
*E-mail address: satishpallam@gmail.com
ISSN: 1791-2377 © 2019 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.126.25

Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

Research Article

Efficient Computation of Min & Max Iceberg Queries Using Value based Property

Pallam Ravi1,2,* and D. Haritha1

1KLEF,Guntur,India

2Anurag Group of Institutions, Hyderabad,India

Received 21 November 2017; Accepted 29 November 2019

Abstract

Data mining and Data warehousing systems use aggregate queries (Iceberg queries), in turn, compute the results based on
the constraints on aggregation functions above the user provides threshold. The aggregate functions, MIN and MAX,
have anti-monotone property. Based on this property, the computation of the candidate set can be reduced. In this paper,
we compute iceberg queries having MIN and MAX without computation of candidate set as per anti-monotone property.
We call it as “Value-based Property”. Further, we proposed two algorithms namely range and equal algorithms, which
compute Min & Max Iceberg query efficiently. Our experiments reveal that the proposed algorithms are 90% more
efficient compared to the traditional algorithms and they also work in a distributed environment.

Keywords: Iceberg queries, Bitmap Index, Aggregate Function, Value-based Property.
__

1. Introduction

Nowadays businesses need to discover hidden trends and
relationships from the data. This knowledge helps them in
making decisions better so that they can sustain in the
competitive market. Data summary using aggregate
functions gives more important information to find trends
and relationships. High aggregate values give precise
information. So, we need to find the data for which the
aggregate value is above the user-specified threshold.
 Aggregate functions like COUNT, SUM, AVG, MIN,
MAX, MEDIAN, RANK and TOP(K) are used in Data
Mining and Data warehousing queries for extracting
knowledge. A query is needed to compute aggregate
functions over the attributes, and it produces the result set
based on user constraint. This query is known as Iceberg
query [1]. The general form of the Iceberg query is as
follows:

SELECT A1, A2, An FROM R
GROUP BY A1, A2, An
HAVING agg fun() op T

 In above Iceberg query, R is relation with attributes (A ,
A , A), op is operand (<,>,==, ≥,≤.etc) and T is user
specified threshold.

Example1: A college principal wants the information about
all branches which have exactly 50 admissions. Then the
query can be written as:

SELECT Branch Name, COUNT() from Admission
GROUP BY Branch Name HAVING COUNT()==50
 In this Iceberg query, COUNT() is an aggregate
function and 50 is the user-specified threshold.

 In order to compute Iceberg queries over large data, the
computation demands more main memory as there are many
distinct group aggregate values needed to be stored. To
maintain a counter in main memory for each of distinct
aggregate values, it consumes time more as the result-set of
Iceberg queries is a collection of small sets (this is a tip of
Iceberg query).
 The general strategies to execute iceberg queries are:

1) Sort the aggregated attributes, calculate the aggregate
function and finally, apply threshold constraint. Accord- ing
to [11], [25] and [15], all existing modern databases (For
example: Oracle, SQL Server, PostgreSQL, Sybase, and
column-oriented databases including MonetDB, LucidDB,
and Vertica) follow the same aforementioned procedure.
2) Maintain a counter for the each distinct group value.

 The first method was not efficient for large datasets
because sorting procedure requires many swapping and
comparisons. The second method needs to maintain many
counter variables. For example, the aggregated attributes
namely A, B, C whose cardinalities are 1000, 1000, and
1000 respectively. Then the number of counter variables
needed is 1000*1000*1000=1000 million. It is difficult to
maintain these counter variables in main memory especially
when the dataset is large.
 In literature, the tuple scan-based approach [4], which
focuses on reducing the number of passes when data size is
large, requires at least one table scan to read data from disk.
It takes time to answer Iceberg queries more because it does
not leverage the property of Iceberg queries. Fern et al. [10]
designed a two-level index to process the Iceberg queries
which suffer from the massive empty bitwise-and, which
was addressed by [26] using dynamic pruning algorithm.
 Different index techniques used for improving the query
execution indexes are: value list, projection index, and
bitmap indexes. For MIN and MAX Iceberg queries, bitmap
index gives the best performance [17]. In this paper, we used

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

r

Pallam Ravi and D. Haritha/Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

 203

bitmap indexes. Each bitmap index represents a sequence of
bits: 1 and 0s, bit 1 in nth position represents the presence of
attribute value in nth record and bit 0 in nth position in the
sequence represents the absence of attribute value in nth
record. In table- 1, an attribute distinct value A1’s bitmap
sequence is 1010010.
 Some aggregate functions will have anti-monotone
property [23]. The anti-monotone property is defined as
follows: if sub set does not satisfy the constraint then its
superset also never satisfies the constraint. Like SUM, MIN,
MAX and COUNT, in general, Iceberg queries have
Equal[24] and Range[23] type queries, with use of bitmap
indexes. To answer Rang query in example, it needs six
BITWISE AND operations namely (A1, B1), (A1, B2), (A1,
B3), (A2, B1), (A2, B2) and (A2s, B3).
 But, it is not effective because high cardinality aggregate
values have large number of unique values. When we use
anti-monotone property[2], it reduces the number of
BITWISE AND operations to two only, namely (A2 ,B1)
and (A2 ,B3). We find MIN and MAX aggregation with
monotone property and it has special property which we
identified called value- based (see Section 3). By using this
value-based property, there is no need to perform bitwise
operations among bit map indexes of A and B. It requires
selection operation on mark attribute to answer the iceberg
query.
 The compression bitmap methods [24],[3],[8] and
encoding strategies [19] have further broadened the
application of bitmap indexes. Bitmap indexes are can be
applied to all types of attributes (For example, high-
cardinality categorical attributes[23], text attributes[20] and
numeric attributes[23],[19]). These representations improve
the performance of bitwise operations.
 The studies [24] and [3] revealed that the bitmap indexes
occupy less space than the raw data and best for range
queries[23] and keyword queries[20] and equal queries[24].
It gives better query computation. The bitmap index can be
supported by DBMS including Oracle, Sybase etc. The
column-databases systems (For example, Vertica, C-
store[21], LuciDB) have default bitmap index option.
 Word-Aligned Hybrid(WAH) [24] and Byte-aligned
Bitmap Code(BBC) are compression schemes, which used
query processing without decompression to improve the
bitmap operations.
 For numeric attributes, bitmaps are created by the values
represented as n-bit binary numbers then slice the bits
positions of 20,21,22...2n into the bitmap. In Table-1, the
value at 20 position bitmaps is 1001011 and 21 position
bitmap is 1110101.

2. Related Work

The first work on iceberg queries proposed by Fang et al.[9]
included various combinations of sampling and hashing
techniques by extending the probabilistic techniques hybrid
and multi-bucket algorithms in [22]. The disadvantages of
these methods are (a) the result set contains” false positive”
and “false negative”, (b) it is not effective because it uses the
tip of Iceberg queries and (c)it does not work for MIN,
MAX, and AVERAGE aggregate functions. To solve these
problems, Average Iceberg Queries design partitioning
algorithm [4] is the better choice.
 The aim of Iceberg cube computation algorithm is to
minimize the shared computation. To reduce the time of
cube generation, one can select a proper order of computing

an aggregate by combining the aggregate attributes. It is
studied in [6],[1],[12], and [10]. An Iceberg query has the
different goal of speeding up the processing of single query.
 To improve the performance of MIN, MAX and
AVERAGE aggregate functions, K.P.Leela [2] proposed
SHA and HHA algorithms which ,in turn, used two phase
multi-way merge sort[3]. It computed the aggregate function
in merge phase, applied the constraint with highly skewed
distribution at- tributes and low and high queries. In [26], the
authors proposed dynamic pruning algorithm to compute the
Iceberg queries by using bitmap index data structure which,
in turn, reduced the number of BITWISE AND operations
and eliminated empty BITWISE AND operation for
grouping the target attributes by using anti-monotone
property and vector alignment algorithm[26]. But it did not
use Value-based Property of MIN and MAX functions to
answer MIN and MAX Iceberg queries. For evaluating non
anti-monotone aggregate Iceberg queries, one can use
bitmap number [27]. It can help in reducing the sorting time
as it requires only one scan of data and there is no need of
computing intermediate candidate sets and aggregate values,
which do not use anti-monotone and Value-based Property
of MIN and MAX aggregate functions to answer the MIN&
MAX Iceberg queries.
 These algorithms require various operations including
sorting, candidate set computation and sampling. By using
these operations, we can not compute result set directly. We
can compute result directly by sorting bits. This computation
takes many comparisons which is time consuming. We can
reduce the time by using “Value-based” property of MIN
and MAX functions.

3. Value-Based Property

We identify the special property of MIN and MAX
aggregate functions. We called it as value-based. Value-
based property is defined as follows: if an attribute (A) value
in the record satisfies the aggregate condition then it is
included in the result set.

 We define Value-based property as follows:

Let r is record of
relation R, If r[A] op T
is True
Then MIN (A)/MAX(A) op T is also
True so add r to the result set,op is
operator (>, <, ==,... etc)

 In literature, as per our knowledge, there are no
algorithms using ”Value-based” property for answering
Iceberg queries constrained on MIN and MAX aggregate
functions. By using this property, we can eliminate
intermediate computations of aggregate values and
candidate set generation, which we explained in Example
2.

Example 2: Teacher wants to find out names of the
subjects which are in paper-1 and paper-2 sets and in
which students are getting marks > 20.

SELECT paper-1, paper-2, MAX(marks) FROM R
GROUP BY paper-1, paper-2 HAVING
MAX(marks)>20

Pallam Ravi and D. Haritha/Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

 204

Here marks represents total marks of paper-1 and paper-
2.

A. Value-based method
Find out marks>20 records in relation Table 1, the result
set Table 3, is subset of records having marks>20 in Table
2.

Table 1. Relation Table :R
Roll no Paper-1 Paper-2 Marks

1 A1 B1 19
2 A2 B3 22
3 A1 B2 15
4 A2 B1 25
5 A2 B3 18
6 A1 B1 17
7 A2 B1 23

With bitmap indexes, it is needed to compute MAX

aggregation value (at most of the Paper-1 cardinality *
Paper-2 cardinality) six times and the computation
requires BITWISE AND between aggregate attributes. By
using value-based property, there are no intermediate
computations of MAX and MIN aggregate value

Table 2. Records having marks>20

A2 B3 22
A2 B1 25
A2 B3 22
A2 B1 25

Table 3. Results records

A2 B3 22
A2 B1 25
A2 B1 23

Theorem 1:
S = x / x,∀ x ∈ r[a] > T

R = x / x, ∀ x ∈ MIN(MAX)(a) >
T Then R ⊂ S .

 We proposed a method called Value Min Max (see
Algorithm 1) for avoiding the computations needed for
intermediate computation of aggregate values and
eliminating BITWISE AND operations to find
candidate sets.

Algorithm 1 Value Min Max

1: Input: Aggregate constraint(T); Bitmap slices
represent- ing aggregate attribute values

2: Output: Records satisfying the aggregate constraints
3: Select the records with aggregate attributes satisfying

the aggregate constraint (MIN/MAX)
4: compute Aggregate function (MIN/MAX)
5: Eliminate duplicate records
6: Return records

 In step-2 (line 4), we need to combine same district
target attributes sets. it requires small amount of time
because Iceberg query results set size is 5% to 10% of a
distinct group of data. So, it is computed with less
amount of main memory and CPU time.

By using the bitmap numbers generated by bitmap

numbers algorithm [5], which is described by
Algorithm 2, we can improve the step-1&2 in Value
Min Max algorithm. We find out the records satisfying
the constraints by simple BITWISE AND and NOT
operations and compute aggregate function effectively.
The aggregate conditions are Equality condition and
Range condition.

1.EQUALITY AND RANGE QUERIES

Equality and not Equality: MIN(A=T) , MAX(A=T),
MIN(A!=T) = NOT(MIN(A=T))

MAX(A!=T) = NOT(MAX(A=T))

Range: MIN(A >= T), MAX(A >= T),MIN(A <=
T), MAX(A <= T), MIN(A < T),

MAX(A > T).
The other range conditions are converted into another

form like below

Algorithm 2 bitmap numbers

1: Input: aggregate attributes values(v1,v2,...,vn)
2: Output: bitmaps (P1,P2,...,Pk)
3: for i=1 to n do
4: vi=(bk,...,b2,b1)
5:for j=1 to n do
6: if bi==0 then
7: Pi=0

8: else
19: Pj=1

MIN(A > = T) = MIN(A > T-1)
MIN(A <= T) = NOT(MIN(A > T))
MIN(A < T)= NOT(MIN(A > -T)) or NOT(MIN(A >
T-1))
It is also applied to MAX function.

We develop algorithms namely Rang op t and Equal op
T to compute Range (For example, A>T) and equal
queries. These two are explained in next two sections.

A. Equality Condition
Equality conditions are computed as: Let T=(bk,...,b2,b1), P
= sequence of all 1s with length n(number of records) and
aggregate attribute values represents bitmaps slice those
bits position are 21, 22,...,2k (Pk,...,P2,P1), BITWISE AND
between bitmaps, change P based on threshold bits values,
if bi=0 then perform NOT of P else simple use P only, for
example, T=101 then perform P3^P2^P1. finally, we get n
bits sequence of 1s and 0s, bit 1 represents nth record have
equal value, these processes are represented in Equal op T
algorithm (See Algorithm 3).

Algorithm 3: Equal op T

1: Input: aggregation attribute values bit
 maps slices(Pk,...,P2,P1)

2: Output: sequence of 1s, 0s, nth bit 1 of length n, nth

record have equal value.
3: for i=1 to n do
4: if bi==0 then
5: else
6: P =P AND Pi

Example-3: Teacher want find out subject names in
paper-1 and paper-2 where students getting max marks
of 20.

Pallam Ravi and D. Haritha/Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

 205

SELECT paper-1, paper-2, MAX (marks) FROM R
GROUP BY paper-1, paper-2 HAVING

 MAX (marks) == 22.
T = 22 (10110) = bk, ..., b2, b1

We compute P value using following expression
Finally we get P = (0100000), in tableIV,P have bit 1 at

position record id=2
B. Range Condition

Range Iceberg queries are computed as follows. Let
T=(vk, v2, v1)2, P= sequence of all 0s with length
n(number of records) and aggregate attribute values
represent bitmaps slice those bits position are 21, 22, .2k
(Pk, P2, P1), it maintain PI and PT two intermediate
bitmaps then perform PI = PI AND PK until find most
significant 1 bits in threshold value bits
(V) then based on V bits if Vi =1 perform PT =PT AND
Pi
, if Vi =0 PU =PT AND Pi and PI =PI OR PU , these
process represent in Range op T algorithm.

Algorithm 4 :Range op T

1: Input: n:number of records; Pk,...,P2,P1: Array of
bits on which aggregate value is computed; PI :
sequence of 0s; V1,V2,...,Vk binary represent of
threshold value T

2: Output: PI: array of bits (0,1), 1 indicates > T
3: k=1
4: while Vk!=0 do
5: PI =PI AND Pk
6: k=k+1
7: PT =Pk
8: for i=k+1 to n do

9: if Vk==1 then
10: PT =PT AND Pi
11: else
11: Pu=PI AND Pi
13: PI =PI OR Pu

Example 4:
SELECT paper-1, paper-2, MAX (marks) FROM
paper-1, paper-2 HAVING MAX(marks) > 20
T=20 (10100) = V1, V2, V3, V4, V5

 Finally bit 1 in PI represent all records which satisfy
the conditions which shown in table IV.

5. Application On Large Data

For large data, bit slice vectors are not able to be stored in
main memory. Our algorithms can work on large data.
The framework of proposed method is depicted by
Fig.1.
 As shown in Fig.1, the stage-1 partitions the data so
that each partition can be stored in main memory. After
partitioning data, our algorithms are run on each partition
separately in stage-2. Finally, Stage-3 combines all
results produced from Stage-2.

5. Experiment

In this section, we present the results of experiment
conducted and compare them with IcebergDP
algorithm. We tested the proposed algorithm using
synthesized data of a different number of tuples and
different values ranges. But, Iceberg queries, in general,
are not affected by value distributions[11],[25],[15].
 We experimented the proposed Equal and Range
Algorithms with different volumes of data (in terms of
tuples), threshold (in terms of bits to represent it) and
Attribute value range(in terms of bits). The proposed
algorithm scale with respect to data size and its
independence to distinct groups, distinct values range and
number of attributes in a relation.

Table 4. Result Of Equal Query

 Marks BIT ARRAY
P5,P4,P3,P2,P1 P b1=0

P=P AND P1
b2=1

P=P AND P2
b3=1

P=P AND P3
b4=0

P=P AND P4
b5=1

P=P AND P5
1 19 10011 1 0 1 0 0 0
2 22 10110 1 1 1 1 1 1
3 15 01110 1 1 1 1 0 0
4 25 11001 1 0 0 0 0 0
5 18 10010 1 1 1 0 0 0
6 17 10001 1 0 0 0 0 0
7 23 10111 1 0 0 0 0 0

Table 5.Result of Range query
Id Marks BITARRAY

P1, P2, P3, P4,
P5

PI V1=1 PT = P1 V2=0
PI = PI OR
(PT AND P2)

V3=1
PT = PT AND
P3

V4=0
PI = PI OR
(PT AND
P4)

V5=0
PI = PI OR
(PT AND
P5)

1 19 10011 0 1 0 ∨ 1∧0=0 1∧0 = 0 0 ∨ 0∧ 1=0 0 ∨ 0∧ 1=0
2 22 10110 0 1 0 ∨ 1∧0=0 1∧ 1 = 1 0 ∨ 1∧ 1=1 1 ∨ 1∧ 0=1
3 15 01110 0 0 0 ∨ 0∧ 1=0 0∧ 1 = 0 0 ∨ 0∧ 1=0 0 ∨ 0∧ 1=0
4 25 11001 0 1 0 ∨ 1∧ 1=1 1∧ 0 = 0 1 ∨ 0∧ 0=1 1 ∨ 0∧ 1=1
5 18 10010 0 1 0 ∨ 1∧ 0=0 1∧ 0 = 0 0 ∨ 0∧ 1=0 0 ∨ 0∧ 0=0
6 17 10001 0 1 0 ∨ 1∧ 0=0 1∧ 0 = 0 0 ∨ 0∧ 0=0 0 ∨ 0∧ 1=0
7 23 10111 0 1 0 ∨ 1∧ 0=0 1∧ 1 = 1 0 ∨ 1∧ 1=1 1 ∨ 1∧ 1=1

Pallam Ravi and D. Haritha/Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

 206

Fig. 1 Framework for proposed method

A.Experimental Setup
The experiments are conducted on a machine with an Intel
i3 processor and 4 GB RAM running on Windows 10. The
algorithms are implemented in Java.

In our experiment, we assume that binary representation
(bit slice) of the aggregated attributes have built-in offline.
This is a reasonable assumption because it takes less than
one minute in building the binary representation of 10
million tuples.

B. Performance of Range and Equal algorithm on different
Number of tuples
We experimented with 2,4,6,8 and 10 million tuples of
synthesized data using constraint threshold and aggregate
attribute size. For 10 million tuples, we could execute the
query in 16 milliseconds, for equal type query 17
milliseconds, for Range type query which is more efficient
than IcebegDP algorithm [26] which takes 18 minutes. It
means that the total computation time is drastically reduced
from 18 minutes to 17 mile seconds. This is because of there
is no need of computing intermediate aggregate values and
used BITWISE AND, OR operations to answer Iceberg
queries depicted by Fig 2 & fig 3.

Fig.2. Perfomance graph for no. of tuples (millions).

C:Performance of Range and Equal algorithm of different
thresholds
In this study, we experimented with 10 million tuples of data
keeping threshold value constant. With 20,40,60 and 100
bits assigned to aggregate attribute values, we executed
range query in 17 mile seconds which is constant for all
values of aggregate attribute, but equal Iceberg query is

linearly depend- ing on number of bits which is executed in
63 milliseconds for 100 bits used for Aggregate Attribute
values, which is depicted by Fig. 4.In fig 5 Performance
graph in terms of aggregate different threshold values of
range and equal algorithm using 10 million records ,keep
threshold value constant ,change no of tuples ,the
performance shows in fig 6.

Fig. 3 Comparison graph of proposed and existing algorithms

Fig 4. Performance graph in terms of aggregate attribute(no of Bits)
values of range and equal algorithm

Fig 5. Performance graph in terms of aggregate different threshold
values of range and equal algorithm

Pallam Ravi and D. Haritha/Journal of Engineering Science and Technology Review 12 (6) (2019) 202 - 207

 207

Fig 6. Performance graph of range and equal algorithm on different no
of tuples

6. Conclusion

With value-based property of MIN / MAX Aggregation

functions, we reduced the computation time of MIN
/MAX Iceberg queries up to 98% with our Equal and
Range algorithms. These work on bits slices of attributes
values. Our algorithms are independent of the number of
attributes and number of distinct groups in datasets.
There is no intermediate computation of aggregate values
which improved computation of the aggregate value of
MIN and MAX algorithm.
 The range type queries are independent of the
threshold value and a number of bits used to aggregate
attribute values. Our algorithms are good with data of any
size. For large data, first, it needs to be partitioned, later,
the query with our algorithms apparently on part of data
needs to be executed and finally, result sets are to be
combined.In the future, we will work on reducing the
computation time of large vector of bits for performing
Bitwise AND, OR and NOT operations.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution License

References

[1] S.Agarwal, R.Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, and S. Sarawagi. ”On the computation
of multidimen- sional aggregates.” In VLDB, vol. 96, pp. 506-521.
1996.

[2] R.Agrawal, T.Imieliski, and A.Swami. ”Mining association rules
between

[3] sets of items in large databases.” In Acm sigmod record, vol. 22,
no. 2, pp. 207-216. ACM, 1993.G.Antoshenkov. ”Byte-aligned
bitmap compression.” In Data Compres- sion Conference, 1995.
DCC’95. Proceedings, p. 476. IEEE, 1995.

[4] J.Bae and S.Lee. ”Partitioning algorithms for the computation of
average iceberg queries.” Proc. Second Intl Conf. Data
Warehousing and Knowl- edge Discovery (DaWaK), pp. 276-286,
2000.

[5] M. Beeler, R.W. Gosper, and R. Schroeppel, HAKMEM, technical
report, Massachusetts Inst. of Technology, Cambridge, 1972.

[6] K.S. Beyer and R. Ramakrishnan, Bottom-Up Computation of
Sparse and Iceberg CUBEs, Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 359-370, 1999.

[7] C.Y. Chan and Y.E. Ioannidis, Bitmap Index Design and Evaluation,
Proc. ACM SIGMOD Intl Conf. Management of Data, 1998.

[8] F. Deliege and T.B. Pedersen, Position List Word Aligned Hybrid:
Optimizing Space and Performance for Compressed Bitmaps, Proc.
Intl Conf. Extending Database Technology (EDBT), pp. 228-239,
2010.

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D.
Ullman, Computing Iceberg Queries Efficiently, Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 299-310, 1998.

[10] A. Ferro, R. Giugno, P.L. Puglisi, and A. Pulvirenti, BitCube: A
Bottom-Up Cubing Engineering, Proc. Int’l Conf. Data
Warehousing and Knowledge Discovery (DaWaK), pp. 189-203,
2009.

[11] G. Graefe, Query Evaluation Techniques for Large Databases,
ACM Computing Surveys, vol. 25, no. 2, pp. 73-170, 1993.

[12] J. Han, J. Pei, G. Dong, and K. Wang, Efficient Computation of
Iceberg Cubes with Complex Measures, Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 1-12, 2001.

[13] M. Jrgens, Tree Based Indexes versus Bitmap Indexes: A
Performance Study, Proc. Intl Workshop Design and Management
of Data Warehouses (DMDW), 1999.

[14] D.E. Knuth, The Art of Computer Programming, second ed
Addison- Wesley Professional, Jan. 1973.

[15] P.-A. Larson, Grouping and Duplicate Elimination: Benefits of
Early Ag- gregation, Technical Report MSR-TR-97-36, Microsoft
Research, 1997.

[16] K.P. Leela, P.M. Tolani, and J.R. Haritsa, On Incorporating Iceberg
Queries in Query Processors, Proc. Intl Conf. Data-base Systems
for Advances Applications (DASFAA), pp. 431-442, 2004.

[17] P.E. ONeil, Model 204 Architecture and Performance, Proc. Intl
Work- shop High Performance Transaction Systems (HPTS), pp.
40-59,1987.

[18] P.E. ONeil and G. Graefe, Multi-Table Joins through Bit-mapped
Join Indices, SIGMOD Record, vol. 24, no. 3, pp. 8-11, 1995.

[19] P.E. ONeil and D. Quass, Improved Query Performance with
Variant Indexes, Proc. ACM SIGMOD Intl Conf. Management of
Data, pp. 38- 49, 1997.

[20] K. Stockinger, J. Cieslewicz, K. Wu, D. Rotem, and A. Shoshani,
Using Bitmap Index for Joint Queries on Structured and Text Data,
Annals of Information Systems, vol. 3, pp. 1-23, 2009.

[21] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M.
Ferreira, E. Lau, A. Lin, S. Madden, E.J. ONeil, P.E. ONeil, A.
Rasin, N. Tran, and S.B. Zdonik, C-Store: A Column-Oriented
DBMS, Proc. Intl Conf. Very Large Data Bases (VLDB), pp. 553-
564, 2005.

[22] K.-Y. Whang, B.T.V. Zanden, and H.M. Taylor, A Linear-Time
Prob- abilistic Counting Algorithm for Database Applications,
ACM Trans. Database Systems, vol. 15, no. 2, pp. 208-229, 1990.

[23] K. Wu, E.J. Otoo, and A. Shoshani, On the Performance of Bitmap
Indices for High Cardinality Attributes, Proc. Intl Conf. Very Large
Data Bases (VLDB), pp. 24-35, 2004.

[24] K. Wu, E.J. Otoo, and A. Shoshani, Optimizing Bitmap Indices
with Efficient Compression, ACM Trans. Database Systems,vol.
31, no. 1, pp. 1-38, 2006.

[25] W.P. Yan and P.-A. Larson, Data Reduction through Early Grouping,
Proc. Conf. Centre for Advanced Studies on Collaborative Research
(CASCON), p. 74, 1994

[26] B.He,H-I.Hsia,Z.Liu,Y.Huang and Y.Chen Efficent computing
Iceberg queries using compresed bitmap index IEEE
TRANSACTION ON KNOWLEDGE AND DATA
ENGINEERING,2012‘

[27] Y.Cui, W.Perrizo ”Aggregate Function Computation and Iceberg
Query- ing in Vertical Database”,Computers and Their
Applications,2006

