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Abstract 
 

Permanent magnet synchronous motor (PMSM) has a simple structure, small volume, high efficiency, and high power 
factor. However, their motor parameters are affected by strong coupling and nonlinear factors, such as current, flux, and 
speed, all of which can lead to the chaos phenomenon. A finite-time chaos synchronization method based on a sliding 
mode observer was proposed in this work to improve the effects of parameter uncertainty and load disturbance on the 
chaotic system performance of PMSM with a nonuniform air gap and the dynamic performance of the chaos 
synchronization system. First, the uncertain load was observed online by the sliding mode observer. Second, the 
controller of the PMSM system was designed on basis of the theory of sliding mode and theory of finite time stability. 
Finally, the effectiveness of the proposed method was verified by simulation. Results demonstrate that the designed 
sliding mode observer can realize the precise tracking of sudden loads quickly and steadily within , the proposed 
method within has a faster response than adaptive control about  and finite-time synchronous control about  
under the same conditions. Moreover, the synchronization accuracy of the proposed method is not affected when the 
parameters change, whereas that of adaptive synchronization control is about . The proposed method exhibits high 
chaos synchronization tracking performance and strongly suppressed the external disturbance of the system. The 
proposed method thus provides a good prospect for improving the theory of motor synchronous control and its 
application to engineering practice. 
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1. Introduction 
 
Permanent magnet synchronous motor (PMSM) has a simple 
structure, small size, high efficiency, and low energy 
consumption. Hence, PMSM is widely used in the fields of 
instruments, aerospace, CNC machine tools, and medical 
devices. In recent years, extensive study has explored the 
stability and reliability of PMSM. Since the discovery of 
chaos in motor drive systems in the 1990s, its analysis and 
control have elicited increasing attention. Chaos is common 
in induction motor, PMSM, DC motor, switched reluctance 
motors, and other servo systems [1].  

Early study on chaos in motor drives mainly focused on 
the identification of chaos [2]. At the beginning, the 
boundary of chaos in a motor drive is often mistaken as 
noise when it is small and as an unstable operation of the 
motor system when it is large. However, chaos is different 
from unsteadiness phenomena, such as out of step in motor 
drives. The chaos in a motor is a complex steady-state 
behavior with the following characteristics. As the motor 
parameters change, the system presents a violent oscillation 
due to speed or torque, the unsteadiness of the control 
performance, and the irregular electromagnetic noise of the 
system. This oscillation seriously affects the dynamic 
performance of the system. The change of motor parameters 
and the disturbance of external load greatly increase the 

complexity of control systems; hence, chaos synchronization 
control with parameter uncertainty has been studied [3,4]. 
However, the influence of external disturbance on control 
systems has not been extensively investigated, with control 
accuracy being the main focus. Moreover, the study on the 
dynamic performance of control systems is limited. 
Therefore, the control of the adverse effects of external 
disturbance has become a study hot spot. Meanwhile, the 
chaos behavior of motors is beneficial in certain 
circumstances. For example, the chaos phenomenon of a 
motor is employed to improve the efficiency of grinding and 
mixing, which is an issue in chaos anticontrol and in the 
synchronous control of motors [5].  

To address the problem of the synchronous control of 
PMSM systems with external disturbance and uncertain 
system parameters, this study designs a controller for PMSM 
systems for chaos synchronization on the basis of sliding 
mode theory and finite-time stability theory. The proposed 
controller can enhance the robustness, response speed, and 
stability of PMSM systems precisely. The results of this 
work provide a reference for the improvement of motors’ 
chaos synchronization theory and its practical application. 

 
 

2. State of the art 
 
Many chaos synchronization control methods are currently 
available, but only a few are meant for PMSM, such as 
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feedback synchronization [6,7], fuzzy proportional–integral–
derivative (PID) synchronization [8], adaptive 
synchronization [9-11], sliding mode synchronization 
[12,13], pole assignment synchronization [14], active 
synchronization [15], reverse synchronization [16,17], time 
delay synchronization [18], and fuzzy synchronization 
[19,20]. Yin et al. first analyzed the dynamic characteristics 
of chaos in a typical multiscroll Chua system and a brushless 
DC motor (BLDCM) system [6]. Based on the Lyapunov 
stability principle, a nonlinear feedback synchronous 
controller was designed for the two systems to realize the 
effective control of the BLDCM. MATLAB software was 
employed to simulate the control of the whole system, and 
the results verified the correctness and validity of the 
synchronous control method. However, the designed 
controller does not consider the influence of system 
parameter change on system performance. Torres et al. 
proposed a master–slave synchronization method on the 
basis of induction motor drives [7]. The proposed method 
adopted the input torque of each joint of the robot as the 
reference torque of the induction motor and the feedback 
control law to realize the synchronous position tracking of 
the desired trajectory. Lyapunov analysis showed that the 
controller achieved the semiglobal exponential convergence 
of synchronous closed-loop errors, and the simulation results 
verified the validity of the proposed method. The controller 
designed with the above method depends on the 
mathematical model of the system. When the system 
parameters change, its performance declines, or it even fails. 
Ranjbar et al. combined fuzzy control with PID control and 
adjusted the gain of the PID controller online through a 
fuzzy control rule to realize the antidisturbance ability of the 
system model parameters, finally overcome the influence of 
parameter changes on the synchronous control performance 
of the system [8]. However, the controller still depends on 
the mathematical model of the system, the fuzzy control 
rules and structure are difficult to determine, a large number 
of rules could increase the response time and reduce the 
corresponding ability, and a small number of rules could not 
resist disturbances. Kim et al. proposed a simple adaptive 
synchronization method for the chaotic system of a PMSM 
with uncertain parameters and analyzed the stable 
convergence of the closed-loop system response using 
Lyapunov theory [9]. The proposed method does not need 
all the parameters of the PMSM and could successfully 
achieve uncertainty for the chaos synchronization of the 
PMSM to provide an effective method when model 
parameters change. To improve the performance of control 
systems, the study adopted adaptive synchronization by 
introducing an adaptive mechanism to the online estimation 
of system parameters. However, the introduction of the 
adaptive mechanism inevitably increases the cost of the 
system and reduces the response capability of the system to 
a certain extent. Zhang et al. proposed and implemented a 
new speed synchronization control method for multi-
induction motors under uncertain chaotic systems [10]. The 
proposed method is a nonlinear control method that achieves 
adaptive time-delay feedback control by adjusting the 
reference torque of the direct torque control device on the 
basis of the stator flux adjustment. With the proposed 
control method, the multi-induction motor could realize 
synchronous chaotic speeds within a controllable boundary, 
and adaptive control showed strong robustness to changes in 
motor parameters. However, the introduction of the adaptive 
mechanism increased the complexity of the controller 
structure and the dynamic regulation time of the system to a 

certain extent. For a PMSM with a nonlinear structure, Liu 
et al. proposed a parameter identification method on the 
basis of adaptive synchronization. During identification, the 
dynamic response of the PMSM is synchronized with 
another system with a similar dynamic structure [11]. The 
algorithm uses globally convergent feedback control for the 
reference model. The simulation and experiment on the 
parameter identification of the PMSM servo system were 
carried out to verify the proposed identification method, and 
the results showed that the proposed method is effective. 
Yang et al. took the chaotic motion of a PMSM as the study 
object and proposed a chaos synchronization control method 
with a sliding mode variable structure for PMSM with 
disturbance [12]. The proposed method is a self-adaptive 
controller with strong robustness and can realize sliding 
mode even in the case of external disturbance and parameter 
uncertainty. The numerical simulation results showed that 
the proposed method could be applied to PMSM. Although 
the synchronous control of chaotic motion was satisfactory, 
the sliding mode synchronous control method needs to meet 
certain matching conditions, and the system suffers from 
inherent chattering. On the basis of active control, Yu et al. 
took a doubly fed wind turbine as the study object and 
designed an active sliding mode controller, which can ensure 
system stability under any initial condition [13]. The 
proposed method can realize the structure of the linear and 
nonlinear terms of a system and effectively simplify the 
controller structure. However, it cannot eliminate the 
inherent chattering phenomenon of sliding mode control. 
Zaher first analyzed the dynamic characteristics of PMSM 
and designed a synchronous state observer using only 
angular velocity as feedback on the basis of the similarity 
between the mathematical model of a PMSM and the famous 
chaotic Lorentz system [14]. The simulation results verified 
the effectiveness of the controller in eliminating chaotic 
oscillation under a single feedback signal, and the 
advantages of the controller were further verified by 
comparison with the conventional PID controller. Vafaei et 
al. studied the chaotic behavior of a fractional-order PMSM 
system and designed an active synchronous control method 
on the basis of the stability theory of a fractional-order 
PMSM system  [15]. The proposed method is simple and 
flexible and is thus suitable for design and practical 
applications. The simulation results showed that the 
proposed method possesses good control effect and 
robustness for fractional-order PMSM systems. However, 
the study only considered parameter change and focused on 
the steady-state performance of PMSM systems, hence the 
difficulty in making the proposed method meet the 
requirements of load disturbance and dynamic performance, 
including adjustment time. Wang et al. proposed a new 
composite PMSM system by introducing the concept of 
complex current and reset cross-coupling term and analyzed 
its performance [16]. On the basis of a complex PMSM 
system, the backstepping method was employed to design 
the controller, which realizes the lag synchronization of real 
and virtual parts. The numerical simulation results verified 
the effectiveness of the controller, and the design of the 
controller depends on the model parameters of the system, 
and the derivation of the system state could continue in the 
backstepping design, resulting in calculation explosion. 
Yang et al. used the backstepping synchronization control 
principle to make a controlled chaotic system degenerate 
gradually into a stable system [17]. According to the 
Lyapunov stability principle, the designed controller could 
make two chaotic systems with the same structure but 
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different parameters gradually reach synchronization, but it 
could not eliminate the computational explosion 
phenomenon caused by the backstepping control, and it 
could not restrain the changes in system parameters. Thus, 
the proposed method must be combined with adaptive 
control or sliding mode control. Li et al. designed an 
adaptive controller based on Lyapunov stability theory and 
the LaSalle invariant set theorem to control two chaotic 
PMSM systems with time-delay synchronization  [18]. The 
error system of the two motors is asymptotically zero under 
the action of the controller, that is, the control method could 
realize the time-delay synchronization of the PMSM chaotic 
system. The numerical simulation results showed that the 
control method is correct and effective, and the time-delay 
coefficient greatly influences the performance of the system 
and is sensitive to changes in system model parameters. Xie 
et al. proposed a fuzzy adaptive synchronization control 
method for a chaotic PMSM system with unknown 
parameters [19]. The PMSM system parameters were 
assumed to be unknown, and the PMSM chaotic model and 
its response system model were expressed as a  fuzzy 
model. Lyapunov stability theory and the adaptive control 
method were emplyed to design the response system, and the 
adaptive control law was derived to estimate the driving 
system parameters. The fuzzy controller of the response 
system was designed to synchronize the PMSM system and 
its response system, and the synchronization error dynamic 
was asymptotically stable. The simulation results verified 
the effectiveness of the proposed method, and although 
fuzzy control showed a robust performance, the structure of 
the proposed method is complex, and the determination of 
fuzzy rules depends on experience to a certain extent and is 
thus difficult to achieve. Wang et al. proposed a fuzzy 
adaptive synchronization control method for the chaotic 
motion of a PMSM with disturbance, analyzed the attractor 
and Lyapunov exponent spectrum of the chaotic motion of 
the PMSM, made the fuzzy control rules meet the Lyapunov 
stability conditions of the system, and designed a fuzzy 
adaptive controller to control the chaotic system with 
disturbance [20]. The simulation results showed that the 
proposed method could realize the synchronization control 
of the chaotic motion of PMSMs and has a good control 
effect. Although the proposed method effectively combines 
fuzzy control and adaptive control, the structure of the 
controller is complex, and the fuzzy rules are difficult to 
determine. 

Convergence is an important performance index of any 
control system. In the aforementioned methods, the closed-
loop systems are applicable to exponential forms. Thus, 
these methods cannot guarantee that the system converges to 
the equilibrium point in a limited time. Finite-time stability 
control is a time-optimal control method with strong 
robustness and capability of guaranteeing the fast 
convergence to the equilibrium point [21]. Therefore, finite-
time stability control in control systems has attracted the 
attention of scholars [22-26]. Pilloni et al. applied the finite-
time stability control method to control the voltage and 
frequency of a microgrid on the basis of an islanding 
inverter, proposed an accurate finite-time recovery method, 
and verified the proposed method’s effectiveness through 
simulation [22]. Tang et al. adopted the finite-time stability 
control method to the chaos synchronization of a PMSM 
with a nonuniform air gap [23]. The method has a strong 
robustness to changes in system parameters, but it does not 
consider the influence of such changes on system load 
disturbance. Wei et al. used the finite-time stability control 

method to the chaos suppression of PMSM [24]. When 
parameters change, the method still achieves high control 
performance, but its restrain of load disturbance is poor and 
even causes system instability. Aghababa et al. adopted 
finite-time stability control to realize the control and 
synchronization of a fractional chaotic system [25]. Wang et 
al. proposed the finite-time stability control of a unified 
chaotic system, but the stability time is long and needs 
further improvement [26]. The influence of load disturbance 
on dynamic system performance is not considered in the 
aforementioned study. 

The studies previously described were mainly aimed at 
investigating the chaos synchronization control of PMSM 
and the control of system convergence. By contrast, studies 
on the dynamic performance of PMSM systems due to its 
load disturbance factor are rare. Equally inadequate is the 
study work related to the limited time chaos synchronization 
control of PMSM with a nonuniform air gap. Herein, sliding 
mode theory and finite time stability theory are employed to 
design chaos synchronization controllers, which meet system 
requirements from the time-optimal point of view. The load 
of the driving system is estimated in real time by a sliding 
mode observer. Finite-time stability theory is employed to 
realize the finite-time chaos synchronization of the system. 
The control method is further improved by introducing the 
terminal attractor proportion factor to improve the quick 
response of the system. 

The remainder of this study is organized as follows. 
Section 3 designs the finite-time synchronization controller 
of the PMSM chaotic system based on sliding observer. 
Section 4 compares the three methods of this work with 
those in reference [3] and  [26] through numerical simulation 
experiments to verify the effectiveness and superiority of the 
proposed method. Section 5 summarizes the conclusions. 
 
 
3 Methodology 
 
3.1 Theoretical basis 
Definition For a dynamic system, there is . If a 
certain time  exists ( may be related to the selection 
of the initial state), then the two following conditions are 
both true: . If  and  is 

constant, then the system is stable in finite time. 
Here, is the n-dimensional state variable, 

represents the differential operator, and  is a smooth 
nonlinear function.  
 
Lemma 1 [26] If continuous and positive definite 
function exist, constant real numbers 

and meet the following conditions:  
 

, ,               (1) 
 

Then, for any initial time , the following inequality 
holds: 
 

, ,       (2) 
 

where , that is, the time required for system 
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The proof of the theorem can be found in reference [26], 
which is not proven here. Only a simple analysis of the 
theorem is made. The expression of  shows that when 
parameters  and  of the system are fixed, the stability 
time of the system becomes inversely proportional to 
parameter , and a proper increase of  can effectively 
shorten stability time. Thus, the controller of reference [26] 
is improved. 
 
Lemma 2 [23] For nonzero positive real numbers , , and 

, in which , the following inequality holds: 
 

                                        (3) 
 
3.2 Chaotic model of PMSM with nonuniform air gap 
The dimensionless mathematical model of a PMSM after 
transformation is as follows [3]: 
 

                       (4) 

 
where ,  and  are the voltages of 

the d-axis after transformation,  and are the current and 

q-axis after transformation, respectively.  and  are the 
speed and equivalent load after transformation, respectively. 

, , and are the motor parameters. are 
differential operators [3]. 

When , , , , 

, , , and ,  is the 
bifurcation parameter affected by stator resistance and 
magnetic chain. The bifurcation diagram of the system is 
shown in Fig. 1. When , the typical chaotic attractor 
can be made, as shown in Fig. 2. Only the phase diagram of 

 is provided. The simulation is based on the MATLAB 
platform. The fourth-order Runge–Kutta method is used, the 
sampling time is , and the initial state 
is . In Fig. 1 and 2, , , and  are 
expressed as unit values. 
 

 
Fig. 1.  Graphical illustration of the particle representation scheme 

 

 
Fig. 2.  PMSM chaotic attractor 
 
3.3 Design of sliding mode observer 
A load sliding mode observer with speed and load as the 
observation object is employed to realize the online 
estimation of the equivalent load. According to the actual 
situation, the frequency of the general controller is high. 
Thus, the load torque can be considered fixed in the control 
cycle, that is, . The resulting state equation and 
speed can be expressed as follows: 
 

                            (5) 

 
Then, the sliding mode observer constructed by Eq. (5) is 

expressed as follows: 
 

                       (6) 

 

where and are the speed and load estimates, 

respectively.  and  are the 
sliding surfaces,  is the speed estimation error, 

 is the sliding mode gain,   is the adaptive 

gain,  is the speed estimation error, and  is the feedback 
gain. 

Theorem 1 The sliding mode observer shown in Eq. (6) 
is used for Eq. (5), and the system state error approaches 
zero exponentially.  

The error equation of the sliding mode observer can be 
obtained by substituting Eq. (6) into Eq. (5) as follows:  
 

                               (7) 

 

The Lyapunov function is taken as  to derive 

the following equation:  
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                      (8) 
 

Eq. (8) shows that the speed estimation error gradually 
approaches zero in exponential form.  

When the sliding mode observer enters the sliding mode, 
it satisfies the following requirements , that is, 

, which can be obtained by substituting it into 
Eq. (7): and . Therefore, the observation 
error approaches zero exponentially, determines its 
approach speed, and the theorem is proven according to 
system stability theory.  

The existence of the sign function in the sliding mode 
observer inevitably causes the chattering of the system. 
Thus, using the hyperbolic tangent function replaces the sign 
function, that is, , to further improve system 
performance. 
 
3.4 Design of finite-time synchronous controller 
The driving system is set as Eq. (4), and the response system 
is as follows:  
 

                         (9) 

 
Let  and . Then, the error system can 

be expressed as follows: 
 

   (10) 

 
In Eq. (10), the controller is designed as follows on the 

basis of active control and finite-time stability theory.  
 
Theorem 2 The following forms of controller are adopted 
for uncertain system Eq. (10): 
 

                           (11) 

 
where , , and are the terminal attractor weight 
coefficients and are all positive real numbers, 

are taken as a simplified calculation. 
, where .  and  are all odd numbers, 

and the state error of Eq. (10) tends to be zero in finite time.  
The following expressions can be obtained by 

substituting the controller  into the first equation in Eq. 
(10): 
 

                                   (12) 
 
where Lyapunov function . The derivative along 
the path of Eq. (10) can be expressed as follows: 
 

 

        (13) 
 
where  and . If 

, then , and . Thus,  system error  
approaches zero in finite time  
according to Lemma 1. 

By substituting , , and  into Eq. (10), the 
following equations can be obtained: 
 

                              (14) 

 
where Lyapunov function . The 
derivative along the path of Eq. (14) can be expressed as 
follows: 
 

 

            

              

 

 

                                              (15)

 

 
where  and . If 

, , and , then system error  and 
 approaches zero in finite time  according to Lemma 1. 
In summary, when , the state error of the system 

Eq. (10) under the action of the controller Eq. (11) 
approaches zero in a limited time. Hence, the drive system 
Eq. (4) and response system Eq. (9) achieve synchronization 
in a limited time. 
 
 
4 Result Analysis and Discussion 
 
This part is mainly divided into two aspects to verify the 
simulation: one is to verify the design effect of the sliding 
mode observer, and the other is to illustrate the advantages 
of the proposed method by comparing it with the adaptive 
synchronization method (reference [3]) and the traditional 
finite-time method (reference [26]). The fourth-order 
Runge–Kutta method is used in the simulation, the sampling 
tim is , the initial conditions are  

,  is 1.8, and the other parameters are the same 
as those in Section 3. 
 
4.1 Observer performance verification 
A sudden change load is applied to the system to verify the 
performance of the observer. When , the sudden 
change is 0.525. When , the sudden change is 
10. The simulation results are shown in Fig. 3.  
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(a) Speed synchronous response curve 
 

  
(b) Speed synchronization error response curve 

  
(c) Online load estimation 
Fig. 3.  Response curve of system with variable loads 
 

Fig. 3(a) and (b) show that when the system changes 
from 0.525 to 10 in , the response system can track the 
system well in a short time with strong robust performance. 
Fig. 3(c) shows that the designed sliding mode observer can 
accurately and rapidly track the sudden load, has no 
chattering in the steady state, and possesses good response 
and steady-state performance. 
 

4.2 Controller performance verification 
4.2.1 System performance comparison without 
parameter uncertainty 
 
The controller parameters are  and 

. The parameters of finite-time synchronous control 
(reference [26]) are and . The simulation 
results are shown in Fig. 4.  
 

 
(a) State response curve of adaptive synchronization system 

 
(b) State response curve of finite -time synchronous system 
 

 
(c) System state response curve of the proposed method 
Fig. 4. Response curvecurves of chaotic synchronization state of PMSM 
with nonuniform air gap 
 

Fig. 4 shows that three control methods can realize the 
synchronization of the response system and the drive system, 
but the proposed method can realize the complete 
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synchronization of the response system and the drive system 
within  under the same control parameters. Adopting the 
adaptive synchronous control method (reference [3]) takes 

, but realizing the synchronization between the response 
system and the drive system by using the traditional finite-
time synchronization control method takes  (reference 
[26]). Therefore, the proposed method has faster response 
and can better realize system synchronization quickly 
compared with adaptive synchronization and finite-time 
synchronization. 
 
4.2.2 Performance comparison in case of parameter 
uncertainty 
To further verify the robust performance of the system, we 
assume that parameter  of the system has 30% 
perturbation, which can be realized by rand() in MATLAB. 
The comparison between the adaptive synchronization 
method and the proposed method and the synchronization 
error response curve of each state variable are shown in Fig. 
5, where the current error unit is  and the speed unit is 

.  
 

  
(a) Adaptive synchronization error 

 

  
(b) The proposed method synchronization error 
Fig. 5.  Synchronous error response curve of system with parameter 
uncertainty 
 

Fig. 5 shows that parameter  of the system has 30% 
perturbation. The following conclusions can be drawn: (1) 
The adaptive synchronization method (reference [3]) 

introduces the adaptive mechanism, which can well realize 
the compensation of the system. However, realizing the full 
synchronization of the system takes about . The 
proposed method can quickly realize the full synchronization 
of the system in approximately , and the change of 
parameters has strong robustness. (2) The velocity error in 
the initial stage fluctuates greatly in reference [3], the 
fluctuation value reaches , whereas only the q-axis 
current fluctuates slightly in the proposed method with a 
fluctuation value of approximately . Therefore, the 
proposed method has evident advantages over the method in 
reference [3]. 
 
4.2.3 Performance comparison between uncertain 
parameter and load disturbances 
To further verify the robust performance of the system, we 
assume that parameter c of the system has 30% perturbation 
and that the load disturbance changes from to  
in . This study compares the adaptive synchronization 
method [3] with the proposed method, as shown in Fig. 6, 
where the current error unit in is  and the speed single bit 
is . 
 

  
(a) Adaptive synchronization 

  
(b) The proposed method  
Fig. 6. Response curves of system synchronization error with load 
disturbance and parameter 
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The following conclusions can be drawn from Fig. 6: (1) 
In the initial stage, the uncertainty of parameters plays an 
important role, and the conclusion is the same as that in 
Section 4.2.2. (2) When the load is suddenly changed 
( ), the proposed method realizes real-time 
observation and compensation of load disturbance through 
the sliding mode observer. When is , the speed and 
current of the system fluctuates slightly and quickly recover 
to state synchronization with the driving system. (3) The 
self-adaptive synchronization method (reference [3]) does 
not adopt external interference feedback. The load acts on 
the speed state equation, which makes the response system 
deviate from the state of the drive system. Thus, the speed 
synchronization control cannot be realized. Therefore, 
relative to the adaptive synchronization method, the 
proposed method possesses not only a good start-up and 
antisystem parameter time-varying performance but also a 
strong ability to suppress load disturbance. 
 
 
5. Conclusions 
 
The mathematical model of a PMSM with a nonuniform air 
gap was studied to overcome the influence of load 
disturbance and parameter uncertainty on the chaotic system 
of the PMSM with a nonuniform air gap. According to the 
strong coupling nonlinear characteristics, a sliding observer 
and a finite-time chaotic synchronization controller were 
designed and compared with adaptive synchronization 
control and finite-time synchronization control. The 
following conclusions could be drawn:  

(1) In the presence of load disturbance, the designed 
sliding mode observer can effectively realize the online 
observation of loads. When the load suddenly changes, the 
designed observer can quickly and accurately track the load 
changes to facilitate real-time feedback to the controller for 
compensation. 

(2) When the system parameters are invariable, the 
proposed method can realize the complete synchronization 
of the response system and drive system faster than the 

finite-time synchronization and adaptive control methods 
under the same control parameters. 

(3) When the system has time-varying parameters, the 
dynamic tracking performance of the proposed method will 
be unchanged. However, the synchronization time of the two 
systems using the adaptive synchronization control method 
(reference [3]) is about 10 times that of the proposed 
method. 

(4) When time-varying parameters and load disturbances 
are present, the proposed method can still quickly achieve 
the complete synchronization of the system state. However, 
the existence of load disturbances makes achieving accurate 
tracking synchronization of the system difficult without the 
adaptive synchronization of the load observation 
compensation. 

Thus, an active finite-time synchronous control method 
based on a sliding observer is proposed by combining 
theoretical derivation with numerical simulation. The 
proposed method considers the influence of parameter 
changes and load disturbances on the chaos control and 
synchronization of PMSM, these conditions are close to the 
actual working conditions of motor chaotic systems. The 
results of this work offer a certain reference value for 
improving motor synchronous control performance. Given 
the lack of actual data of field motor parameter tests in 
motor modeling, future study could combine motor 
parameter test data with the proposed model and modifying 
it to achieve an accurate understanding of the nonlinear 
characteristics of complex motor chaotic system with strong 
coupling. 
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