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Abstract 
 

This paper reviews and discusses the use of adaptive protections in microgrids. The main goal of the paper is to review the 
progress made in the last 10 years, to identify the challenges that are still present, and to note the current trends in the use 
of these protections in microgrids. The analysis is based on applications implemented since 2007, and on a wide 
bibliographical review of books, theses, patents, scholarly papers, conferences, technical reports, and experts’ experiences. 
The paper includes a comparative table that summarizes the reviewed literature and its findings. The paper is of interest to 
academics who do research on development and implementation of new robust and reliable protection schemes in 
microgrids, and to those in the industrial sector, who implement electric microgrids, and who want to understand the impact 
of their protection schemes. 
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1. Introduction 
 
Adaptive protections are a set of functions that allows the 
adjustment of their parameters according to modifications or 
new system requirements, making use of communication 
protocols [1]. The integration of distributed generation (DG), 
and the use of distributed energy resources (DER) on 
distribution networks (DN), have made power systems more 
complex [2]. This has changed the dynamics of the traditional 
networks [3], including bidirectional power flow, variable 
short circuit capabilities, and different fault paths on modern 
networks [2,4–9]. As a result, several issues have risen in the 
operation of traditional protections [10–13] such as, loss of 
selectivity, false tripping, miss operation and faults of the 
anti-islanding protections [14]. These are caused by the type 
of source of DG, the nature of the energy resource (solar, 
wind, fuel) [15], the number of installed units, and the mode 
of operation of the microgrid (MG) (grid-connected or 
islanded mode) [3,16–20]. 
 These issues have led to the consideration of  new 
strategies for the coordination and protection of the 
microgrids [21–33] that change and modify optimally the 
traditional protection schemes to ensure the correct operation 
of the MG in both connecting modes. Some authors propose 
to adapt and use traditional protections schemes [34–39]. For 
example, [34] proposes a method to coordinate different types 
of protections (over current relay (OCR), directional over 
current (OCDR) and differential) that ensures the operation of 
the MG on the faulty zone. This method demonstrated 
selectivity and an appropriate operation for a specific network 

topology; nonetheless, before generalizations can be made, 
this methodology will need to be evaluated in different 
scenarios and topologies.    
 Further, [35] shows that some of the issues about the 
integration of DG’s are resolved by using distance relays for 
protection of a distribution network. However, in [36] is 
shown that distance relays are inappropriate for applications 
in MGs, and a new directional element is proposed. This new 
element detects the direction of symmetrical faults by using 
the magnitude of the positive and negative sequence 
impedance, along with the positive sequence current and the 
torque angle, as well as the direction of asymmetrical faults 
by using the magnitude and angle of negative sequence 
impedance. Simulations showed that this new directional 
element is effective for different conditions and types of 
failures in the MG. 
 The authors in [37], propose a method to analyze and 
improve the response of a distance protection for a wind 
power DG unit connected to the distribution system. By 
compensating the wind intermittence, the proposed scheme 
changes dynamically in accordance to the variations of the 
power network. In [38] the authors propose a relay protection 
scheme with two types of settings, assisted by a 
communication path for a MG, with the capability of working 
connected to the main grid or in islanded operation mode. To 
maintain the proper coordination, they use directional 
overcurrent relays with two sets of adjustments, with a 
communication path with low bandwidth. This method does 
not require adaptive and continuous modifications on the 
relay settings, and its primary functionality is completely 
independent of the communication signal. 

 A new technique is introduced in [39] to solve the 
problem of low fault current presented in a MG in islanded 
operation mode. The technique connects all the loads neutral 
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points of the MG to the grounding system, which results in an 
increase in the fault current in the islanded mode of operation 
and reduction of the step voltage in every node. 

 To guarantee a correct operation of the MG, other authors 
recommend protection schemes that adapt to the MG 
operational conditions [40–50]. For example, in [40], the 
concept of agents for a DG anti-islanding protection is 
introduced, where multi-agent systems are used to coordinate 
the connection status of the DG unit. The authors in [41] 
suggest a protection scheme with digital relays based on a 
differential protection with a communication network applied 
to a distribution system with high penetration of alternative 
energy resources.  

 On the other hand, [42] brings into the discussion, the 
concerns of the protections in low voltage MG. The author 
presents an assessment of the use of communication protocols 
and the application of the standard IEC 61850, and suggests 
how to make the operation of the communication-based 
protections more reliable. In [43], the authors applied  
communication based protection schemes with differential 
relays to islanded systems, and test their efficacy and 
accuracy via real-time simulations. 

 In 2011, [44] proposed the use of an adaptive overcurrent 
protection, based on local information, with no need of a 
communication system, that allows to detect faults and the 
state of operation of  the DG unit, by updating the relay 
tripping characteristics and their operational status. In [45], an 
adaptive scheme and a  adaptable protection architecture is 
suggested for the new digital substations. The authors in [46] 
considered a hierarchical protection strategy based in digital 
overcurrent relays with communication assistance, that 
responds with adaptive settings according to the network 
topology, and differential control schemes, that protects the 
specific MG efficiently. 

 The authors in [47],  describe how the use of the standard 
IEC 61850 and their logical nodes allow to update the 
protection settings, to locate and isolate a fault, and to restore 
a distribution network. The authors in [48], present and 
adaptive overcurrent protection, integrating both, the 
economic and technical advantages of fuses and relays on a 
MG. The relays are coordinated with the maximum nominal 
current of the fuses at the nodes, obtaining selectivity, 
reliability and speed in the operation when simulated. The 
authors in [49], discuss other configurations for the MG, 
specifically, ring microgrids, that emphasizes the  protection 
and load adaptive behavior as a way to improve the detection 
of faults. 

 In 2018, the authors in [50], present an adaptive reclosing 
scheme, formed by a protective relay, two circuit breakers 
located at the side of the source and the load, and a battery 
energy storage system as an uninterruptible power supply. 
The scheme uses the neutral current in radial distribution 
network with unbalanced loads, determining the neutral 
current characteristics at the time a fault occurs, through the 
transformed wavelet analysis. 

 In view of the above, it is noticeable, how the concept of 
adaptive protection begins to be relevant, and how it has 
become one of the best options to protect a distribution 
network with MG integration.  

 Based on the review and analysis of the literature (sources 
shown in Fig.1), the next section, summarizes the adaptive 
protections, with an emphasis on ongoing implementations, 
challenges, and the impact of these types of protection. 
Section III discusses the current trends, and section IV offers 
some conclusions.    
 

 
Fig. 1. Sources of reviewed literature 
 
 
2. Adaptive Protections 
 
Adaptive protections are characterized for storing several 
settings groups, and for applying them in the protection 
devices, in accordance with their operation topology. 
Through the implementation of communication protocols, 
[51,52][51,52] adaptive protections are able to modify their 
relay operation parameters [51,52]. 

 Nowadays the advantages of the adaptive protection 
schemes are recognized over the traditional ones [53]. First, 
they are able to incorporate the changes in the status of the 
DG’s and breakers in order to adjust the protective relays, and 
more importantly, they operate correctly.  

 According to [1,3,54], the adaptive protection schemes 
used in MGs, can be divided into two types of protections: 
centralized and decentralized –multi-agent - adaptive 
protections. A Graphical representation of each of these can 
be seen in [17] and [12], respectively.  

 
2.1 Centralized adaptive protections 
A centralized protection structure has the particularity of 
containing remote control units or central protection units that 
store all the information about the MG. This stored 
information relates to the number and type of DG units, 
existing loads, and the status of the breakers. The main 
purpose is to stablish links and monitor the equipment thru 
communication protocols that allow sending control signals 
to the protection devices. 

 Once the control units detect a change on the system’s 
characteristics, be the connection or non-connection of the 
DG, or a failure, using local or remote data, they produce new 
calculations to update the operational conditions of the 
microgrid, and to adjust their parameters to finally isolate the 
failure in the best possible way [1,2].  

 The main components in a centralized protection scheme 
and its characteristics are as follows: 
 
Centralized Control: The centralized control is located at the 
point of common coupling or at the station of the main re-
connector; it counts with communication protocols of type 
IEC 61850 and IEC 61870-5-104. It incorporates all the DG’s 
information, and carries over the control function. Common 
types of Centralized Controls, are the Programmable logic 
controllers, PLC’s, which are used for decision making 
processes, the selection of pre-calculated setting groups, and 
control of the DG units, either remotely or locally,  through a 
communication protocol based on IEC 61131-3 ( 
[55,56][57,58]). 
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Grid automation controller: The grid automation controller 
is responsible for establishing the modes of operation of the 
MG automatically or manually. It takes into account all of the 
changes, topology modifications, protection settings, and 
remote control of the DG’s. The signal is taken to the PLC’s 
through the main server, where all the settings to be 
implemented are stored [56][59].  
 
Information management servers: these collect and store the 
information obtained throughout the communication 
protocols from every relay, detect the system changes and 
gather the data when faults occur [60].  
 
Supervisory Control And Data Acquisition: The 
SCADA/DMS behaves as the control center of the entire red 
in a centralized scheme, and performs the evaluation of all the 
components in the red. From this evaluation, the mode of 
operation of the Smart Substation Controller (SSC) is 
determined. This controller has the ability to modify the relay 
connection groups, and collect local data using sensors to 
determine the actual state of the network [61]. 
 
Microgrid central protection unit (MCPU): The MCPU 
performs the communication operation with all the relays in 
the MG and DG units. In accordance with status of the units, 
i.e., connection or non-connection, the protection equipment 
will update its settings and, ultimately, detect a fault in the 
system. Simultaneously, the control unit counts with a 
communication and control module (CCM), where time 
delays for selectivity are calculated and embedded into the 
protective relays. The communication scheme is achieved by 
a TCP/IP protocol, based on Ethernet network for instant 
communication [54]. 
 
2.2 Decentralized adaptive protections 
A decentralized adaptive protection structure groups multiple 
intelligent entities named agents, which allow autonomy in 
the system decision-making processes [9]. These agents, 
which are distributed throughout the network, consist of 
hardware and smart software entities, including expert 
algorithms for task execution. The communication between 
the agents is achieved through protocols, which allow them to 
act in response to a specific assignment, and to stablish 
communication with the other agents, as a way to fulfill a 
common objective [62,63]. Adaptive protections are inserted 
in the DG units in the protection and control schemes [64–
68], identifying and acting according with the system 
necessities. 
 According to [62], the principal elements that conform a 
multi-agent protection scheme are layers, and each layer is 
formed by several agents. The following lists the agents most 
commonly used: 
 
Measurement agents: the measurement agents are located in 
the measurement devices of the MG; these include the 
current, voltage transformers, and phasor measurement units. 
 
Protection agents: these agents use digital relays or 
Intelligent Electronic Devices (IED’s) and overcurrent relays. 
 
Mobile agents: these agents exchange information with the 
upper layers. 
 
Performance agents: performance agents determine the relay 
settings incorporating the topological changes of the network. 

 
System agents: these agents monitor the network using 
communication protocols. 
 
Evaluator agents: these agents validate the settings 
information, selectivity and the operation of the relays. 
 
 In what follows, we will discuss the operational 
conditions, applications, the challenges, and the impacts of 
the decentralized and centralized adaptive protections: 
 
2.3. Operational Conditions and applications 
Operational conditions for the selection of a centralized 
protection: The operational conditions of a protective scheme 
in a MG, and the system protection needs will determine the 
more suitable choice between centralized or decentralized 
type of adaptive protection. The following are the conditions 
needed for the selection of a centralized protection: 
 
Selectivity: it requires the implementation of more sensitive 
methods than those made for overcurrent protections, in order 
to detect  faulty zones, without being affected by the 
generation units intermittence [69]. 
 
Communication and data transfer in short distances: a 
centralized protection requires short-distance 
communications in order to reduce the delays on data 
transfers. This is necessary to increase the reliability of the 
centralized protections in the process of data exchange [69].  
 
Coordination in the operation of protective equipment: a 
centralized protection requires coordination in the operation 
of the protection devices. In this way it is possible to identify 
the location of a fault inside the MG through the tripping 
signals from the circuit breakers;  hence, isolate the faulty 
zone without losing continuity in the network [69].   
 
Optimal operation in the presence of dynamic changes of 
the MG: this guarantees that the adjustment and operational 
parameters from the protective devices are updated optimally 
[54,69].  
 
System structure and protection hierarchy: due to the 
dynamic state of the MG, it is required to know its status 
continuously, to identify the connection mode of the 
generation units, and their protection coordination [54]. 
 
Simplicity: given that the data processing and control are 
directed from the central unit, the network elements like the 
circuit breakers, the controllers in the loads, and the 
generators need to be constructively simple [55]. 
 
Applications of centralized protections: Implementation  of 
centralized adaptive protections have been reported in 
[56,61,70–77]. The authors of [56], report a pilot case of a 
MG integrated to a medium voltage distribution network, DN, 
in isolated mode of operation, which was implemented in 
Hailuoto – Finland.  The system counted with a 20 kV feeder 
with a recloser, a 0.5 MW wind turbine, and a 1.5 MW diesel 
generator. The grid automation controller was located in the 
recloser to execute the control over the generation units, and 
to allow the communication process through the IEC 61850 
protocol.  

 
 In [61], the adaptability of the protective relay for the DG 

unit is verified through real-time simulation (RTS). The 
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authors in [70], propose an adaptive protection scheme with a 
microgrid central protection unit (MCPU), and 15 Intelligent 
Electronic Devices (IED’s), which were distributed in the 
nodes, loads and DG units, with communications happening 
through a wide range wireless network, based on WiMAX 
technology. Its behavior was validated throughout 
simulations that showed the system complied with the latency 
requirements and protected the proposed MG. 

 In [71], an adaptive protection algorithm was verified in 
the IEEE 13 node modified model, by adjusting the protection 
settings in response to changes in the generation units. In [72], 
a Denmark 10 kV network was modified by adding loads and 
several DG units (1 PV, 5 wind turbines, 4 combined cycle 
plants). In addition, the authors test an online detection 
algorithm for an overcurrent adaptive protection, and a 
decentralized communication system to detect changes in the 
topology of the MG. 

 Using RTS, the authors in [73], report the effectiveness of 
an adaptive protection system for overcurrent relays for a 
countryside MG with DG units, changing their modes of 
operation using the IEC 61850 protocol.  In [74], a centralized 
adaptive scheme with phasor measurement units (PMU’s) and  
a control protection unit (CPU) was designed. This protection 
system was based on positive sequence components that were 
able to detect the incident and the affected zones, and protect 
against different types of faults and topologies in the MG.  

 In [75] the authors used a microprocessor relay model 
with a digital communication system instead of a CPU, able 
of detecting different type of faults and the faulty phase. 
Similarly, the system blocks the signal that flags the problem, 
protecting the MG in both modes of operation. In [76], an 
adaptive protection coordination scheme based in the 
algorithm of the Artificial Bee Colony (ABC) is presented. 
This protection allows an optimal directional overcurrent 
relay (DOCR) coordination in the IEEE 30 node with multiple 
DG units, where a master server is used as central unit, 
enabling communication with the relays as a way to select the 
proper settings for each device and monitoring the network 
changes. 

  In [77] a MG is modeled with distributed energy 
resources, electronically coupled with an adaptive protection 
scheme. This model ensures the MG protection for different 
types of contingencies, independently of its operation mode. 
It uses reclosers, overcurrent relays based on 
microprocessors, and a microgrid communication path 
between all the relays and the DG units. The novelty of the 
proposed scheme is its capacity to monitor the MG, and 
instantaneously update the relay fault current, according to the 
variations in the system. 

The authors in [78], work with a patented adaptive 
overcurrent protection method on a pico grid formed by a 
MCPU, updating its mode of operation and the protection 
settings, in response to the location and type of fault 
 
Operational conditions for the selection of a decentralized 
protection: The following are the conditions needed for the 
selection of a decentralized protection: 
 
Selectivity: selectivity in a decentralized protection is 
achieved throughout the intelligence incorporated in the 
local devices, and the cooperation between agents, which 
allow the identification of faulty zones with great accuracy 
and reliability, avoiding false tripping. 
 
Decentralized architecture: the decentralized architecture 
requires that the decision making and local information 

exchange be adjustable to the distributed characteristics of the 
MG [79].  
 
Flexibility: a decentralized protection must be able to adapt 
to the conditions of the system, independently of the type of 
generation or load in the system [79].  
 
Resilience: a decentralized protection must have the capacity 
to respond and isolate a fault, without interrupting its 
operation and objectives [79,80].   

Communication and data transfer at different distances: 
A decentralized protection must be able to transfer data at 
different distances. Depending on the communication system, 
and on its speed, a decentralized protection system can 
communicate its information and monitor the system locally 
or remotely, offering robustness. 
 
Local operation of protective devices: A decentralized 
protection must be able to perform self-validation, self-  
correction, and act quickly in response to a contingency [81]. 
 
Simplicity: decentralized protections must have simple agent 
platforms with precise algorithms that ensure an optimal use 
of the MG resources [82]. 

 
 The use of decentralized adaptive protections for analysis, 

protection, isolation and restoration of the energy service after 
a contingency, using different methodologies have been 
reported in [59,83–87]. In [59], relays settings are modified 
off-line through simulations and the faults are cleared on-line, 
maintaining the selectivity of the protective devices. In [83], 
an expert algorithm that mimics the human cellular behavior 
of the immune system is adopted for the agents, improving 
the reliability in the equipment response and avoiding the use 
of the central controllers. 

 According to [84], multi-agent systems (MAS) are 
applied to achieve an efficient power management and fault 
restoration, forming dynamic groups for the administration of 
the agents, with a flexible structure. The authors in [85] 
propose a multi-agent system based on the magnitude and 
direction of the sequence current to locate and isolate a fault 
in a MG.  The authors in [86] use the Ybus algorithm, defining 
Ip currents as initial conditions for the modes of operation of 
the MG. The communication among agents is achieved using 
TCP/IP protocols. 

 In [87], the phase angle of a current signal is compared 
and a communication assisted method is implemented using 
the protocol IEEE std. C37.118. 
 In [88], a decentralized adaptive protection development 
based on distributed logic was patented. The system divides 
the distribution network (DN) into multiple areas, which are 
composed of a busbar, an area controller, and a protective 
device. This method allows for the detection of any local 
changes in the network, and re-calculation of level of the short 
circuit in the specific area. 
 
2.4. Challenges 
 Despite finding several examples of applications of adaptive 
protections with clear significant operative advantages, they 
are still in the process of research and development. One of 
the main challenges identified in the reviewed literature is the 
operative speed of the protection, the re-adjustment of its 
settings, and the minimization of the number of users affected 
from contingencies that can be caused by the connection and 
disconnection of big DG units, or by the change in the 
operation mode of the MG [56]. Other challenges include the 



Eduardo Gómez-Luna, John E. Candelo, Eduardo Marlés, Juan M. Guardiola and Jorge de la Cruz/ 
Journal of Engineering Science and Technology Review 12 (6) (2019) 60 - 69 

 
 

64 

improvement of the delay times and sensitivity of the adaptive 
protections to guarantee a correct coordination in their 
operation [89]. 

 Due to all the possible scenarios in a MG, it is complicated 
to calculate and consider settings and adjustments in an 
infinite number of cases. As a result, to ensure a complete 
protection, the most representative and significant cases are 
selected [73]. Similarly, when considering different 
distributed energy resources, it is necessary to define the 
criteria for the relay settings [90].  

 On the other hand, like smart grids, adaptive protections 
depend heavily on communication systems. Therefore, all the 
issues that are inherent to any communication system also 
affect them [91]. In addition, they are vulnerable to the 
problems of interoperability and exchangeability [92]. and to 
cyber-attacks [93–95]. All these are external issues that affect 
their operational integrity [91].  

 Decentralized schemes also present many challenges that 
need to be addressed and resolved before they become a 
popular alternative [96]. These challenges include portability, 
security, and emerging behavior of the multi-agent systems 
[79]. Similarly, delay times in data transfer and 
communications [82,86,97], and delays on the circuit 
breakers operations [98] need to be improved. Furthermore,  
it is necessary to develop more economically efficient 
schemes with PMU’s [87].  

 Additional challenges include addressing information 
security, [99]; obtaining standardization of the agent modules, 
[62], [79], [81], [99]; dealing with the impact of government 
regulations and achieving economic efficiency [100,101]. 
Furthermore, the MAS need to be implemented in real 
settings, and tested in systems that are more complex [101–
103]. 

 
2.5. Impacts 
According to the authors in [104], adaptive protections are 
seen as a necessary element in a smart grid and are currently 
among the best options for protection of MGs.  

 As discussed above, centralized adaptive protections rely 
on the network paths, and communications to detect changes 
in the system and adjust parameters. Therefore, events that 
lead to a loss of information and communication between the 
units will greatly affect the MG. These include cyberattacks 
carried out throughout the system’s communication network 
that can cause distortions in the IED’s units and transmit 
malicious codes that lead to buffer overflows that create 
inconveniences for the control of the system’s data. Similarly, 
of importance are cyberattacks that occur in the data 
transmission systems like the Generic Object Oriented 
Substation Event (GOOSE), and the Sampled Measured 
Valued systems SMV, which are both part of the IEC 61850 
protocol [93,105]. Because these carry vital information 
(alarm s, status, and control) between devices, alterations of 
these values could create an automation breakdown, causing 
a circuit breaker to miss an operation. The authors in [106] 
summarize the cyber security standards and privacy for smart 
grids. 

 Selecting decentralized adaptive protections in 
accordance to the application will reduce costs (due to the fact 
that voltage transformers are not used [87]); it will shorter the 
data transfer process and reduce the delay time while isolating 
a fault [86]. In addition, it will guarantee protective 

selectivity, offering robustness to the system [59,82,107], and 
accuracy and reliability in the operation of the MG [108].  

 Furthermore, the coordination among agents and artificial 
intelligence articulation [83,109,110] provide autonomy to 
the devices used for decision making processes, in response 
to the changes of the MG. This leads to  an optimal use of 
energy resources with better reasoning times [82]. In addition, 
this allows to modify the system architecture, determine with 
precision and restore the faults dynamically  [84,111], 
analyzing, validating, acting and managing the daily system 
operation [81,112,113]. Additionally, the local decision 
making process improves the communication system 
response and the errors related to them [114]. 

 
 

3. Future Trends of Adaptive Protections in Electric 
MG 
 
As the development and implementation of micro-grids 
increase around the world, so will the use of adaptive 
protections in MGs. It is clear then that validating their 
operation schemes in real-time, becomes a necessary step in 
order to guarantee a reliable operation. Some studies have 
begun using real-time simulation (RTS) [69,115–119] with 
hardware in the loop configuration (HIL). Optimal 
coordination adjustments have been determined for an 
adaptive protective scheme before its physical 
implementation. Tests performed with real-time (RTS) and  
non-real-time simulation (NRTS)  has been also compared 
[120], validating the selectivity, reliability and speed for the 
adaptive overcurrent protection systems. 
 Other research’s has shown the use of Real Time 
Simulations (RTS) as a way to test communication protocols 
[121], like the IEC 61850 and the third generation of the 
Distribution Network Protocol (DNP3). Their integration into 
smart grids in real-time will be for sure in continuous 
development. The authors of [122], provide a comprehensive 
summary of RTS in applications in MG, outlining the test 
techniques, and existing methodologies in regards to the 
quality of power, stability, control and protections of the MG. 
 According to [123], the future of adaptive protections, 
points to the development of new and novel methods, that will 
address improvements in the communication systems [123–
125]. Developments that make adaptive protections suitable 
to protect any type of fault, for example, capable of detecting 
high impedance faults [126], and that are capable of 
optimizing the protective relay capacity [126], in order to 
maintain the security in any type of MG (AC, DC, AC/DC) 
[127]. Similarly, [128] and [129] propose schemes that are 
more robust for hybrid, and islanded MGs, respectively, as 
solutions to some of the impacts discussed above. 
 Currently, IEEE 1547 and IEEE 2030 specifications do 
not include standards for the interconnection and 
interoperability of distributed energy resources by adaptive 
protections, [130], [131–133]. Therefore, progress needs to 
happen in the development of standards and regulations that 
allow for the unification of the design, planning, and 
operation of MGs with adaptive protections.  
 Tab.1 and Tab.2 summarizes, the applications, 
challenges, and trends for a centralized and decentralized 
adaptive protection respectively, discussed in the reviewed 
references. 
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Table 1. Applications, challenges, and future trends of a centralized adaptive protections 
IMPACT OF ADAPTIVE PROTECTIONS IN MG REFERENCES 

 
Applications 

Challenges Trends 
 

Analysis, 
monitoring and 
fault diagnosis 

Fault location Communication speed Differential 
protection methods 

[69],[72] 

Fault isolation Improve the operative 
speed 

- [54,56,69] 

Information management 
and system status  

Improve the 
communication links with 
the central control unit in 

long distances 

- [54,69,72] 

Change in the 
configuration of the DG’s 

- [71,73] 

Protection 
coordination 

Relay settings 
modification (off-line) 

- - [54,55,69,71] 

Reorganization of the 
protections hierarchy 

Modification and update 
of delay times and 

protections adjustments 

- [54,89] 

- - Limited fault scenarios Calculation of 
settings in Real-time  

[89] 

- - - More sensitive 
protection schemes 

[89] 

   IEC-61850 based 
communication links  

[54,89] 

- - - MG security [127] 
 
Table 2. Applications, challenges, and future trends of a decentralized adaptive protections 

IMPACT OF ADAPTIVE PROTECTIONS IN MG REFERENCES 
Applications Challenges Trends  

Analysis, 
monitoring 
and fault 
diagnosis 

Fault location - - [83,85–87,99,108] 
Fault isolation - - [83,86,87,100,108]; 

System restoration - - [83,84,86,87,108,111] 
Clearing faults on-

line 
- - [59] 

Protection 
coordination 

Relay settings 
modification (off-line) 

- - [59,81,98,103,112] 

Power 
and demand 
management 

Load ejection - - 
 

Efficient power 
management 

- - [82,84,103,114] 

- - Improve delay 
times in data 

transfer 

- [79,82,86,98] 

- - Economical 
protection schemes 
and less sensitives 

- [87,100,101,111] 

- - Information 
security 

- [79,99] 

- - Standardization 
of the agent 
technology 

- [62,79,81,99,101,108] 

- - Real and 
complex systems 
implementations 

- [79,84,102,103,112] 

- - 
 

Validate the information delay 
times with simulation software’s 
and expert algorithms software’s 

[59,86,98] 

- - 
 

Development of more simple 
agents and less sensitives 

[86] 

- - 
 

Implementation of intelligent 
devices, sensors, optimal 
measurements in different 

sections of the network 

[87] 

- - 
 

Prove the efficiency of the 
protection schemes in different 

[84,108,123] 
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faults scenarios, devices and 
offer a global solution 

- - 
 

Tests in more complex and 
real systems 

[79,103,112,128] 

 
 

4. Conclusions 
 
The current state and future trends of adaptive protections in 
MG were presented, as well as their applications, the impacts 
from their implementation, and the challenges that lie ahead. 
It was observed that more efficient schemes and reliable 
communication systems still need to be developed, and that 
research and development needs to focus on the development 
of systems that are less vulnerable to contingencies and cyber-
attacks. The progress in decentralized adaptive schemes will 
need to provide protections that are more dynamic. These 
need to be equipped with artificial intelligence to guarantee 
decisions and operation autonomy, to monitor and diagnose 
faults, and ultimately, accomplish the correct protection 
coordination. In order to ensure their reliability in real-life 
settings, it is necessary to carry over tests and detailed 
validations of adaptive protections that include tests of their 
communication systems using real-time simulations. 
Adaptive protections were shown to have a positive impact on 
MGs, specifically in regards to selectivity, speed, and 
sensitivity. According to the reviewed literature, as the 

number of applications of adaptive protections in real and 
more complex settings grows, evidence on their effectiveness 
and reliability will be clear. As a result, adaptive protections 
will be seen as the proper scheme for protection of any type 
of microgrid. 
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