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Abstract 
 

Graph coloring has important research significance in graph theory. Strong vertex-distinguishing total coloring is a type 
of multi-conditional coloring in graph coloring, but existing associated studies lack analysis on constraint conditions. In 
this study, a new coloring algorithm was designed to increase the coloring efficiency of the strong vertex-distinguishing 
total coloring of a complete graph. By combining characteristics of complete graphs and strong vertex-distinguishing 
total coloring, the proposed algorithm decomposed the coloring color numbers into propercolor numbers and overcolor 
numbers, and the algorithm determined the filling quantity of each color number based on the idea of even coloring. The 
proposed algorithm implemented regular stepwise iteration by searching abnormal color sets on the edge coloring matrix 
until the constraint condition was achieved. The accuracy of the approach was proven by theoretical analysis and 
experimental comparison. The multiple experiments on 14–64 orders of complete graphs indicate that the 16-, 32-, and 
64-order complete graphs require total coloring combination of overcolor numbers; this process generally needs 0.6–0.7 s. 
By contrast, the operation times for other orders of complete graphs are generally in the range 0.3–0.4 s. The proposed 
algorithm can effectively calculate the strong vertex-distinguishing total chromatic number of the complete graph with a 
fixed vertex number, and its time complexity is lower than . These findings can provide important references in 
studying adjacent vertex-distinguishing total coloring and vertex-distinguishing total coloring. 

 
Keywords: Equitable coloring, Strong vertex-distinguishing total coloring, Strong vertex-distinguishing total chromatic number, 

Complete graph, Overcolor number  
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1. Introduction 
 
Graph coloring, a classical problem in graph theory, 
originates from the well-known “four-color conjecture.” 
Many problems in practical life, such as computer 
communication, traffic orientation, goods storage, and 
combined optimization, can be solved by transforming them 
into graph coloring [1-2]. Thus, graph coloring is one topic 
with important practical value and theoretical importance in 
graph theory. However, classical intelligent optimization 
algorithms, such as genetic algorithm and neural network, 
have shortages and limitations in the strong vertex-
distinguishing total coloring of graph coloring. Therefore, 
acquiring strong vertex-distinguishing total coloring 
performance quickly and effectively is a key problem that 
needs to be solved. 

Existing studies on graph coloring mainly cover those 
on theories and on algorithms. In modern times, some 
mathematical researchers emphasize graph coloring 
problems [3-6]. Zhang et al. [7] proposed the concept and 
conjecture of strong vertex-distinguishing total coloring for 
graphs based on adjacent vertex-distinguishing total coloring 
and strong adjacent vertex-distinguishing total coloring. 
Nevertheless, graph coloring is considered an NP-complete 
problem. Traditional intelligence algorithms [8], such as 
genetic algorithm, ant colony algorithm, and neural network, 

are generally limited to solving graph coloring problems of 
single constraint, and they could obtain the expected 
coloring results under small-scale graphs. Ran and Zhang [9] 
achieved four-color graph coloring effectively by the 
improved heuristic ant colony algorithm. Zhang et al. [10] 
searched the initial solution of the genetic algorithm by 
using the ant colony algorithm and solved the vertex 
coloring problem involving multiple vertices by using the 
improved ant colony algorithm based on the genetic 
algorithm. However, the ordinary intelligent algorithm 
presents great limitations to solve multi-constraint graph 
coloring problems, such as strong vertex-distinguishing total 
coloring.  

At present, few studies have been made on the strong 
vertex-distinguishing total coloring algorithm. For these 
reasons, the present study combined the characteristics of 
complete graph and strong vertex-distinguishing total 
coloring, after which the coloring number was decomposed 
into overcolor numbers and propercolor numbers based on 
equitable coloring. Moreover, overcolor numbers were filled 
in accordance with the principle of coloring combined 
maximum filling. This process effectively shortens operation 
time and increases the coloring efficiency of the algorithm. 
 
 
2. State of the art  
 
Existing studies on graph coloring mainly focus on 
theoretical studies. In 1993, Burris [11] introduced and 
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studied vertex-distinguishing edge coloring (also known as 
strong edge coloring). Major conclusions on the vertex-
distinguishing edge coloring of graphs were mainly 
summarized in previous studies [12-15]. In 2002, Zhang et al. 
[16] proposed the concept and conjecture of strong adjacent 
vertex-distinguishing edge coloring based on vertex-
distinguishing edge coloring. Many relevant studies have 
been reported worldwide [17-21]. In 2007, Zhang et al. [22] 
added a constraint to the concept of adjacent vertex-
distinguishing edge coloring and proposed the concept of 
strong adjacent vertex-distinguishing total coloring. 
Meanwhile, they gained the accurate value of strong 
adjacent vertex-distinguishing total coloring for special 
graphs and the upper boundary conjecture. For a simple 
graph with less than three orders,  may be 
used.  

Studies on graph coloring algorithms can generally be 
divided into three types. The first type recognizes the law of 
graph coloring by combined construction, but this method is 
only applicable to unique graphs. The second type gives 
rough lower and upper boundaries of graph coloring based 
on the probability statistical method. However, such 
boundaries are markedly rough and, therefore, have some 
limitations. The third type processes graph coloring 
problems by using a computer, which can solve large-scale 
graph coloring problems by designing a reasonable high-
efficiency algorithm based on the great operating capacity of 
computers. This approach can prove some conjectures. For 
example, based on the sequence approximation method, 
Appel and Haken [23] proved and solved the four-color 
graph coloring problem under computer assistance  based on 
order approximation in 1976 (the computer operated for 
more than 1,200 hours). However, their method required a 
great deal of time in solving large-scale problems and the 
computation time was proportional to , where n 
represented the number of regions in the graph. By 
combining the advantages and disadvantages of the taboo 
search and genetic algorithms, Li and He [24] generated an 
initial solution by using the genetic algorithm to implement 
field-changing searching and update the vertex coloring by 
the taboo searching algorithm; their results showed an 
increase in the searching speed of the algorithm. Liao and 
Ma[25] analyzed graph coloring based on the heuristic 
searching ant algorithm and gained the expected results for 
small graphs. Yu [26] applied the simulated annealing 
algorithm to graph coloring, but the initial value and 
parameter determination of the algorithm could directly 
affect its performance. Any improper setting of parameters 
would lead to slow convergence and long implementation 
time. Yu et al. [27] provided the graph coloring model of 
uncertainty based on “DNA Origami.” Li [28–29] studied 
the strong vertex-distinguishing total coloring and 
effectively calculated the vertex-distinguishing total coloring 
number for a graph with a fixed random number of vertices. 
Moreover, the time complexity of the solving algorithm was 
lower than . 

Previous studies on graph coloring are all based on K-
vertex coloring, but few studies have been conducted on 
strong vertex-distinguishing total coloring. Given that the 
constraints of strong vertex-distinguishing total coloring are 
significantly more complicated than K-vertex coloring, these 
algorithms will claim unacceptable operation time and 
convergence speed. In the preset study, a mathematical 
model of coloring algorithm was constructed based on the 
idea of equitable coloring, and constraints against coloring 
were determined. The coloring number was decomposed 

into overcolor numbers and propercolor numbers. Then, the 
coloring numbers were filled in after obtaining the coloring 
numbers and times, accelerating algorithm convergence. 

The remainder of this study is organized as follows. 
Section 3 describes the concept, mathematical model, and 
algorithm design of strong vertex-distinguishing total 
coloring for complete graphs. Section 4 introduces the 
experimental results and analyzes the algorithms. Section 5 
summarizes the relevant conclusions. 
 
 
 3. Methodology 

 
3.1 Relevant definitions 
For any undirected graph G(V,E), V(G) is the vertex set of G, 
E(G) is the edge set of G, and C(u) is the color set of vertex 
U and its associated edges in G. Therefore, relevant 
definitions for G coloring are introduced as follows. 

Definition: G(V,E) is the simply connected graph that 
has less than three orders, and k is a natural number and f is 
the mapping from  to {1,2,...,k}. These 
parameters meet the following requirements:  

 
(1) For any edge , , , and 

 exist. 
(2) For any two adjacent edges  and 

,  exists. 
(3) For any two vertices , the color sets of the 

vertices meet , where the color set of vertex i is 
. 

Then, f is a strong vertex-distinguishing total coloring 
technique (k-VSDTC) of G. 

Therefore,  is the strong vertex-
distinguishing total chromic number of G. 

Conjecture: If  expresses the n-order complete graph 
( ), then the following occurs: 
 

.               

(1)  

 
3.2 Strong vertex-distinguishing total coloring algorithm 
for complete graph 
 
3.2.1 Algorithm model 
The basic idea of this algorithm is that for an n-order 
complete graph, k-VSDTC of  is decomposed into two 
parts, namely, propercolor and overcolor numbers. The latter 
only colors edges. Owing to the symmetry of a complete 
graph, vertices were colored by the propercolor number first, 
followed by the coloring of the edges. Given that the 
coloring combinations of the overcolor number were 
significantly smaller than those of the propercolor number, 
the maximum filling of the former was the filling principle. 
Finally, the objective function was used to determine 
whether or not the coloring results were satisfactory. 
Otherwise, the coloring results with conflicts were adjusted 
gradually based on the algorithm rules. 

 
Theorem 1: We let  be the n-order complete graph 

( ) and the total overcolor number is M. 
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(2)

 

 
Theorem 2: We let  be the n-order complete graph 

( ), and x and y represent the a and b times of 
overcolor number, respectively. Here, equitable coloring was 
applied. In other words, the difference between a and b is no 
higher than 2. Therefore, 

             (3) 

 
where  means the minimum integer, which is 
no smaller than . 

 
Proof: Theorem 1 indicates that it at least needs the 

 overcolor number to accomplish strong vertex-
distinguishing total coloring for . Theorem 2 indicates that 
the total overcolor number (M) can be calculated. Given that 
the equitable coloring of the overcolor number (a=b+2) is 
applied and the mean of  overcolor number is 

, with consideration toward the integer of color 
number, the finite equation of overcolor number is expressed 
as follows: 

 

 

         (4) 

          

 
By solving the equation, we can obtain 

 .                                        (5) 

 
End of proof. 
 
Theorem 3: We let  be the n-order complete graph 

( ), and x and y are a and b times of propercolor 
number. Here, equitable coloring was applied. In other 
words, the difference between a and b is no higher than 2 
(we only considered edge coloring here and vertex coloring 
was accomplished). Therefore, we have the expressions 
below.  

                (6)  

 
In the equations above,  means no lower 
than . 

Proof: The total propercolor number is . The 
proof is similar to that of Theorem 2 and the limited 
equation set of the propercolor number is easily gained. 

 

 

      (7) 

 
The limited equation of the propercolor number can be 

gained by solving the following equation set: 
 

 

                                    (8) 

              

 
End of proof. 
Based on coloring times for the overcolor number and 

the propercolor number and the limited equation, an 
algorithm could be designed to accomplish specific coloring. 

 
3.2.2 Description of algorithms 
Input: 

the number of vertices (n) in a complete graph 
Output:  

the colored adjacent matrix Col(n-1,n-1) that is 
expressed by a two-dimensional (2D) array 
 
Step 1) Initialization 
 
Step 1.1) Definition of variables and array: 

n this integer is the number of vertices in the complete 
graph； 

Col(n-1,n-1) this integer is the output array of the 
coloring result; 

OverColorNum this integer is a variable that defines the 
overcolor number; 

ProperColorNum this integer is a variable that defines 
the propercolor number; 

OverColorArr() this integer is the array that defines the 
overcolor number array; 

ProperColorArr() this integer is the array that defines 
the propercolor number array; 

OverColorCount this integer is a limited variable of the 
coloring times of the overcolor number; 

ProperColorCount this integer is a limited variable of 
the coloring times of the propercolor number; 
Step 1.2) For a 2D array Col(i,j), C(i,j) expresses a vertex 
when i≠j; otherwise, it expresses an edge; 
Step 1.3) For OverColorArr(i)= ,i=0,1,...,m-1, the 
overcolor number was expressed by the power set of 2 for 
the convenience judgment on repetition of overcolor number;  
Step 1.4) For ProperColorArr(i)=i+100+1,i=0,1,...,n-1,  the 
propercolor number applies a continuous integer that is 
higher than the overcolor number; 
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Step 1.5) The propercolor coloring was implemented to all 
vertices individually: =ProperColorArr(i). All edges 
were initialized at 0,  = 0,i≠j; 
 
Step 2) Overcolor Coloring 
 
Step 2.1) The overcolor number  was determined 
based on Theorem 1, and n is the number of vertices in a 
complete graph; 
Step 2.2) The specific overcolor number is determined 
according to Theorem 2; 
Step 2.3) In the following text, the overcolor coloring 
process was described by taking  as an example. For 

 (overcolor number = 2, 4, 8, 16, and 32), 
Theorem 1 indicates that ; 
Step 2.4)The overcolor number set del that has to be deleted 
is determined. Any combination number of five overcolor 
numbers in Step (3) is 32, but there are only 28 vertices; 
thus, 4 combinations must be eliminated. Given that the 
using times of the overcolor number in a complete graph are 
even, the null sets Ø, {2}, {4} and {2, 4} are eliminated. In 
other words,del={ Ø ,{2},{4},{2,4}}; 
Step 2.5) The overcolor numbers 2 and 4 are colored first, 
and then the overcolor number after coloring 2 and 4 is 
determined. The set S1 formed by any combination of 8, 16, 
and 32 is solved, that is, ={Ø,{8},{16},{32},{8,16}, 
{8,32},{16,32},{8,16,32}}. The combination of the colored 
overcolor number is set as a: a={Ø,{2},{4},{2,4}} where 
the overcolor numbers are 2 and 4 and the set to store 
overcolor number is P(4,32). Next, P(0,0) = Ø× -del=7 
(numbers without 2 and 4), P(0,1) ={2}× -del=7 (numbers 
only with 2), P(0,2) ={4}× -del=7 (numbers only with 4), 
and P(0,3) ={2,4}× -del=7 (numbers with 2 and 4) are 
calculated first; 
Step 2.6) The overcolor coloring is achieved based on the 
overcolor number that is calculated in Step 2.2). Next, the 
adjacent matrix that corresponds to the complete graph is 
retrieved. The number of rows in which the overcolor 
number set lies is calculated and compared with the value in 
set P. If two values are the same, we turn to Step 2.7); 
otherwise, we repeat Step 2.6). 
Step 2.7) The coloring of the overcolor number 8 and then 
the quantity of overcolor number combinations is 
determined. At this point, the colored overcolor number 
combination is a={Ø,{2},{4},{8},{2,4}{2,8},{4,8},{2, 
4,8}}. Meanwhile, set , which is composed of any 
combination of 16 and 32, is calculated as 

={Ø,{16},{32},{16,32}}. The following operation is 
implemented by each element of a and : P(1,0) =a× -
del=3,P(1,1)=a× -del=3,P(1,2)=a× -del=3,P(1,3)=a× -
del=3,P(1,4) =a× -del=4,P(1,5)=a× -del=4,P(1,6) =a× -
del=4,P(1,7) =a× -del=4; 
Step 2.8) We repeat Steps 2.6) and 2.7) until the coloring of 
overcolor number 8 is finished. 
Step 2.9) Overcolor number 16 is colored, after which the 
number of overcolor number combinations is determined. At 
this point, the overcolor number combination for coloring is 
a={Ø,{2},{4},{8},{16},{2,4}{2,8},{2,16},{4,8},{4,16}, 
{8,16},{2,4,8},{2,4,16},{2,8,16}{4,8,16},{2,4,8,16}}. The 
set  formed by any combination of 32 is calculated, which 
is = {Ø,{32}}. The following operation is implemented by 
each element of a and : P(2,0)=a× -del=1,P(2,1)=a× -
del=1,P(2,2)=a× -del=1,P(2,3)=a× -del=1,P(2,4)=a× -

del=2, P(2,5)=a× -del=2, P(2,6)=a× -del=2, P(2,7) =a× -
del=2, P(2,8)=a× -del=2, P(2,9)=a× -del=2, 
P(2,10)=a× -del=2, P(2,11)=a× -del=2, P(2,12)=a× -
del=2, P(2,13)=a× -del=2, P(2,14)=a× -del=2, and 
P(2,15)=a× -del=2; 
Step 2.10) We repeat Steps 2.8) and 2.9) until the coloring 
of overcolor number 16 is finished; 
Step 2.11) Overcolor number 32 is colored, after which the 
number of overcolor number combinations is determined. At 
this point, the overcolor number combination for coloring is 
as follows: a={Ø,{2},{4},{8},{16},{32},{2,4}{2,8},{2,16}, 
{2,32},{4,8},{4,16},{4,32},{8,16},{8,32},{16,32},{2,4,8},{
2,4,16},{2,4,32},{2,8,16},{2,8,32},{2,16,32},{4,8,16},{4,8,
32},{4,16,32},{8,16,32},{2,4,8,16},{2,4,8,32},{2,4,16,32},
{2,8,16,32},{4,8,16,32},{2,4,8,16,32}}. Set S4 is calculated 
as = Ø. The following operation is implemented by each 
element of a and : P(3,0) =a× -del=0, P(3,1) = a× - del 
=0, P(3,2) =a× -del=0, P(3,3)=a× -del=0, P(3,4)= a× -
del=1, P(3,5) = a× - del =1, P(3,6) = a× - del =1, P(3,7) = 
a× - del =1, P(3,8) = a× - del =1, P(3,9) = a× - del =1, 
P(3,10) = a× - del =1, P(3,11) = a× - del =1, P(3,12) = 
a× - del =1, P(3,13) = a× - del =1, P(3,14) = a× - del =1, 
P(3,15) = a× - del =1, P(3,16) = a× - del =1, P(3,17) = 
a× - del =1, P(3,18) = a× - del =1, P(3,19) = a× - del =1, 
P(3,20) = a× - del =1, P(3,21) = a× - del=1, P(3,22) = 
a× - del =1, P(3,23) = a× - del =1, P(3,24) = a× - del =1, 
P(3,25) = a× - del =1, P(3,26) = a× - del =1, P(3,27) = 
a× - del =1, P(3,28) = a× - del =1, P(3,29) = a× - del =1, 
P(3,30) = a× - del =1, and P(3,31) = a× - del =1; 
Step 2.12) We repeat Step 2.11) until we complete the 
coloring of overcolor number 32; 
 
Step 3) Propercolor Coloring 
 
Step 3.1) We let A be a set variable and numbers with 0 
medians in the col(n-1,n-1) array are added into A, where 
a(i,j)∈A and i≠j. Moreover, a random array is generated by 
using the random function based on length in A. Elements in 
A are rearranged according to the random array. 
Step 3.2) The limitation table of the propercolor number is 
calculated from the propercolor limited equation according 
to the initialization function. This process is performed to 
determine the times for the appropriate occurrence of each 
propercolor number: limitcounter(k) ( k=0,1,…,n-1); 
Step 3.2.1)One element a(i,j) is collected from A according 
to an order and the nowcolor number is selected from the 
limited table nowcolor = ProperColorArr(k), where k= 
0,1,2,...,n-1. If f(col(i,p) ≠ nowcolor  f(col(p,j) ≠nowcolor , p=0,1,...,n-1, there’s f(col(i,j)=nowcolor. Then, a(i,j) is 
deleted from A and the value of limitcounter(k) is added by 1; 
Step 3.2.2) If f(col(i,p)=nowcolor  or f(col(p,j)= nowcolor , 
one element a(i,j) is selected again from A according to the 
order and then repeat 1); 
Step 3.2.3) If the value of limitcounter(k) reaches the value 
in the limit value, k=k+1. Then, we repeat Step 3.2.1). 
 
 
4. Results analysis and discussion 

 
4.1 Experimental results 
In this study, complete graphs with 8–64 orders were chosen 
in the experiment. The expected experimental results were 
gained in a short period. The experimental results were 
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outputted into one text document in the system catalog. The 
achievement results in the document are introduced below. 

(1) The coloring results of  (all overcolor coloring 
combinations need to appear) are listed in Table.1.  

(2) The coloring results of  are listed in Tables.2(a) 
and 2(b): 

 
Table 1. The coloring results of a complete graph with 16 orders 
                 

 101 108 111 106 114 103 112 107 104 113 102 105 18 109 116 110 
 108 102 110 114 109 104 113 101 103 112 106 115 111 12 14 107 
 111 110 103 101 107 112 104 109 106 105 116 13 115 108 102 14 
 106 114 101 104 111 113 102 105 12 109 107 116 110 115 112 108 
 114 109 107 111 105 14 115 106 110 104 113 102 108 101 103 112 
 103 104 112 113 14 106 105 110 101 107 108 114 12 102 18 109 
 112 113 104 102 115 105 107 18 13 14 101 109 106 103 108 12 
 107 101 109 105 106 110 18 108 114 103 112 111 104 13 113 102 
 104 103 106 12 110 101 13 114 109 108 115 107 102 113 105 111 
 113 112 105 109 104 107 14 103 108 110 114 101 116 18 106 13 
 102 106 116 107 113 108 101 112 115 114 111 104 105 110 109 103 
 105 115 13 116 102 114 109 111 107 101 104 112 103 106 110 113 
 18 111 115 110 108 12 106 104 102 116 105 103 113 107 101 114 
 109 12 108 115 101 102 103 13 113 18 110 106 107 114 111 105 
 116 14 102 112 103 18 108 113 105 106 109 110 101 111 115 104 
 110 107 14 108 112 109 12 102 111 13 103 113 114 105 104 116 

 
Table 2(a). The coloring results of a complete graph with 26 orders 
                 

 101 119 115 112 8 110 121 102 116 106 122 104 103 16 120 105 
 119 102 106 105 109 118 124 103 117 114 123 122 126 32 2 120 
 115 106 103 116 114 108 118 124 2 107 119 102 109 101 112 8 
 112 105 116 104 2 119 106 114 108 122 101 110 8 4 113 118 
 8 109 114 2 105 120 111 116 32 123 124 113 118 117 106 112 
 110 118 108 119 120 106 112 2 125 4 109 117 111 113 103 107 
 121 124 118 106 111 112 107 125 122 120 32 114 116 109 101 113 
 102 103 124 114 116 2 125 108 105 121 117 111 120 122 119 104 
 116 117 2 108 32 125 122 105 109 118 115 107 104 121 102 110 
 106 114 107 122 123 4 120 121 118 110 8 109 117 108 126 101 
 122 123 119 101 124 109 32 117 115 8 111 105 112 104 118 108 
 104 122 102 110 113 117 114 111 107 109 105 112 108 119 123 16 
 103 126 109 8 118 111 116 120 104 117 112 108 113 106 107 124 
 16 32 101 4 117 113 109 122 121 108 104 119 106 114 105 102 
 120 2 112 113 106 103 101 119 102 126 118 123 107 105 115 122 
 105 120 8 118 112 107 113 104 110 101 108 16 124 102 122 116 

 
Table 2(b). The coloring results of a complete graph with 26 orders 
           

 117 104 121 110 16 120 126 107 32 101 
 104 118 103 112 117 109 113 122 108 102 
 121 103 119 114 113 105 118 2 106 108 
 110 112 114 120 118 116 108 119 102 125 
 16 117 113 118 121 106 105 101 124 116 
 120 109 105 116 106 122 114 118 8 107 
 126 113 118 108 105 114 123 104 109 112 
 107 122 2 119 101 118 104 124 117 106 
 32 108 106 102 124 8 109 117 125 122 
 101 102 108 125 116 107 112 106 122 126 

 
4.2 Algorithm analysis 
4.2.1 Validity of the proposed algorithm 
(1) According to the definition of strong vertex-
distinguishing total coloring, the colored adjacent matrix 
must meet the following conditions: 

the color numbers of the adjacent vertices must be 
different; 

the color numbers of each row must be different;  

the sets formed by all color numbers of each row must be 
different. 

(2) The overcolor coloring is the principal part of the 
proposed algorithm. Therefore, the algorithm accomplishes 
overcolor coloring first. Given that the overcolor number in 
the final colored matrix exists as one form in the 
combination of 2,  = 1+5+10 
+10+5+1 exist for five types of overcolor numbers. The 
combinations include the following: Ø, {2}, {4}, {8}, {16}, 

16K

26K

1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V 14V 15V 16V

1V

2V

3V

4V

5V

6V

7V

8V

9V

10V

11V

12V

13V

14V

15V

16V

1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V 14V 15V 16V

1V

2V

3V

4V

5V

6V

7V

8V

9V

10V

11V

12V

13V

14V

15V

16V

17V 18V 19V 20V 21V 22V 23V 24V 25V 26V

17V

18V

19V

20V

21V

22V

23V

24V

25V

26V

5
5

4
5

3
5

2
5

1
5

0
5 CCCCCC +++++



Zhao Huanping, Xue Dangqin and Shi Huojie/Journal of Engineering Science and Technology Review 13 (1) (2020) 126 - 132 

 
 

131 

{32}, {2,4}, {2,8}, {2,16}, {2,32}, {4,8}, {4,16}, {4,32}, 
{8,16}, {8,32}, {16,32}, {2,4,8}, {2,4,16}, {2,4,32}, 
{2,8,16}, {2,8,32}, {2,16,32}, {4,8,16}, {4,8,32}, 
{4,16,32}, {8,16,32}, {2,4,8, 16}, {2,4,8,32}, {2,4,16,32}, 
{2,8,16,32}, {4,8,16,32}, and {2,4,8,16,32}. For a complete 
graph with 28-vertex coloring, Ø, Ø, Ø, {2}, {2}, {2}, {4}, 
{4}, {4}, Ø, Ø, Ø, {2,4}, {2,4}, {2,4}, {2}, {2}, {2}, {4}, 
{4}, {4}, Ø, {2,4}, {2,4}, {2,4}, {2}, {4}, and {2,4} must 
occur after the coloring of overcolor number 4 in order to 
complete the follow-up coloring of overcolor number. 
Similarly, {8}, Ø, Ø, {2,8}, {2}, {2}, {4,8}, {4}, {4}, {8}, 
{8}, Ø, {2,4,8}, {2,4}, {2,4}, {2,8}, {2,8}, {2}, {4,8}, 
{4,8}, {4}, {8}, {2,4,8}, {2,4,8}, {2,4}, {2,8}, {4,8}, and 
{2,4,8} are needed to finish the follow-up coloring after the 
coloring of overcolor number 8. Thus, the reasonable 
number of combinations that is needed after filling of 
overcolor number 16 and 32 can be calculated. On this basis, 
the coloring steps 2.1)–2.12) of overcolor coloring in the 
proposed algorithm were designed and  represented all 
sets that would occur. By eliminating del which shall not 
occur, the reasonable combinations which shall occur can be 
obtained. In this way, the overcolor number combinations 
for coloring can be concluded by using del cleverly. 
Therefore, completing the overcolor coloring is highly easy, 
This is also a difficult part of the whole algorithm. Of 
course, conditions 1) and 2) need to be met during the filling 
of overcolor number. 

(3) After completing the overcolor number, the filling of 
the propercolor number is relatively easier. All elements 
with the value 0 are added into A. One is selected randomly 
and put into the set , which has a tag of color number and 
determined capacity. In this case, capacity of  is calculated 
from the limited equation of the propercolor number, and it 
shall be put based on the following rules: 

1) If i=1,2,…,16 and the element a(u,v) is selected from 
A, a can be placed in  with a tag unequal to u or v. 

2) Elements are inputted into  according to a sequence. 
Once  is full, the remaining elements shall be placed into 
the next , which is not yet full. 

3) Step 3 of the algorithm is designed and it is very 
effective for completing the propercolor coloring based on 
the ideal of average filling of the propercolor number. 

 
4.2.2 Time complexity of the proposed algorithm 
Two types of factors that influence the time complexity of 
the algorithm, namely, propercolor and overcolor coloring. 

(1) Time complexity of overcolor number: the proposed 
algorithm colors each overcolor number independently. The 
overcolor number i needs to be judged and compared by its 
combination with . Therefore, the time complexity of 
overcolor coloring is  for a complete graph with m 
overcolor numbers. 

(2) Time complexity of propercolor number: for the n 
propercolor numbers, the total propercolor number for filling 
is , where M is the total overcolor number. Each 
filling of one propercolor number will be compared by 
whether its rows and columns have the same color. Thus, the 
time complexity for filling propercolor number is 

. 

To sum up, the operation time of the proposed algorithm 
is determined by overcolor number (m) for coloring. Thus, 
the time complexity in the worst situation is . 

 
 

5. Conclusions 
 
Achieving strong vertex-distinguishing total coloring is a 
complicated problem in graph coloring. To solve strong 
vertex-distinguishing total coloring, the proposed algorithm 
decomposes the color number into overcolor and propercolor 
numbers after obtaining the strong vertex-distinguishing 
total color number of a complete graph. On the basis of the 
idea of average coloring, edges, and vertices are colored by 
overcolor coloring. This process not only reduces the 
operation time but also increases the convergence speed of 
the proposed algorithm. The following conclusions could be 
drawn. 

(1) We verify  by analyzing the constraints 
against the strong vertex-distinguishing total coloring for a 
complete graph. At this point, the strong vertex-
distinguishing total chromatic number for a n-order complete 
graph is ; otherwise, its value is . 

(2) The overcolor number is far smaller than the 
propercolor number. On the basis of properties of 
arrangement combination, the overcolor number 
combinations are significantly fewer than propercolor 
number combinations. The maximum overcolor number can 
shorten the operation time of the proposed algorithm. 

(3) The overcolor number can be expressed in a power 
set of 2. The overcolor number combination (del), which 
needs to be deleted, can be determined in advance by the 
mathematical model of the algorithm, thereby obtaining the 
reasonable and accurate color number combinations and 
finishing overcolor coloring quickly. 

The proposed algorithm classifies coloring based on the 
constraints and characteristics of strong vertex-
distinguishing total coloring for complete graphs. This 
algorithm focuses on filling the overcolor number, 
supplemented by filling the propercolor number. It 
completed the coloring of the n-order complete graph in a 
short period of time. This algorithm can be modified slightly, 
by which other coloring results of complete graphs can be 
gained, such as adjacent vertex-distinguishing total coloring 
and vertex-distinguishing total coloring. However, the 
overcolor number combinations in the proposed algorithm 
are completed manually. Therefore, an appropriate method 
for determining overcolor number combinations will be 
further designed to shorten the operation time of the 
algorithm. 
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