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Abstract 
 

Occurrence and relevant risks of cyanobacteria blooms have been increasing continuously in the world wide. Monitoring 
on spatial and temporal distribution changes of cyanobacteria blooms has been the key of environmental monitoring. In 
particular, spatio-temporal distribution of cyanobacteria blooms in complicated small inland water areas changes so 
frequently and a more accurate inversion monitoring method and product was required with the fact that quality of 
inversion results of existing major optical remote sensing monitoring means is determined by the source images. Due to 
mutual restraints of temporal, spatial and spectral resolution of satellite images, common multispectral images cannot 
realize high-accuracy monitoring in complicated small inland water areas. A method to improve inversion accuracy and 
spatial resolution of inversion products was carried out in this study. Based on multisource image data, inversion models 
of chlorophyll a (Chl-a) and cyanobacterial biomarker pigment phycocyanin (PC) concentration in Lake Chaohu were 
constructed with the image fusion algorithm and machine learning algorithm. Effects of increasing spatial scale of source 
image on inversion accuracy were verified by comparing accuracy of the inversion models based on fusion image and 
original moderate-resolution imaging spectroradiometer (MODIS) images in the same period under the same conditions. 
Moreover, inversion mapping with high accuracy and high spatial scale was accomplished for several days successively. 
Results demonstrate that accuracy of the inversion model be increased with improving spatial resolution of source images, 
which further increased spatial scale of inversion products significantly. This study provides a feasible and effective 
method to realize high-accuracy monitoring of cyanobacteria blooms in small-scaled but complicated inland water 
environment. 
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1. Introduction 
 

Fresh water resources are closely related with production 
and daily life of human. Lake and reservoir are main water 
sources in inland China. Nevertheless, water quality in lakes 
and reservoirs declines significantly in the past decades and 
1/3 reservoirs in China are suffering eutrophication day by 
day [1]. Cyanobacteria blooms happen successively, which 
threatens the drinking water source and water ecological 
environment, and causes inestimable losses [2]. Compared 
with traditional field sampling and laboratory water analysis 
method, optical remote sensing satellite data become the first 
choice for monitoring over cyanobacteria blooms due to the 
high frequency, large scale and easy availability [3]. 

In fact, the complicated spatial-temporal characteristics 
of algal blooms during monitoring based on remote sensing 
mean restrict selection of satellite image source for inversion. 
Currently, Landsat images with a spatial resolution of 30m 
in Landsat Thematic mapper (TM) /enhanced thematic 
mapper (ETM+), MODIS and medium resolution imaging 
spectrometer (MERIS) images which are used in most 
studies of water environment based on remote sensing mean 
are inapplicable to inversion monitoring of cyanobacteria 

blooms, because of the poor spectral resolution and 16-day 
revisiting period. The MERIS images with a spatial 
resolution of 300m/1200m and 3-day revisiting period were 
stopped running in 2012 and cannot meet requirements for 
current environmental monitoring. In contrast, MODIS 
images with a spatial resolution of 250m/500m/1000m and 
1-day revisiting period were more applicable to inversion 
monitoring of algal blooms. Nevertheless, inversion 
products based on coarse resolution images (e.g. MODIS) 
cannot reflect spatial-temporal distribution of algal blooms 
in small-sized inland water areas accurately. Moreover, the 
inland water environment is complicate and the spatial 
heterogeneity of coarse resolution images also may decrease 
inversion accuracy. Hence, single-source hyperspectral 
images with coarse resolution are inapplicable to monitor 
small-scaled algal blooms. 

On this basis, existing studies on inversion of 
concentration of cyanobacteria blooms were reviewed [4,5]. 
Currently, accuracy and spatial scale of major inversion 
methods are determined by source images involved in the 
inversion. With considerations to high requirements of water 
inversion on spectral resolution and mutual restraints of 
spatial, temporal and spectral resolutions of remote sensing 
images, it is difficult to increase inversion accuracy and 
spatial scale of inversion products by using single-source 
coarse resolution images. Therefore, how to increase spatial 
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scale of inversion products by using existing multispectral 
images and decrease influences of spatial heterogeneity of 
complicated water environment on inversion accuracy is a 
problem that has to be solved urgently. 
 
 
2. State of Art 
 
Studies on monitoring inland water mainly focus on middle 
and small-sized water areas. Under this circumstance, spatial 
scale of images is the main factor that influences inversion 
results.  

Scholars have reviewed abundant existing studies on 
spatial scale and accuracy of water inversion. Some major 
problems were summarized as follows: (1) for middle and 
small-sized water areas, coarse resolution images like 
MODIS data could cover the whole water area by dozens of 
pixels [6], thus resulting in very large inversion monitoring 
error of cyanobacteria blooms [7]. High-resolution images 
like Landsat data fail to meet monitoring needs due to the 
poor spectral and temporal resolutions. (2) Floating algal 
plaques might be smaller than single pixel of images, which 
bring estimation errors of algal bloom concentration [8]. In 
addition, spatial heterogeneity of water surface caused by the 
complicated water environment and spatial scale effect in 
remote sensing inversion of water quality properties caused 
by spatial heterogeneity could further influence inversion 
monitoring based on coarse resolution images [9].  

Under this circumstance, spatial resolution (500m) of 
MODIS images could not meet requirements of higher 
accuracy in inland water monitoring. Bonansea et al. tried to 
estimate water quality directly by using multi-time phase 
and high-spatial resolution Landsat images [10]. Although 
they could gain high spatial scale, temporal and spectral 
resolutions of Landsat satellite images were inapplicable to 
the changing and complicated inland water environment [11]. 
When studying influences of spatial scale, Hu et al. pointed 
out that estimation accuracy of algal bloom concentration 
was influenced significantly by hybrid pixel images 
containing algae on water surface [12], moreover, they 
proposed a linear pixel non-hybrid algorithm to improve 
estimation accuracy of algal coverage in Lake Taihu. 
Shanmugam et al. estimated algal coverage on sea surface 
below the hybrid pixels by using similar algorithms [13]. 
However, this algorithm was still restricted by low spatial 
resolution. On this basis, Zhang et al. proposed a pixel 
growth algorithm to improve the possible scale effect of 
coarse resolution images by increasing spatial resolution of 
inversion products [14], and Qi et al improved this algorithm 
to increase the inversion accuracy greatly [15]. In this study, 
spatial scale of images was improved from the perspective of 
source images directly by using image fusion method. 

In addition, there are abundant research fruits to improve 
inversion of chlorophyll concentration or concentration of 
cyanobacteria blooms based on MODIS Terra/Aqua data. 
Various models and algorithms from the simplest empirical 
regression model [16] to semi-analysis model based on 
chlorophyll concentration [17], from the edition analysis 
algorithm of Chl-a [18] to the three-waveband model [4] and 
waveband ratio model [14], even to indexes (e.g. normalized 
difference vegetation index (NDVI), enhanced vegetation 
index (EVI), floating algae index (FAI), PC and baseline 
normalized difference bloom index (BNDBI) related with 
Chl-a and PC concentrations, all devoted to increase the 

inversion accuracy [19-22]. Due to setting of spectral bands 
of images, PC index that can represent phycocyanobilin cells 
is only applicable to MERIS images. Indexes like NDVI, 
EVI are very sensitive to characteristics of aerosol and sun 
lights. Hence, inversion accuracy of models based on these 
indexes was influenced significantly by different 
environmental factors [23-25]. By contrast, FAI which 
involves near-infrared and middle-infrared bands can adapt 
to various environments better. Existing indexes and 
multisource images are influenced by environmental 
changes. Therefore, Fang et al. tried to improve accuracy of 
multisource inversion based on mutual complementation of 
different data sources [26]. Liang et al. constructed a 
decision-making tree by using FAI, turbidity water body 
index (TWI) to increase extraction accuracy of algal blooms 
[27]. The method to increase monitoring accuracy of 
cyanobacteria blooms based on cooperation of multisource 
data has achieved good effects. 

Above studies mainly focus on improvement of spatial 
scale and accuracy of water inversion, but rare studies have 
improved accuracy of inversion products directly. In this 
study, inversion accuracy of cyanobacteria blooms and 
spatial resolution of inversion products were increased in 
order to realize high spatial-temporal resolution and high-
accuracy inversion of small inland water areas. Here, 
multisource remote sensing images were integrated by 
spatial-temporal-spectrum fusion algorithm, thus acquiring 
continuous fusion images with both high spatial and high 
spectral resolution. It increased spatial resolution of 
inversion products and decrease error of scale effect under 
coarse resolution from the perspective of image source. 
Later, accuracy of the inversion model was increased by a 
multi-index collaborative model. This study is to propose a 
convenient and accurate quantitative inversion mapping 
technique of cyanobacteria blooms to accomplish high-
accuracy continuous inversion monitoring in complicated 
small-scaled water environment. 

The rest of this study is organized as follows. Section 3 
establishes the Spatial-Temporal-Spectral fusion model and 
proposes the method for improving inversion accuracy and 
spatial resolution of inversion products Section 4 discusses the 
comparison of inversion results. Section 5 summarizes the 
conclusions. 
 
 
3. Methodology 
 
3.1 Study area 
Lake Chaohu (east longitude 117°24'-117°90' north latitude 
31°40'-31°72') is one of five largest freshwater lakes in 
China. The water depth 0.98 ~ 7.98m and the water area was 
760km2. The region where Lake Chaohu locates in has about 
150 rainy days in one year and about 210 drought days [28]. 
Lake Chaohu was famous for its beautiful scenes and 
relevant economic activities like the fishing prosperity 
before 1960s [29]. Surrounding cities of Lake Chaohu 
achieved quick population growth and rapid economic 
development in recent decades. Various types of wastewater 
rich of organic nitrogen and phosphorus expose lakes to 
eutrophication, thus resulting in frequent occurrence of 
cyanobacteria blooms [30,31]. Such situation of Lake 
Chaohu has attracted key attentions of lake monitoring and 
governance in China in recent years. 
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Fig. 1. Location and distribution map of Lake Chaohu, China. And the distribution of 15 sample points adopted. 
 
3.2 Data 
 
3.2.1 Field data 
Distribution of field sampling points of water quality data in 
Lake Chaohu is shown in Fig.1. In each sampling process, 
samples were collected from 15 points which were 
distributed evenly in west, middle and east regions of the 
Lake Chaohu. This assures the comprehensive and uniform 
data about water quality in the Lake Chaohu. Samples were 
collected on January and April, 2015 as well as December, 
2016, respectively. A total of 45 samples were collected. 
 

 
Sample data mainly concentrated in winter and spring 

when cyanobacteria blooms in the Lake Chaohu were in the 
dormancy. Water samples were all collected by a standard 
2L polyethylene collecting instrument from water surface 
(about 30cm depth). Water quality parameters were tested by 
a standard test mean in laboratory. 

PC used the standards of Sigma Company as the 
reference and it was tested by a spectrophotometer 
(Shimadzu RF-5301, 620nm excitation and 647nm 
emission). Chl-a was measured by the spectrophotometry 
recommended by NASA [32]. 

 
Table 1. Water quality properties collected in Lake Chaohu. Chl-a: chlorophyll-a; PC: Cyanobacteria phycocyanin 
pigments 

 
Data 

 
N 

Chl-a (μg / L) PC (μg / L) PC : Chl-a 

Mean Range Mean Range Mean Range 
20150117 15 57.96 22.44 - 138.55 51.31 9.85 - 321.27 1.02 0.1 - 4.11 
20150414 15 22.37 6.85 - 85.87 31.46 8.88 - 113.33 1.51 0.53 - 2.31 
20161207 15 26.13 6.78 - 54.53 67.38 9.85 - 136.93 5.33 0.19 - 20.3 
 

3.2.2 Image data 
In this study, satellite surface reflectivity product which was 
downloaded free from NASA was applied and 90-scene 
images were collected in three months, including surface 
reflectivity data (MOD09GA) and surface temperature data 
(LST). Temporal images with heavy cloud coverage in the 
study area were eliminated after preprocessing, thus getting 
continuous daily MODIS images. Besides, three scenes of 
ETM with high spatial resolution (20150120, 20150426 and 
20161208) without cloud coverage in the corresponding 
periods and images were downloaded as the fusion reference 
images. Detailed information of the corresponding sensor is 
shown in Fig.2. 

Since spectrum is based on MODIS images after image 
fusion, image wavebands were selected according to spectral 
setting characteristics of MODIS images.  

Due to the complicate atmospheric and water 
environments in Lake Chaohu, the marine waveband of 
MODIS images may be saturated and it was omitted in this 
study. Dynamic ranges covered by wavebands (645nm and 
859nm) of the 250m MODIS images and wavebands 
(469nm, 555nm and 1240nm) of 500m MODIS images were 
higher than that of marine wavebands, it was hardly to have 
saturation phenomenon in turbid water areas [33].  

Moreover, the wavelength was applicable to calculation 
of parameters in the selected model. In this study, five 
wavebands of 469nm, 555nm, 645nm, 859nm and 1240nm 
were chosen as the research wavebands. 

Table 2. Information of Satellite sensor 
Satellite Sensor Spatial resolution / m Revisit cycle / d Band Spectrum 

Terra MODIS 250/500/1000 1 16 405 - 2155 
Landsat-7 ETM+ 30 16 7 450 - 2350 

 
3.3 Spatial-Temporal-Spectral Fusion Model 
Due to influences of signal-to-noise ratio (SNR) of images, 
data storage and transmission, optical diffraction limit, 
single-source remote sensing images cannot possess 
satisfying spatial, spectral and temporal resolutions due to 
mutual restraints [34]. In practical applications, inversion of 
water quality properties has high requirements on spectral 
resolution and it is only applicable to single-source remote 
sensing images for inversion of water quality properties. 
This inversion mapping has high inversion accuracy, but the 

spatial resolution of inversion products is generally very low. 
Moreover, the temporal resolution at continuous monitoring 
cannot meet requirements completely. This may represent 
very great disadvantages in continuous monitoring of 
complicated small-scaled inland water areas. Hence, 
multisource images were applied and supplemented to 
increase the inversion accuracy [23]. 
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Fig. 2. Frame of Spatial-Temporal-Spectral fusion model. 
 

Spatial-temporal-spectral fusion model can make 
complementary advantages of spatial, spectral and temporal 
information of multisource remote sensing images and the 
fusion images with high spatial-temporal-spectral resolution 
can meet high requirements on image resolutions [35]. This 
fusion model is constructed based on the Bayes maximum 
posterior probability theoretical framework. The basic 
framework is shown in Fig.2. Y is the spatial degradation 
observation images with low spatial resolution, but high 
spectral and temporal resolutions. In the laboratory, MODIS 
images were used as the reference images. Z is images with 

high spatial resolution, but low spectral and temporal 
resolutions. In the laboratory, ETM + images were used as 
the reference. 

In the present study, two sensors were integrated. The 
image fusion process is shown in Fig.3. ETM+ images (30m) 
of Time A and MODIS surface reflectivity images (500m) 
were used as the reference images. Sequence of wavebands 
of MODIS images has to be adjusted to form a mapping 
relation of spectral setting with ETM+ image spectral setting 
and spectral range. MODIS surface reflectivity images of 
Time B which is close to Time A are input and fused to get 
fusion images with high spatial and spectral resolutions at 
Time B. Finally, spectra of MODSI reflectivity image at 
Time B were used as benchmark for residual calibration of 
spectra of fusion images, thus getting fusion images at Time 
B. The revisiting period of MODIS is one day. Theoretically, 
continuous fusion images with high spatial and spectral 
resolutions in 3 months could be gained as the source image 
data for the follow-up modeling and inversion. Theoretical 
spatial resolution of fusion images can reach the standard of 
ETM+, which is 30m. After residual calibration of spectra, 
spectra of fusion images were same with those of MODIS 
images. 

 

 

Fig. 3. Image fusion processing flow in this experiment with Spatial-Temporal-Spectral fusion model 
3.4 Index for the model 

 
At massive reproduction and clustering of cyanobacteria 
blooms on water surface, the water body may present 
spectral characteristics similar with vegetation. For MODIS 
surface reflectivity data, NDVI can distinguish floating algae 
from surrounding water environment. However, it is 
sensitive to changes of conditions, such as water 
environment and aerosol. In quantitative analysis, these 
conditional changes not only can influence visual contrast 
and the absolute value of NDVI may have errors [31]. The 
calculation formula of NDVI is shown in Eq.(1), where RED 
and NIR are surface reflectivity at 645nm and 859nm 
wavebands of MODIS. 

 
                               (1) 

 
To offset high sensitivity of NDVI to environmental 

changes, another parameter FAI was applied. FAI mainly 
reflects differences close to 859nm of spectrum between 
cyanobacteria blooms and surrounding water bodies [36,37]. 
FAI can avoid possible influences of atmospheric calibration 

and CDOM disturbance in the blue and green wavebands by 
using infrared and near-infrared wavebands, so it is 
influenced less by environmental conditions .The calculation 
formula of FAI is shown in Eq.(2), where  ,  and 

 are surface reflectivity at 645nm,859nm and 1240nm 
wavebands of fusion images.  ,  and  are 
central values of spectra of corresponding wavebands. 

 
                                                                 (2) 

 
 (3) 

 
The parameter BNDBI was introduced in for inversion 

estimation of Chl-a [20]. It distinguishes chlorophyll and 
surrounding water environment based on spectral difference 
at 555nm and 645nm. Besides, it is corrected based on 
spectra at 469nm and 859nm. With the assistance of BNDBI, 
the Chl-a can be extracted accurately and possible influences 
of complicated water environment and atmospheric factors 
can be weakened. Due to strong correlation between Chl-a 

( ) / ( )NDVI NIR RED NIR RED= - +

NIRR REDR

SWIRR

NIRR REDR SWIRR

'
NIR NIRFAI R R= -
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and Cyanobacteria concentration, BNDBI can be added in 
for collaborative modeling. The calculation formulas of 
BNDBI are shown in Eq.(4) ~ (8), where ,  ,  
and  are surface reflectivity at 469nm, 555nm, 645nm 
and 859nm of fusion images. 

 
                                  (4)  

 
                                                                 (5) 

 
                                                                 (6) 

 

                           (7) 

 

                          (8) 

 
In addition, water temperature can influence temporal 

and spatial distribution of Cyanobacteria and chlorophyll 
significantly [38]. In the present study, LST data gained 
from data processing of MOD01 are chosen as one of model 
parameters. The preprocessed surface temperature data 
collection instrument was applied to extract water surface 
temperature according to longitude and latitude coordinates 
after re-sampling and temperature calculation. The extracted 
water surface temperature was applied for modeling and 
inversion. 

Due to high correlation between Chl-a and PC 
concentration as well as advantages and disadvantages of 
different indexes, four parameters including NDVI, FAI, 
BNDBI and water temperature as well as the random forest 
model were applied. Based on cooperation and mutual 
complementation of multi-indexes, this study aims to realize 
inversion mapping more accurately. 
 
3.5 Algorithm Approach 
In the present study, multisource image fusion was 
employed to improve quality of image data. The multi-index 
collaborative model realizes mutual complementation to 
reduce environmental factors. The random forest algorithm 
set up a nonlinear model to increase accuracy of inversion 
model, finally realizing the goal of accurate inversion 
mapping with high-spatial-temporal-spectral resolution. 

Image processing, modeling and inversion processes are 
shown in Fig.4. Three major steps were included: (1) 
Spatial-temporal matching and geometric calibrations of 
multisource images are implemented. ETM+ images without 
cloud coverage, but high imaging quality and MODIS 
images in the same period were used as reference. 
Continuous fusion images with high spatial and spectral 
resolutions in three months can be collected by using the 
spatial-temporal-spectral fusion model and residual error 
calibration of spectrum. (2) Parameters of fusion images 
were calculated to get normalized difference vegetation 
index (NDVI), floating algae index (FAI) image products. 
Through denoising and re-sampling of LST data, the same 
spatial resolution of fusion images could be gained. Besides, 
it got pixel values of corresponding coordinates of NDVI, 
FAI and land surface temperature (LST) data according to 
longitude and latitude coordinates of sampling points. A 
total of 45 groups of model training samples were acquired 
and abnormal values of sample data were deleted, leaving 43 

groups of sample data for modeling. (3) Sample data were 
trained by the random forest model and accuracy of the 
model was verified by 10-fold crossing algorithm. (4) The 
inversion model with satisfying accuracy was applied for 
inversion mapping of continuous images in 3 months, thus 
getting daily continuous inversion products of Chl-a and 
Cyanobacteria concentration with high spatial resolution 
(30m). 

 

 
 

Fig. 4. The processing procedure of Chl-a and PC inversion products 
and PC:Chl-a maps. 
 
3.6 Chl-a and PC products 
Dissolving secreta from growth of Cyanobacteria in water 
source may cause chronic toxicity of human and thereby 
cause water pollution. PC was calculated by inversion 
product of Chl-a concentration and PC concentration: Chl-a 
gets the Cyanobacteria risk spectrum to estimate proportions 
of Cyanobacteria in aquatic organism cluster, based on 
which the degree of water pollution by Cyanobacteria is 
estimated [39]. Such mapping method is originated from the 
estimation of water pollution risks [40] by World Health 
Organization (WHO) based on Cyanobacteria concentration 
(or equal chlorophyll concentration). However, the actual 
biomass of Cyanobacteria and total biomass of floating 
plants cannot be distinguished by single concentration [41]. 
In the present study, PC Chl-a was applied to reflect relative 
proportions of total biomass of Cyanobacteria and floating 
plants in cyanobacteria blooms [42]. 
 
3.7 Algorithm Evaluation 
The accuracy of inversion model was evaluated by three 
indexes, namely, root-mean-square error (RMSE), mean 
absolute error (MAE) and .The calculation formulas of 
these indexes are shown in Eq.(9)~ (11), where  is the real 

value, is the predicted value of model and is average of 
predicted value. 

RMSE is used to measure error between the predicted 
value and real value. MAE evaluates advantages and 
disadvantages of model fitting by comparing the assessment 
values. R2 compares the predicted value with the situation 
when only mean is used only. If R2 is close to 1, all 
predicted values are closer to real results. 
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                                                  (9) 

                                                        (10) 

                                                    (11) 

 
4 Result Analysis and Discussion 
 
4.1 Inversion model accuracy evaluation 
In this experiment, parameters of MODIS images (500m) 
before fusion and parameters of fusion images (30m) at the 
same time were extracted based on longitude and latitude 
coordinates of sampling points to verify possible error of 
spatial scale in quantitative remote sensing inversion of 
water quality properties [9] and influences of hybrid pixels 
on inversion accuracy in complicated water environment 
under low spatial resolution. Both MODIS images and 
fusion images constructed inversion models of Chl-a and PC 
concentrations based on the random forest algorithm. Under 
the same external conditions, accuracies of the constructed 
inversion models before and after image fusion were 
compared to prove that increasing spatial resolution can 
improve the inversion accuracy. 

Inversion model of Chl-a concentration uses 45 groups 
of image extraction data and data collected at stations as the 
training samples and its accuracy is verified by 10-fold 
crossing verification. Relations between predicted values of 
the inversion model of Chl-a concentration and real values 
are shown in Fig.5(a) and Fig.5(b). It can be seen from the 
scatter diagram that inversion accuracy of Chl-a 
concentration of images after fusion is higher than that of 

MODIS image in the same period. For the inversion model 
based on fusion images, =0.8534, RMSE= 11.1962 and 
MAE=10.0643. For inversion model of Chl-a concentration 
based on MODIS images, =0.8011, RMSE=14.7963 and 
MAE=11.6538. Scattering points in Fig.5(a) mainly 
concentrate close to the line 1:1. Accuracy of the inversion 
model is improved significantly due to the increase of spatial 
scale. 

After 3 groups of abnormal data are deleted, the inversion 
model of PC concentration applies 42 groups of data as the 
training sample and its accuracy is verified by 10-fold 
crossing validation. Relations between predicted values of 
the inversion model of PC concentration and real values are 
shown in Fig.5(c) and Fig.5(d). For the inversion model 
based on original MODIS images, =0.8031, 
RMSE=19.7970 and MAE=16.3346. For the inversion 
model based on fusion images under the same conditions, 

=0.8378, RMSE=11.9916 and MAE=11.3893. The 
inversion model based on fusion images has the higher 
accuracy. 

Inversion of water quality parameters requires high 
spectral resolution of images. Therefore, influences of 
hybrid pixels brought by low spatial-scale in the complicated 
inland water environment on inversion accuracy and poor 
performance of inversion product with low spatial resolution 
to small-scaled inland water environment are problems that 
have to be solved urgently. Here, the comparison on 
accuracy of inversion models before and after image fusion 
confirms that error caused by hybrid pixels in coarse 
resolution images can be decreased by increasing spatial 
scale. In other words, inversion accuracy of water quality 
properties can be improved effectively by increasing spatial 
scale. 

 

 
Fig. 5(a). Inversion model validations: Chl-a validation of fusion image;                    Fig. 5(b). Chl-a validation of MODIS.  

 
 

1 2( )i
i in
Y Y

RMSE
n

Ù=
-

= å

1i
i in
Y Y

MAE
n

Ù=
-

=
å

1 2
2

1 2

( )
1

( )

i
i in

i
i in

Y Y
R

Y Y

Ù=

-=

-
= -

-

å
å

2R

2R

2R

2R



Yawen Hu and Li Li/Journal of Engineering Science and Technology Review 12 (6) (2019) 182 - 194 

 188 

 
 
Fig. 5(c). Inversion model validations: PC validation of fusion image;                      Fig. 5(d). PC validation of MODIS

4.2 Comparison of inversion results 
 
4.2.1 Comparison of chlorophyll a inversion results 
 
Whether more details in a complicated environment can be 
observed by eyes and whether more effective information, 
including spatial-temporal distribution and variation trend of 
Chl-a, can be gained are determined by spatial resolution of 
inversion mapping product in a small-scaled water area. In 
this experiment, models of MODIS images (500m) and 
fusion images (30m) were constructed under the same 
conditions, respectively. Subsequently, inversion and 
mapping were performed successively. Inversion results of 
Chl-a concentration on Lake Chaohu on December 7th, 2016 
are shown in Fig.6. The left and right pictures in Fig.6 are 
inversion results of Chl-a concentration based on fusion 
image and MODIS image on the same day. According to 

comparison of two pictures, the spatial distributions of Chl-a 
concentration are basically consistent, but it is still very easy 
to see hierarchical distribution and clustering points of Chl-a 
on fusion images. This is difficult to be realized on MODIS 
images. 

Partial enlargements of fusion image production and 
MODIS image product in regions a and b were compared. In 
Fig.6(a), it can be seen from hierarchical distribution and 
high-concentration region of Chl-a clearly from the fusion 
image product. However, only several pixel substitutions 
and a high-concentration region can be observed from the 
partial enlargement of MODIS product. Similarly, it can be 
seen from Fig.6(b) that the Chl-a distribution pattern of only 
few pixel resolution on MODIS image product can be 
distinguished clearly from fusion image product. 

 

 
 

 
Fig. 6.  Chlorophyll inversion image of Lake Chaohu, China, 20171206. a&b: partial enlargement pictures.(Left: Fusion image product; Right: 
MODIS image product) 
 
4.2.2 Comparison of PC inversion results 
Same with inversion model of Chl-a concentration, inversion 
results of PC concentration in Lake Chaohu on December 

7th, 2016 are compared (Fig.7). The left is inversion results 
of PC concentration based on fusion images, and the right is 
inversion results of PC concentration based on MODIS 
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image of the same day. Generally speaking, spatial 
distribution of PC concentration reflected by both fusion 
image and MODIS image is basically consistent. However, 
MODIS image inversion product gives a strong sense of 
pixels. Specific information similar with fusion image 

product and hierarchical distribution of concentration cannot 
be observed. 

Similarly, regions a and b are enlarged. It can be seen 
from Fig.7(a) that the high-concentration distribution 
patterns in fusion image and MODIS image are consistent. 

 

 

Fig.7. PC inversion image of Lake Chaohu, China, 20171206. a&b : partial enlargement pictures.( Left: Fusion image product; Right: MODIS image 
product) 

 
Nevertheless, there’s distinct hierarchical distribution of 

concentrations in fusion image product, but only few pixels 
are seen from the MODIS image product. In Fig.7(b), 
regions a and b as well as the range of reducing surrounding 
concentration are clear in fusion image product. Spatial 
distribution of only 2-4 pixels can be seen relatively clearly 
from the MODIS image product. 

The spatial-temporal-spectral fusion model and image 
fusion technique can realize high-accuracy inversion 
mapping of a complicated small-scaled water environment, 
including improving accuracy of the inversion model or 
improving quality of inversion products intuitively. 
Moreover, quality of inversion mapping product is improved 
directly by increasing the spatial resolution of images from 
the perspective of image sources. 
 
4.3 Temporal and Spatial Changes of Continuous 
Monitoring of Chl-a 
This study targeted at high-accuracy inversion monitoring of 
spatial-temporal changes of water bodies in several 
successive days based on image fusion algorithm. It has 
been proved by previous experiments that the spatial-
temporal-spectral fusion can improve accuracy of the 
inversion model and spatial scale of inversion products 
significantly. However, remote sensing images can only be 
acquired on sunny days, because quality of these images is 
very sensitive to atmospheric environment (cloud coverage). 

Therefore, it is impossible to realize complete successive 
monitoring in several days in practical applications. 

The inversion mapping results in 11 successive days on 
cloudless days on December, 2016 are shown in Fig.8. 
Statistical mean Chl-a concentrations in west, middle and 
east regions of Lake Chaohu in inversion products of 
uniform extraction concentration according to coordinates of 
sampling points were calculated. On this basis, the variation 
curves of daily average Chl-a, daily PC concentration, 
PC:Chl-a ratio and daily water temperature in three regions 
of Lake Chaohu were gained. 

Based on inversion maps and variation curves of Chl-a 
concentration, it finds that Chl-a mainly concentrated in 
coastal regions of east and west regions of the Lake Chaohu 
in the beginning of December. This is because east and west 
regions of the Lake Chaohu have dense distribution of urban 
areas and there’s a great number of waste water discharged 
into the Lake Chaohu through tributaries throughout a year, 
which would produce abundant aquatic organisms. These are 
main causes of algal blooms in the Lake Chaohu. From 
December 2nd to 8th, Chl-a diffused from the east to the 
west and the overall concentration dropped to 19.9μg/L on 
December 8th. This is because many aquatic organisms 
dived into deep water due to environmental influences and 
then Chl-a clusters toward the west region of Chaohu Lake. 
Two clusters were formed after December 15th. 

 



Yawen Hu and Li Li/Journal of Engineering Science and Technology Review 12 (6) (2019) 182 - 194 

 190 

 
Fig. 8. Daily mean of (a) Chl-a; (b) PC; (c) PC: Chl-a; (d) Temperature. 
 

One cluster diffused from middle to the east region, and 
the other part concentrated in the west coastal region. The 
water temperature in three regions of the Lake Chaohu 
changed slightly on December and water temperature 
increased significantly at the end of month. Chl-a 
concentration in three regions also increased significantly, 
indicating that water temperature is an important influencing 
factor of spatial distribution. The variation trend of Chl-a 
concentration in three regions of Lake Chaohu is generally 
consistent. However, the daily average Chl-a concentration 
in the east region is the highest (18.469μg/L – 55.064μg/L). 
The daily average Chl-a concentrations in middle 
(19.817μg/L – 37.727μg/L) and west regions (14.149μg/L – 
31.346μg/L) are close, and Chl-a concentrations in two 
regions transfer mutually continuously. The inland water 
environment is complicated and sensitive to environmental 

changes, resulting in great fluctuations of spatial-temporal 
distribution. 
 
4.4 Temporal and Spatial Changes of Continuous 
Monitoring of PC 
The variation trend of PC concentration and the variation 
trend of Chl-a concentration are generally consistent by 
combining continuous inversion results of PC concentration 
on December, 2016 (Fig.9) and variations of daily average 
PC concentration (Fig.7(b)). PC migrated from the east to 
the west regions on the first ten-day period of December, 
and concentrated in the southwest coastal regions. 
Subsequently, one part diffused from the west to the east and 
finally reached a uniform distribution, whereas the other part 
concentrated in southwest coastal regions. 
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Fig.9. Daily continuous Chlorophyll inversion images of Chaohu ,201612. 
 

 
Fig. 10. Daily continuous PC inversion images of Chaohu, 201612.

Similar with Chl-a distribution, algal blooms mainly 
concentrated in east and west regions of the Lake Chaohu. 
They diffused and migrated continuously with changes of 

wind directions, temperature, total nitrogen and total 
phosphorus. Different from Chl-a, PC concentrated in the 
middle region of the Lake Chaohu in the beginning and then 
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diffused toward two sides, migrating to the west region to a 
large scale. PC concentrated in center of the Lake Chaohu at 
about December 22nd, which conformed to the broken lines 
of daily average concentration in Fig.7 and spatial-temporal 
changes of concentration in Fig.9. Generally speaking, the 
daily average PC concentration in west region is the highest 
(48.199μg/L–77.228μg/L), followed by the east region 
(41.014μg/L–73.775μg/L) and the middle region 
(46.184μg/L – 73.409μg/L). Due to continuous diffusion and 

migration, the PC concentration approaches to similar. The 
variation trend of PC concentration is highly similar with 
variation trend of temperature. There’s still some difference. 
This is because wind direction and wind speed are important 
factors that influence clustering and migration of PC. 
However, these two parameters are not considered in this 
experiment. 
 

 

 
Fig. 11. Daily continuous PC:Chl-a images of Chaohu ,201612. 
 
4.5 Experiments on real-world networks 
 
Many studies have not only proved necessity of 
cyanobacteria bloom risk assessment in water head, but also 
provided an effective assessment method. Previous studies 
showed that PC: Chl-a product was derived from the 
inversion product of Chl-a concentration and the inversion 
product of PC concentration. This reflected proportion of PC 
biomass in aquatic biomass. Although the correlation 
between Chl-a concentration and PC concentration is very 
high, many studies have reflected difference between 
them.This is because Chl-a concentration reflects aquatic 
vegetation, cyanobacteria and other algae. Among them, 
only cyanobacteria may produce harmful substances to 
pollute water sources. Once the microcystic toxins (MCs) 
discharged during the growth of cyanobacteria are dissolved  
in water and then taken by human and animals, it will cause 
chronic toxicity. The Lake Chaohu is the major water source 

of surrounding cities. Therefore, it is very important to make 
continuous monitoring on cyanobacterial blooms and 
proportions in the Lake Chaohu. 

According to cyanobacterial bloom risk spectra derived 
from the continuous monitoring product on December, 2016 
(Fig.10) and daily average PC:Chl-a ratio in three regions of 
the Lake Chaohu (Fig.7(c)), PC concentrated in the middle 
region in a large scale in the begging of December, which 
was consistent with Fig.9. Later, the large-scaled spatial 
distribution of cyanobacterial bloom as well as main 
diffusion and migration paths in Fig.10 are consistent with 
inversion mapping of cyanobacteria blooms in Fig.9. 
Generally, cyanobacteria blooms are in dormancy in winter. 
Therefore, the proportion of PC concentration in the Lake 
Chaohu was very low on December, 2016. The whole water 
environment is threatened by cyanobacteria slightly even 
though there are cyanobacteria, which is attributed to the  
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self-purification of water ecological environment. The 
cyanobacteria bloom risk spectra derived by inversion 
products of Chl-a concentration and PC concentration can 
reflect the region with high PC proportion in aquatic 
biological environment intuitively. This provides effective 
assistances to control of cyanobacteria blooms and sampling 
point in water. 
 
5. Conclusions 
 
To realize high-accuracy monitoring over the complicated 
small-scaled inland water environment and increase 
inversion accuracy as well as spatial resolution of inversion 
products, a spatial-temporal-spectral fusion model was 
applied for fusion of multisource remote sensing images and 
a multi-index collaborative model was constructed by using 
the random forest algorithm. Accuracies of inversion models 
based on fusion image and MODIS image under the same 
conditions were compared. Meanwhile, inversion and 
analysis on daily cyanobacteria bloom concentration were 
implemented. Some major conclusions could be drawn: 

(1) The spatial-temporal-spectral fusion algorithm can 
integrate multisource remote-sensing images effectively and 
maintain spectral information to increase spatial resolution 
of images. 

(2) Increasing spatial resolution of source images which 
participate in inversion modeling can increase the inversion 
accuracy of models effectively. 

(3) Increasing spatial resolution of source images can 
improve spatial scale of inversion products significantly, 
thus enabling to reflect spatial-temporal distribution and 
variation trend of cyanobacteria blooms more truly and 
thoroughly. 

(4) Increasing spatial scale of images from the perspective 
of image source based on the image fusion algorithm is 
conducive to realize continuous high-accuracy inversion 
monitoring of the complicated small-scaled inland water 
environment effectively. 

In this study, a spatial-temporal-spectral fusion model was 
used to increase spatial resolution of images from the image 
source, thus increasing quality of inversion products. It was 
proved as a feasible and effective method. Moreover, it 
solved the problem that inversion products based on coarse 
resolution images are inapplicable to inversion monitoring of 
small-scaled water environments due to low spatial 
resolution. Nevertheless, there are great spatial resolutions 
between ETM+ images and MODIS images. There are data 
missing about spectra of images, spatial information 
inheritance and repair during the fusion process. It can 
achieve better monitoring results by adding multispectral 
images (e.g. Sentinel) with spatial resolution ranging 
between ETM+ images and MODIS images. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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