding projections 
on the directions and  axes appear with a rising trend. 
However, due to energy dispersion, no jump peaks are 
expected, as the waveform is relatively flat on the  
directions and  axes. Subsequently, according to such 
projection characteristics, linear and irregular network 
cracks can be distinguished, but it is still not effective for the 
oblique and meshed cracks 

The projection signal is expected to be a mix of small 
values in the noise signals. The complexity of judging 
projection peaks based on statistical projections is simplified 
by finding a threshold and using a one-dimensional wavelet 
transform for the denoising. Then, normalization is 
performed until the type of crack can be finally 
distinguished based on the characteristics of the projection’s 
curve peaks. 

 
3.2.1 Algorithm steps for crack determination 
The binarization image [22-23]  was derived from the 
image segmentation process. The pixel value of the crack 
target is set equal to 1, and the pixel point of the perfect road 
background is set to 0. The projection vectors of  and  
of the binarization image  was calculated in the horizontal 
and vertical directions, respectively. 
 

                  (1) 

 

                     

    (2) 
 

Then, a projection operation was implemented for the 
crack images. For a standard transverse crack, the projection 
vector of the  coordinates will have a distinct wave peak, 
while the projection waveform of the  coordinates will be 
uniform without any prominent wave peak (Fig.3 (a)). For a 
standard longitudinal crack, the projection vector of the  
coordinates will have an obvious wave peak, while the 
projection waveform of the  coordinates will be uniform 
without any prominent peak. For the meshed and reflective 
cracks, given their irregular segments in different directions, 
the projection of the  coordinates and  coordinates will 
have multiple prominent peaks (As shown in Fig.3 (b)). 

Subsequently, a difference operation was rendered for 
the projection sequences of  and  as a means to 
derive the absolute value accumulation of the difference: 

 

                  (3) 

                                    

                     (4) 

 
 and  were used to reflect the characteristics of the 

multidirectional crack seam and the parametric distribution. 
The greater the eigenvalue is, the greater the sum of the 
absolute value will be for the projection differences of the 
crack images on a given direction. is markedly greater 
than for the transverse cracks, whereas is considerably 
greater than for the longitudinal cracks. For meshed and 
reflective cracks, is approximated by . Thus, projection 
differences can effectively distinguish the transverse and 
longitudinal cracks but not the meshed and reflective cracks. 

 
 
 

 
Fig.2. Flow of the lower-substructure crack classification algorithm 

 

 

(a) Vertical crack projection 
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The projection of X-axis and Y-axis  were respectively 
made for the bridge binarization image

The projection of X axis and Y axis were respectively 
made thresholding

Wavelet transform was used to remove the noise from 
the projection of x-axis and Y-axis signals

The de-noising signal was normalized

Determined the number of peaks projected on the X and 
Y axes to make a preliminary distinction between 

transverse and longitudinal cracks
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(b) Cross crack projection 
Fig.3. Operation of the projection vector 

 
3.2.2 Experimental results 
The method discussed above was used to carry out the 
experiments. The results are shown in Fig.4 (a) - (f). 

 

 
(a) Original image of the transverse crack 

 

 
(b) Binary image 

 
 (c) Projection on the  axis 

       

 
(d) Projection on the  axis 

 

 
(e) Wavelet denoising signal of the projection threshold on the  axis 
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(f) Projection threshold on the axis after a wavelet denoising of the 
signal 
Fig. 4. Classification method of the transverse crack 

 
Fig.4 (a) shows a sample of the bridge image’s 

transverse cracks. As shown in Fig.4 (f), the projection of 
the  coordinate has an obvious peak with a value of 
approximately 56, and its position coincides with that 
corresponding to the cracks in the original image. The 
change in the projection of the  coordinates is relatively 
uniform, and the projection quantity is small at less than 12. 

 
(a) Longitudinal crack of the original image 

 
(b)  Binary figure 

 
(c) Projection on the  axis 

 

(d) Projection on the  axis 

 
(e) Projection on  after wavelet denoising 
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(f) Projection on  axis after wavelet denoising 

Fig.5. Case diagrams of the longitudinal fracture classification method 
 

Fig.5 (a) presents an image of a longitudinal crack. As 
shown in Fig.5 (e), the projection of the  coordinates has 
an obvious peak, whereas that of the  coordinates changes 
more evenly. Fig.6 (a) shows another longitudinal crack, and 
the derived results are the same as those in Fig.5. 

The projection of the  coordinates was set with a 
threshold and denoised by the wavelet transform, as shown 
in Fig.6 (f). 

Subsequently, the classification method is analyzed, and 
the steps for the meshed cracks were implemented. 

 

 
(a) Longitudinal cracks of the original image 

 

 

(b) Binary figure 

 

(c)  Projection on the  axis 

 
(d)  Projection on the   axis after wavelet denoising 

 
(e) Projection on the  axis 

 
(f) Projection on the axis after wavelet denoising 

Fig.6. Projection of longitudinal cracks. 
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Fig.7 (a) presents an image of a meshed crack. As shown 

in Fig.7 (e) and Fig.7 (f), the projections of the  
coordinates and  coordinates have at least three obvious 
peaks. However, simply relying on the projections cannot 
effectively distinguish between meshed and linear cracks. 
Other parameters are needed for the classification. 

 
(a) Meshed crack image 

 
(b) Meshed crack image from binarization 

 
(c) Projection on the  axis 

 

(d)  Projection on the  axis 
 

 

(e) X-axis projection after setting a threshold and wavelet denoising 
 

 

(f) Y-axis projection after setting a threshold and wavelet denoising 
 
Fig.7. Projection and wavelet denoising of a crack image 
 
3.3 Multi-characteristic parameter classification 
algorithm for cracks on a bridge substructure  
The crack types were further identified by combining many 
characteristic parameters of the bridge substructure’s cracks. 
This method can help provide a scientific evidence for the 
maintenance of bridges. 
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3.3.1 Classification algorithm based on the number of 
pixels and the distribution density  
The total pixel number (denoted by ) of the crack target 
is occupied by the different types of cracks varies 
considerably. Transverse, longitudinal, and other linear 
cracks often account for only a small part of the whole 
bridge image; therefore, the pixel number of the crack target 
per unit area is low. By contrast, reflective cracks occupy a 
large area of the image; thus, more pixels of the target are 
observable in the crack per unit area. Meshed cracks can be 
regarded a denser crack than the reflective cracks, and the 
pixel number of their crack target per unit area will be higher 
than that of the reflective cracks. Therefore, number of 
pixels per unit area can be used to reflect the type of crack to 
a certain extent. 

The distribution density of the cracks was assumed to 
be , and its value was based on  the ratio of the 
number of pixels in the crack region to the rectangle area  
outside the crack area. In the actual segmentation algorithm, 
the rectangle area outside the crack area can be obtained 
directly from the most peripheral pixel points inside the 
crack area. However, the deviation of the distribution 
density obtained by this algorithm for the abovementioned 
calculation ratio  is extremely large. Hence, the algorithm 
needs to be improved. The improved algorithm is explicated 
in four steps. 

Step 1: Obtain the geometric centroid coordinates  
and  of the lower-structural cracks: 
 

                          (5)

                                                                

                           (6) 

 
Step 2: Create an external rectangle. Set the center to 

 and the border length to  (initial value   
), then calculate the ratio of the total number of pixels 

to the total number of pixels ( ) in the rectangle area of the 
image. When , proceed to step 3. Otherwise, skip to 
step 4. 

Step 3: Set , and repeat step 2. 
Step 4: Calculate the distribution density of the bottom 

structure with   . 
The results indicate that the distribution density of the 

linear cracks (transverse and longitudinal cracks) is 
relatively small, the distribution density of the reflective 
cracks is relatively large, and the density of the network 
cracks is the largest. Therefore, the distribution density of 
the pixels in the crack area can be used as one of the basis 
for judging the type of cracks. How the characteristic 
parameters of the crack image are calculated when the image 
required to be changed? 

 
3.3.2 Addition of the Euler number to the classification 
algorithm 
On the basis of previous discussion, the Euler number was 
introduced to retain the image characteristic when the image 
is subsequently changed into a two-dimensional bridge crack 
image. The Euler number [24] was represented by , the 
number of connected objects was denoted by   , and the 
number of holes was denoted by   . Here,  corresponds 

to the difference between  and , as expressed by 
Formula 7. 
 

                                      (7) 
                                               

For the binary bridge crack images, the ratio of the 
number of holes to the background area with edges was 
defined as , including the area surrounded by pixels on the 
edge of a meshed cracks’ target. For the cracks images 
without holes, the Euler numbers can be used to calculate 
the number of connectors or determine if the cracks are 
linear cracks. Euler numbers are calculated using adjacent 
pixels. The bridge crack images were divided into four and 
eight connections. The Euler numbers in the formulas for the 
four and eight connections differ from each other, as shown 
in Formulas 8 and 9: 

Four connections:         
 

                          (8) 
 
Eight connections:          
 

                          (9) 
 

Among them, , , , and  represent the four 
parameters for the Euler numbers, in which the arrangement 

pattern is set to  in the 

binary images [23].  
 

The procedure for calculating the Euler number can be 
simplified by adopting a new formula. In particular, the 
scanning of an image from top to bottom is only performed 
once, and only two lines of data were used for the scan, 
indicating a reduction in memory capacity. Formulas 8 and 9, 
representing the four and eight connections, were unified 
and substituted by Formula 10: 
 

                     (10) 

 
Where represents the upper-phase field 

corresponding to the  row and the  segment. In 
the image, when  and the line M has no graph section, 

 indicates that the line cannot be calculated with the 
Euler number. The difference between the Euler number 
with four connections and that with eight connections can be 
attributed to the width of the preceding line corresponding to 
the  segment; that is, the eight connections have more 
pixels than the four connections in the left and right parts. 

The analytical findings on the relationship among Euler 
number, number of holes, and types of crack for a bridge 
image are as follows. First, the number of holes represents a 
linear crack when , whereas it represents a meshed crack 
when . Second, the number of holes per unit area in the 
reflective crack image is much smaller than that in the 
meshed crack image. Finally, by combining the projection 
variances and , pixel distribution density , and holes 
number , the four kinds of cracks (transverse, longitudinal, 
meshed, and reflective cracks) can be classified effectively. 
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4. Result Analysis and Discussion 
 
In this section, the proposed algorithm for bridge 
substructure will be tested. The method with canny has been 
selected for comparison with the proposed approach. All the 
experiments have been performed on an Intel® Celeron® 
CPU 550 machine (3.2 GHz, 4 GB memory). The operating 
system is MS Windows 10 and the program compiler is 
VC++ 6.0. 
 
4.1 Experimental result 
The pixel distribution density , projection variances  
and  , and hole number  of the image were calculated 
using the OpenCV dynamic link library function in the 
Visual C++ 6.0 development environment. A BP neural 
network classifier was also employed to classify the 
substructure’s cracks. The classifier used a gradient descent 
algorithm to select 50 radial base nodes, 4 input nodes, and 4 
output nodes. The input vector of the classifier was  

, while the input parameter was . A 
total of 280 character vectors were obtained from the 280 
crack images. The target error was set to 0.02, and the 
learning process converged after 3000 experiments. Then, 
the software calculation of the crack widths was compared 
with the microscopic measurement (shown in Table 1). The 
classification results with canny operator were also 
compared. The classification results of this study are shown 
in Table.2, Fig.9 and Fig.10. 

As shown in Table.2, Fig.8 and Fig.9, the classification 
algorithm used in this study can effectively identify the 
transverse, longitudinal, reflective, and meshed cracks. 
Except for the classification accuracy of the meshed crack, 
the classification accuracies of the other cracks are higher 
than those that used canny operator. Thus, our proposed 

method can meet the requirements of crack classification 
accuracy in practical engineering. 
 
4.2 Error analysis 
The error was related to the intercept position, the size of the 
shooting data, the size of the threshold, the size calculated 
by software, and the error brought by human eye estimation 
when measuring the size by microscope. 

 (1) When the distance is 6800 mm, the calculation 
errors (minimum, maximum, and average values) for the 
crack images of the bridge pier are –1.478955, 0.02109, and 
0.00817 mm, respectively. 

(2) When the shooting distance above the bridge pier’s 
cracks is 11138 mm, the calculation error is within the 
effective range, and the algorithm can be regarded effective. 
The actual data found in the part of the algorithm error are 
relatively large. The main reason is that the pier cracks were 
microscopically observed for their individual position 
estimate values, but the actual crack situation is complex. 
Given the existence of numerous interference factors, an 
estimation error analysis with the human eye cannot 
completely reflect the actual crack widths. 

(3) The cracks’ minimum values derived from the 
software calculation are extremely close to the values listed 
via the actual human eye observation. 

(4) The calculation error results are smaller compared 
with those of a bridge pier photograph found in the wall 
crack image of a highway-testing center. This finding can be 
explained by a number of reasons. For instance, the area has 
good lighting conditions, the walls are relatively clean, the 
noise effect is small, and the grayscale distribution has an 
average value. These settings are beneficial to the realization 
of the algorithm. 

 
Table 1. Comparison between software calculation and microscopic measurement of crack widths (partial data) 
Interception 
location 

Photographic 
distance (mm) 

Threshold 
selection 

Software 
calculation size 
(mm) 

Number of pixels (pixel) 
Microscopic 
measurements 
(mm) 

Mean error 
analysis (mm) 

A 10744 [120 140] 

Minimum: 
0.191603 
Maximum: 
0.988130 
Average: 
0.336538 

Minimum:1.000000 
Maximum: 5.157169 
Average: 1.756431 

Eye estimates: 
0.40 −0.063462 

B 10744 [120 150] 

Minimum: 
0.191603 
Maximum: 
0.789727 
Average: 
0.400842 

Minimum: 1.000000 
Maximum: 4.121677 
Average: 2.092040 

Eye estimates: 
0.1–0.25 

0.150842–
0.300842 

A 8840 [110 125] 

Minimum value: 
0.174693 
Maximum: 
0.960256 
Average: 
0.356832 

Minimum: 1.000000 
Maximum: 5.496837 
Average: 2.042631 

Eye estimates: 
0.35 0.06832 

B 8840 [115 125] 

Minimum: 
0.174693 
Maximum: 
0.912908 
Average: 
0.366934 

Minimum: 1.000000 
Maximum: 5.225798 
Average: 2.100456 

Eye estimates: 
0.35 0.0562908 

A 6800 [110 125] 

Minimum: 
0.148884 
Maximum: 
2.265703 
Average: 
1.728955 

Minimum: 1.248528 
Maximum: 19.000000 
Average: 14.498877 

Eye estimates: 
0.25 −0.02109 

P sQ

tQ H
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B 6800 [120 130] 

Minimum: 
0.119248 
Maximum: 
0.480696 
Average: 
0.228910 

Minimum: 1.000000 
Maximum: 4.031075 
Average: 1.919621 

Eye estimates: 
0.25 0.00817 

A 11138 [110 125] 

Minimum: 
0.198831 
Maximum: 
1.926243 
Average: 
0.714046 

Minimum: 1.000000 
Maximum: 9.687818 
Average: 3.591210 

Eye estimates: 
0.25 0.464046 

B 11138 [100 120] 

Minimum: 
0.198831 
Maximum: 
1.585276 
Average: 
0.677777 

Minimum: 1.000000 
Maximum: 7.972961 
Average: 3.408800 

Eye estimates: 
0.25 0.427777 

 
 
Table 2. Crack image classification result 
Number of images/crack type Transverse 

cracks (01) 
Longitudinal 
cracks (10) 

Reflective 
cracks (11) 

Meshed 
cracks (00) 

Total number of images 89 65 68 58 
Correct classification number with the 
Canny operator 

65 51 50 49 

Classification accuracy with Canny 
operator recognition 

73% 79% 74% 84% 

Number of correct classifications in this 
study 

76 52 52 46 

Accuracy of this study 85% 82% 78% 79% 

 
Fig. 8. Classification effects of the four types of cracks. 
 

 
Fig.9. Comparison of classification results between the two algorithms. 
 
5. Conclusions 
 
This study extracted the projection variances  and , 
pixel distribution density , number of holes , and the 
Euler number of the crack images to accurately identify the 
bridge cracks, improve the classification precision of the 
bridge cracks, and provide a highly scientific basis for  

bridge maintenance. By using the above parameters, a crack 
classification algorithm for the lower part of a bridge 
structure was constructed. Then, the classification 
experiment was verified by employing the BP neural 
network. The conclusions of this research are as follows. 

(1) The projection and wavelet denoising algorithms can 
be used to distinguish between the linear cracks 
(longitudinal and transverse fractures) and the meshed 
cracks. For a standard transverse crack, the projection 
variance of the  axis is markedly larger than that of the  
axis. For a standard longitudinal crack, the projection 
variance of the  axis is considerably larger than that of the 

 axis. 
(2) Different crack distribution densities were employed 

to distinguish between the meshed cracks and the reflective 
cracks. The linear cracks (transverse and longitudinal cracks) 
have a relatively small distribution density; the reflective 
cracks have a relatively large distribution density; and the 
network cracks have the largest distribution density. 

(3) The Euler number was introduced to retain the 
image’s characteristics when the image needs to be 
expanded. The number of holes in the image is taken as the 
parameter to further distinguish the crack types. For the 
linear cracks, the number of holes is . For the reflective 
and network cracks, the number of holes is . Moreover, 
the number of holes  per unit area in the reflective crack 
image is much smaller than that in the meshed crack image. 

(4) The BP neural network was further combined with 
the above parameters to realize the accurate classification of 
the transverse, longitudinal, and reflective cracks. The 
effectiveness of the algorithm has been verified by the 
experiments. The experimental results show that the 
classification algorithm can effectively identify the 
transverse, longitudinal, reflective, and meshed cracks, and 
the accuracy is better than the method using the canny 
operator. 

The experimental results show that the algorithm is 
accurate and has a reference value for the effective 
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maintenance of bridges. However, as the number of crack 
images collected in this study is small, the number and 
algorithm of the crack images may need to be modified in 
future research. Moreover, when calculating for the 
eigenvalues, the classification algorithm assumes that an 
image has only a single substructure crack target. Although 
this assumption is true for most images, it is not rigorous 
theoretically. Knowing how to automatically determine the 
number of substructure cracks in images and how they can 
be identified separately will be the next research direction 
for the algorithm. 
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