
 
 

Journal of Engineering Science and Technology Review 12 (5) (2019) 75 - 90 
 

Review Article 
 

The Applications and Future Perspectives of Adaptive Neuro-Fuzzy Inference 
System in Road Embankment Stability 

 
Rufaizal Che Mamat1,3*, Anuar Kasa1 and Siti Fatin Mohd Razali2 

 
1Centre of Engineering and Built Environment Education Research (PeKA), Bangi, Selangor, Malaysia 

2Smart and Sustainable Township Research Centre (SUTRA),Faculty of Engineering and Built Environment, Universiti Kebangsaan 
Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

3Department of Civil Engineering, Politeknik Ungku Omar, Jalan Raja Musa Mahadi,31400 Ipoh, Perak, Malaysia 
 

 
Received 12 May 2019; Accepted 11 October 2019 

___________________________________________________________________________________________ 
 
Abstract 
 

The stability of road embankment is influenced by two main factors, namely slope stability and settlement. The use of an 
adaptive neuro-fuzzy inference system (ANFIS) has received encouraging responses over the last decade in various 
research areas. This paper aims to elaborate on the previous study on the application of ANFIS to predict factors that affect 
the stability of road embankment. Additionally, study reports on optimization techniques using ANFIS approach such as 
genetic algorithms (GA), differential evolution (DE), particle swarm optimization (PSO), shuffled frog leaping algorithm 
(SFLA) and satin bowerbird optimization algorithm (SBO) is also discussed. It is observed that most researchers developed 
ANFIS models to predict soil properties. We thus present proposals for future research. Overall, this study highlights the 
need for ANFIS to predict the stability of road embankment. Interestingly, we find that researchers successfully use the 
ANFIS model with the ability to predict with acceptable accuracy. Nevertheless, our findings also revealed that no 
researchers had done the use of ANFIS to predict slope stability and settlement. 
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1. Introduction 
 
Road construction involves a lot of cutting and land 
reclamation work. Land reclamation activities require 
compaction processes to meet the desired performance 
requirements. The land that has been compacted through the 
reclamation process is known as an embankment. It is used 
when the vertical alignment of the road needs to be raised 
from the existing ground level to meet the design standards to 
avoid damage to the surface of the road. Its construction 
method is the longest construction technology but has always 
had big engineering challenges in the design process. One of 
the challenges occurs when it is built on soft soils. Soft soil 
has a large settlement rate when loaded [1–4]. Slope stability 
and settlement is a major factor in determining the stability of 
the embankment. This is supported by Al-Homoud and 
Tanash [5] that reveals both these factors in the assessment of 
earth dam stability. Recently, many researchers have reported 
the correlation of slope stability [6–8] and settlement [9–11] 
with embankment stability assessment. 
 Usually, at the design stage, an engineer needs to calculate 
the stability of the embankment using the limit equilibrium 
method (LEM) [12–14] or finite element method (FEM) [15–
17] which has the advantage of using completely combined 
formulation to solve problems of settlement and slope 
stability. They make various assumptions and theories on 

some parameters due to time constraints and costs [18,19]. 
Therefore, the extent of their knowledge greatly affects the 
accuracy of predictions. This practice may result in the 
uncertainty of prediction accuracy compared to the actual 
stability on site. This problem can be solved by using the 
correct prediction methods and approaches. 
 The response to the use of artificial intelligence (AI) in 
various fields has been encouraging since its introduction in 
1956 [20]. This is because its nonlinear prediction ability is 
better compared to other models. Most of the AI methods are 
neural networks, fuzzy logic (FL), genetic programming and 
hybrid approaches such as fuzzy genetic systems and neuro-
fuzzy. AI core methodology such as ANFIS is a calculation 
model for solving complex problems for decision making. 
ANFIS is a combination of a fuzzy inference system (FIS) and 
artificial neural network (ANN) [21]. FIS is a rule-based 
system consisting of three conceptual components, namely 
rule base, data base and inference system. This combination 
is due to the advantages of FIS that is able to handle linguistic 
expressions while the ANN can learn by itself [22]. 
Additionally, it is a processing tool used for complex problem 
modelling, where relationships between variable models are 
unknown. It allows fuzzy systems to study the parameters by 
using adaptive backpropagation algorithm [21]. FIS can be 
generated from MATLAB software using the FL toolbox. 
 Al-Mahasneh et al. [23] highlight the advantages and 
suitability of using ANFIS for model development. Among 
the benefits highlighted is the ANFIS model’s ability to 
predict accurately when it involves a known and fully 
understood physical relationship. In addition to producing 
high prediction accuracy, it also offers reasonable advantages 
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in terms of simplicity, adaptability, robustness and seeks to a 
good  generalize [24,25]. The past century has seen the rapid 
development of ANFIS models in geotechnical engineering 
for predictive purposes [26]. The main purpose of prediction 
is accurate and credible results [27]. Optimized fuzzy MFs is 
one of the right decision-making approaches [28]. While 
researchers often use classic approaches such as the 
backpropagation (BP) and the least-squares (LS) approaches, 
some suggest the evolution of learning algorithms in their 
studies. The traditional method is simple but in practice has 
many problems [29]. Among these problems are their 
convergence to a local minimum and the acceleration rate that 
is sensitive to the learning process [30]. Therefore, the 
evolutionary algorithm approach is believed to be able to 
solve the problem and improve the accuracy of prediction. 
 Over the past few years, predictions using the ANFIS 
approach have been relatively successful in modelling related 
to embankment stability predictions. It was first used in this 
field of study in 2002 to predict post-stage rockfill dams [31]. 
However, the literature review confirms that no specific study 
reported ANFIS's use to predict the slope stability and 
settlement of road embankment. Most of the existing studies 
are only done in a small number of areas, with the tendency 
to focus on soil properties related to embankment stability. In 
addition to sharing knowledge on the structure and model of 
ANFIS, there are two main objectives of this study: (i) To 
summarise previous studies on the development of ANFIS 
model to predict road embankment stability, (ii) To present 
the need for further research with the ANFIS approach for a 
more comprehensive prediction of road embankment 
stability. Besides, this paper is driven by the need to consider 
optimization techniques in ANFIS. The results of this 
research are expected to contribute ideas and findings to this 
growing field by exploring the ANFIS approach in predicting 
the stability of road embankment. 
 
 
2. Stability of Road Embankment 
An embankment refers to the amount of soil or fills material 
laid to construct the road on the existing ground surface, as 
shown in Fig. 1. It consists of a series of compacted layers to 
bear the load directly from the subgrade layer and distribute 
the traffic load to the foundation [32]. Investigation and 
design are two important phases of work take place during the 
construction of road embankments. Investigation work is 
intended to investigate the effects of land characteristics on 
the site to design and construction. It encompasses the 
collection of information regarding the subsoil of the 
embankment that needs to be identified before the design 
work is carried out. This is to ensure safe and economical 
construction of the embankment. 

 
Fig. 1.  Definition of embankment 
 
 The embankment component consists of a foundation and 
side slope that determines the degree of stability. The 
embankment foundation is an essential component during the 
design process and may be stable or unstable. This is because 
these components bear all the load. Soft soil such as clay and 

silt, as well as influenced by water, will cause instability [33–
35]. Soft ground is too weak and unable to bear the load from 
the road [36]. This can lead to aggressive movements of soil 
at the embankments and consequently, large settlements and 
slope failures. For this reason, the embankment being 
constructed must be equipped with an inclinometer, 
settlement marker and piezometer for observe soil behaviour. 
This monitoring typically takes 3 to 12 months, depending on 
the critical level of ground movement. Additionally, this 
movement can occur in areas exposed to permafrost [37] and 
earthquake [38]. There are some researchers conducting 
stability studies of the embankment using ANFIS approach to 
measure frost heaving [39], liquefaction [40,41] and dynamic 
properties [42]. 
 Typically embankments are built with varying altitudes 
[43–45] and fill material [46–48] according to design 
requirements.  Geometry and materials data determine the 
stability performance of side slopes. The slope angle and 
height are geometric data used in numerical method 
simulations, which should be proposed prior to the design 
process. However, the fill materials require the determination 
of a large number of parameters, i.e. physical and engineering 
properties compared to geometric data, as shown in Table 1 
[49,50]. These parameters significantly affect the workability 
and stability of the embankment. Some of these parameters 
are used in LEM and FEM to analyse settlement behaviour 
and embankment slope stability. Therefore, embankment 
stability should refer to two main criteria settlement and slope 
stability, as shown in Fig. 2. The slope stability of the 
embankment analysis is based on the factor of safety (FOS) 
value [51,52] and lateral deformation [53] while the 
settlement is based on vertical deformation [54,55]. 
 

 
Fig. 2. Factor of embankment stability 
 
Table 1. Parameters fill material and test procedures. 

Properties Test method 
Gradation Particle size distribution 

Unit weight Unit weight and voids in aggregate 
Relative density of cohesionless 

soils 
Maximum index density of soils 

Specific gravity Specific gravity of soils 
Corrosion resistance Field measurement of soil 

resistivity 
Pore water extraction 

Moisture-density 
characteristics 

Moisture-density relations 

Compacted density (field) Density of soil in place 
Permeability Permeability of soils 

Shear strength Direct shear test 
Triaxial test 

Bearing capacity California bearing ratio 
Compressibility One-dimensional consolidation 

 

Foundation 

Embankment 

Subgrade 
Side slope 

Ground 
surface 
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2.1. Recent case studies on the main factors of 
embankment stability. 

The literature emphasized the importance of settlement and 
slope stability to determine the degree of embankment 
stability, especially after construction. These two major 
factors have been widely investigated as it is an essential 
element in subgrade construction workability [56–62]. It is 
evident in some case studies that confirm the importance of 
these factors in the road embankment stability. Throughout 
2018, we find three case studies on settlement problems. 
Among them were Michalowski et al. [56], who conducted an 
investigation into the failure of a road embankment built on a 
section on the European route E372 in eastern Poland. During 
the construction of the embankment, excessive settlements 
resulted in the reconstruction of the embankment. However, 
the excessive settlement still occurring even after the 
reconstruction, especially in areas with culverts where 
displacement reaching 20 cm were found within several 
months. 
 In addition, Yao et al. [57] also reported a settlement 
problem on the runway of Chengde Airport, Hebei province 
in China. The track was built over 2400 m above the 
embankment which includes silty clay soil. A settlement rate 
data of 18 times were recorded over 298 days, with the 
cumulative settlement reading at the last observation is 
101.972 mm. Stark et al. [58] investigated of the same 
problem through the analysis of road design failure on section 
91 m of a connecting ramp embankment between westbound 
Interstate-76 and southbound Interstate-71 in Medina County, 
Ohio. This failure led to the Ohio Department of 
Transportation decided to replace the embankment with 
reinforced concrete bridges costing over $4.5 million.  
 Slope failure can cause landslides, which could cause 
severe damage to the road surface. The landslide occurred in 
the Phewa Lake area watershed in Western Nepal was 
reported by Vuillez et al. [59]. A total of 23 landslides along 
the road were reported after heavy rains in 2015. More 
recently, in another study, Bednarczyk [60] reported that 15 
landslides occurred along the Szymbark-Szalowa road near 
Gorlice (SE Poland). Another case study took place at 
National Highway-109 in Uttarakhand, India. Pradhan et al. 
[61] reported that frequent occurrences of landslides along the 
roads during maintenance and upgrading of roads were 
running. There are also incidents of slope failure occurring 
during construction works. This similar case occurs on the Sir 
Solomon Hochoy Highway Extension Project along the 
Caribbean coastline of Trinidad and Tobago. According to 
Lee et al. [62], wick drains and surcharges used to stabilize 
the embankment may result in cracks and slope movements 
when subsequent fill lift is placed. 
 
 
3. Overview of the Structure of ANFIS Model 
 
The fuzzy logic system (FL) plays an important role to induce 
rules of observation [63]. FIS is the primary unit of the FL 
system that makes the decision [64]. This means FIS is the 
actual mapping process from a given input to output, using 
FL. In addition, FL has the ability to alter the qualitative 
aspects of human knowledge and insights into the accurate 
process of quantitative analysis [65]. However, FL does not 
have a clear method that can be used as a guide in the human 
transformation and takes a long time to adjust membership 
function (MF) [66]. Therefore, the ANN automatically 
adjusts the MF and reduces the error rate in the determination 
of rules in FL. Generally, there are six important terms in FL 

namely fuzzy system (FS), fuzzy inference (FI), fuzzy sets, 
fuzzy rules (FR), membership function (MF), and 
defuzzification. These six terms carry different definitions, 
relationships and importance based on the work done by the 
researchers. FS was introduced as a tool to represent and 
manipulate inaccurate but rather fuzzy data [67]. 
 There are four components in FS, i.e. fuzzy rule base, 
fuzzifier process, inference engine and a defuzzification. The 
rule base contains the IF-THEN rules that include linguistic 
reasoning. The basis of this rule is used in inference engines 
for fuzzy sets to obtain a fuzzy outcome [68]. Fuzzification is 
the process to classify numerical measurements into fuzzy 
sets. It can alter crisp or fuzzy set data into linguistic values 
that suit the definition of linguistic variables the types of MF. 
FI is the process of formulating the mapping of the input given 
to output using FL. This mapping function is to provide the 
basis from which decisions can be made. This process 
involves three components, namely MF, IF-THEN rules and 
FL operators. Fuzzy sets are sets that have no crisp and 
contain a partial degree of membership elements. Instead, FR 
is a set of linguistic statements that define the relationship 
between input and output in FS [69]. There are two commonly 
used methods in FR to produce an aggregation of FR, max-
min inference method and max-product method. The MF is 
the curve that determines how each point in the input space is 
mapped to the membership value or degree of membership of 
0 to 1. In other words, it will map each element of the input 
variable to the membership grade. Then, the inference engine 
will perform a budget estimation to achieve the desired 
strategy. Due to producing a non-fuzzy result or a crisp output 
by a strategy, defuzzification needs to be used [70]. 
Defuzzification is the conversion from fuzzy quantities to 
exact quantities. The selection of defuzzification technique is 
important as it can significantly affect the speed and accuracy 
of the model. Many methods can be used to facilitate this 
conversion such as weighted average, centroid, mean-max 
membership and others. However, the commonly used 
defuzzification strategy is the centroid of the area [71–73] as 
is the advantage that can be used for all activated MF of the 
conclusions [74]. 
 The combination of human thinking styles such as fuzzy 
systems with the learning and connectionist structure of 
neural networks is the basic idea of neuro-fuzzy systems [21]. 
This network simulates the FIS represented by the simple 
fuzzy IF-THEN rules which have the learning ability to 
estimate non-linear functions [75]. FIS will work when inputs 
containing the actual values are converted to fuzzy values via 
MF by using the fuzzification process [76]. Generally, fuzzy 
values range from 0 to 1. The basic rules and databases are 
important elements for decision making, as described through 
the FIS structure in Fig. 3. The database usually contains 
definitions such as information about fuzzy set parameters 
with defined functions for each existing linguistic variable 
[77]. Typically, the database development includes a 
determining the total linguistic value to be used for each 
linguistic variable, defining a universe and creating MF. 
There are three types of FIS used by researchers such as 
Mamdani [78–81], Sugeno [82–84] and Tsukamoto [85–87] 
fuzzy models. The differences in the three models are 
described in Table 2. However, the Sugeno model is more 
widely used compared to others. 
 To facilitate understanding, assume ANFIS architecture 
has two variable inputs: X1 and X2 and output ƒ, as shown in 
Fig. 4. It has a function similar to the Sugeno FIS model. The 
two methods used in the IF-THEN rules are described as 
follows: 
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Rule 1= If x is A1 and y is B1   Then f1 = p1x + q1x + r1 
 
Rule 2= If x is A2 and y is B2   Then f2 = p2y + q2y + r2 
 
where A1, A2 and B1, B2 are MF for each input X1 and X2 while 
p1, q1, r1 and p2, q2, r2 are linear parameters in part-THEN or 
consequent parameters of the rule. 
 

 
Fig.  3. Fuzzy inference system. 
 
Table 2. The differences of three FIS model design. 

Type of 
FIS 

Description of the method of calculation 
of output 

Mamdani Giving the fuzzy output that needs 
defuzzified. 

Sugeno Using a function that gives the real number 
as an output. 

Tsukamoto Use a monotonous function that assigns a 
real number as an output. 

 

 
Fig. 4. Typical ANFIS architecture. 
 
 
 Based on Fig. 4, the ANFIS architecture has five layers 
with two shapes-rectangles and circles. A rectangular shape 
represents neurons with an adaptive node in the network, 
while the parameters will change during the training process. 
The shape of the circle depicts the neuron with an unknown 
parameter, i.e. fixed node. 
 In the first layer, the adaptive node represents MF fuzzy. 
Based on Eqs. 1 to 8, OL represents the output of the node, i.e. 
i is the degree of MF while x or y is the input to the node.  
 
𝑂",$ = 	𝜇($(𝑥)																					𝑖 = 1,2                                      (1) 
 
𝑂",$ = 	𝜇/$01(𝑦)															𝑖 = 3,4                                          (2) 
 
where Ai and Bi are linguistic labels associated with the 
neuronal function, it can be any suitable fuzzy sets in 
parametric form. Links within this network indicate the 
direction of information flow between neurons and no 
weights provided. Bell-shaped as Eq. 3 and Gaussian MF as 
Eq. 4 are often used as MF inputs. 
 
𝜇(5) =

"

"6789:;< =
>
?
@                                                      (3)  

 

𝜇(5) = 𝑒𝑥𝑝 7−850D
1E
=
1
?                                                      (4)  

 
where a, b and c are MF parameters that can change shape. 
Also, these parameters are known as premise parameters. 
Output for the first layer is the MF value that is evaluated for 
a set of input variables. 
 The second layer has a fixed node. This layer plays a role 
as a simple multiplier. Neuron output in this layer is the result 
of multiplying of the signal received through the neurons to 
be transmitted to the next neuron. Each neuron represents a 
firing strength for each rule. T-norm operators such as AND 
are used to get output while wi is an output representing the 
firing strength of each rule, as shown in Eq. 5. 
 
𝑂1,$ = 𝑤$ = 	𝜇($(𝑥)	𝜇/$(𝑦)														𝑖 = 1,2                           (5) 
 
 The neurons present in the third layer are fixed or 
nonadaptive. This layer will normalize the firing strength of 
the previous layer. The output of each neuron in this layer is 
as in Eq. 6. 
 
𝑂G,$ = 𝑤H$ = 	

IJ
IK6I>

														𝑖 = 1,2                                        (6) 
 
 All nodes in the fourth layer are adaptive while the output 
of each neuron is the result of normalized firing strength and 
is defined as in Eq. 7. This layer has three parameters: 
 
𝑂L,$ = 𝑤H$𝑓$ = 𝑤H$(𝑝$𝑥 + 𝑞$𝑦 + 𝑟$)														𝑖 = 1,2                  (7) 
 
where wi is the normalized firing strength from the third layer 
and the (pix + qiy + ri) is a polynomial parameter in modifiable 
neurons. This parameter is also referred to as the consequent 
parameters. The fifth layer has only one neuron, fixed or 
nonadaptive. This layer serves to calculate the overall output 
as the sum of all signals received from the fourth layer node. 
The overall output of ANFIS is described in Eq. 8. 
 
𝑂Q,$ = ∑ 𝑤H$𝑓$$ = ∑ IJSJJ

∑ IJJ
														                                              (8) 

 
 ANFIS use flow charts commonly used for predictions, as 
shown in Fig. 5. The modelling process is divided into three 
steps, i.e. development, validation and testing. Due to 
implementing these steps, three sets of data are used for 
training, testing and validation. The set of training data is used 
to find the optimal FIS structure and to check the data set to 
minimise the difference between error bias and variance [88]. 
A set of test data is used to examine and evaluate trained 
ANFIS models. Also, a test data set can check the generic FIS 
generalisation capability. 
 The model is trained so that the results are obtained with 
minimum error, or training data error lies within the error 
tolerance, which is related to error size. Parameter selection 
and the correct set of training and test data are important to 
ensure that the model can be validated [89]. A difference in 
the set of test data compared to the set of training data can 
lead to the inability of the model capture any test data 
characteristics. Minimum test error can be reached at the first 
epoch. Overfitting serves to test trained FIS on training data 
against checking data. It will happen past the jump point. 
However, the training process that occurs until the jump point 
is reached can reduce testing error. In addition, the model 
validation process is the process in which the input vector 
testing data set is presented to the trained FIS model to 
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observe the way this model predicts the value that 
corresponds to the output data set. This means this process 
demonstrates the performance of the model, which can then 
be analysed. By using checking data, the FIS model is 
expected to contain parameters related to the minimum 
checking data model error. 
 

 
Fig. 5. ANFIS flow chart for prediction process. 
 
 The FIS generation involves the selection of model 
structures, i.e. by determining the number of MFs per input 
and output. Besides, the determination of the type and shape 
of the MF for the rule premise section is also performed.  The 
grid and scatter partitioning [90] are the two methods used to 
generate MF. However, MATLAB software only offers grid 
partitioning (GP) and subtractive clustering (SC) methods 
[91]. GP divides the data space into smaller rectangular space 
called grid based on the number and type of MF [92]. When 
it is used, the uniformly divided grid defined by the MF with 
random parameter set is taken as the initial state of ANFIS. 
This grid will change as the parameter in MFs change during 
the training process [93]. Based on a survey, researchers often 
use this method with bell-shaped type MF because it offers 
many parameters that allow more degrees of freedom. SC is a 
clustering algorithm applied to categorize data into groups. It 
produces a centre of data cluster in the given data space [94]. 
This cluster center is the basis of fuzzy IF-THEN rules. In this 
case, the resulting MF is the first order Sugeno type while the 
MF on the premise is a gaussian type [28]. In addition, the 
number of fuzzy rules generated depends on the number of 
data clusters. The SC is different from GP in some aspects, 
including the number of inputs used. The SC can be used if 
the input number is greater than six as it can avoid the curse 
of dimensionality [91] problem. 

 
3.1. Performance indices 
The correlation coefficient (R), the coefficient of 
determination (R2), the root mean square values (RMSE), the 
variance account for (VAF) and the mean squared error 
(MSE) are some performance index that is often used to check 
the performance of the prediction model. The performance of 
the model is assessed by comparing the output calculated 
against the actual data. The correlation coefficient is a 
statistical measure that measures the strength of the relative 
movement relationship between the two variables. As with 
Eq. 9, the correlation coefficient takes the value between -1.0 
to 1.0. A high correlation value approaching 1.0 shows that 
this prediction model has good accuracy. A model with R 
values of more than 0.8 indicates a strong correlation between 
the measured values predicted [95]. The coefficient of 
determination, also known as the multiple correlation 
coefficient is the measure of the model's ability to predict or 
explain the results of linear regression. More specifically, as 
shown in Eq. 10, the proportionate variance in dependent 
variables with independent variables predicted or explained 
by linear regression. In general, a high R2 value indicates that 
the model has a good prognosis. RMSE, as shown in Eq. 11 
is also known as the root mean square deviation is a measure 
commonly used for the difference between the values 
predicted by the model. It works to aggregate these 
differences into one measure of predictive power. Low RMSE 
value indicates a highly accurate model. VAF such as Eq. 12 
is often used to verify the accuracy of the model, by 
comparing the actual output to model output estimates. It 
means the VAF shows the level of difference between two 
sets of variance data: measured and predicted values. VAF 
value close to 100% shows small variability and, 
consequently better prediction capabilities. MSE as in Eq. 13 
is the non-negative measure of the quality of the estimator's 
performance, and the value closer 0 is the best. Where, yprd.i is 
the predicted value, yexp.i is the measured value, ym is the mean 
value, and N is the number of data. 
 

𝑅 = U1 −
∑ VWXYZ.J0W\9X.J]

>^
J_K

∑ VWXYZ.J0W`]
>^
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                                                   (9) 
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𝑅𝑀𝑆𝐸 = d∑ VWXYZ.J0W\9X.J]
>^

J_e
f

                                                  (11) 
 
 
𝑉𝐴𝐹 = 71 − jEkVWXYZ0W\9X]

jEkVWXYZ]
? 𝑥100                                         (12) 

 
 
𝑀𝑆𝐸 = "

f
∑ Vm𝑦nko.$ − 𝑦p5n.$m]

1f
$qr                                           (13) 

 
 
4. Modelling of Road Embankment Stability 

 
In this section, we summarise and review the factors that 
describe the stability of the road embankment in recent studies 
that use ANFIS approach. It covers the ANFIS model 
structure as well as the input and output parameters used by 
the researchers. Statistics on the number of researchers 
reporting on the use of the ANFIS model for research related 
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to the stability of road embankment in recent years are 
presented in Fig. 6. As previously discussed, the main factors 
are a settlement and slope stability. Related factors are 
physical properties, engineering properties, permafrost 
properties, earthquake properties and others. A number of 
researchers have reported the physical properties of the 
ANFIS approach, which includes soil water content, soil 
compaction, internal soil stability and soil aggregates 
stability. Some other researchers report on engineering 
properties such as soil shear strength, soil bearing capacity, 
soil swelling and soil permeability. Besides, researchers who 
report permafrost properties include frost heaving, while soil 
liquefaction and dynamic soil properties are earthquake 
properties. Among the related factors are soil erosion and 

groundwater levels. Table 3 present the prediction input and 
output parameters. 

 
Fig. 6. Applications of ANFIS models for road embankment stability. 

 
Table 3. A summary of investigations on ANFIS modeling relates to embankment stability. 

Stability factors Parameter inputs Parameter outputs The best evaluation indices References 
Settlement e, w, LL, PL, PI, Gs Compression index R=0.900, RMSE=0.032 Demir [101] 

Soil liquefaction N, fc, σo’,CSR, φ Safety of factor R=0.98, RMSE=0.27 Kayadelen [40] 
Soil liquefaction N, fc, z, �b, w Water table and 

earthquake magnitude 
R2=0.9979 Kumar et al. [41] 

Soil compaction w, �b, EC Soil cone index R2=0.979, RMSE=0.0621 Abbaspour-Gilandeh and 
Abbaspour-Gilandeh 

[104] 
Soil water content PSD, �b, n, ɵr, ɵe 

 
Saturated soil water 

content 
R2=0.5527, RMSE=0.0733 Fashi [103] 

Swelling t, hEPS Lateral swelling 
pressure, vertical 

swelling 
pressure 

R2=0.998, RMSE=3.052 Ikizler et al. [98] 

Shear strength fc, Cc, LL, �b Effective friction angle R=0.890, RMSE=1.90 Kayadelen et al. [97] 
Shear strength σn, MS, c, φ Unsaturated shear 

strength 
R2 (train)=0.9912,  R2=0.999 Jokar and Mirasi [106] 

Shear strength PSD Unconfined compressive 
strength 

R2(train)=0.9868,  R2(valid)= 
0.9848,  R2(test)=0.9941 

Kalkan et al. [96] 

Internal stability PSD, cu, cc 
 

Status of stability RMSE (train)= 0.011,  RMSE 
(test)=  0.027, RMSE(total)=  

0.038 

Xue and Xiao [102] 

Aggregates 
stability 

CEC, pH, OM, fc, fd Geometric mean 
diameter, 

Mean weight diameter 

R2=0.97, RMSE=0.06 
R2=0.94, RMSE=0.05 

Marashi et al. [105] 

Dynamic soil 
properties 

σ3, fc, rc 
 

Shear modulus, 
Damping ratio 

R2=1 
R2=1 

Akbulut et al. [42] 

Bearing capacity zc, Ar, cr Bearing capacity of soft 
soil 

R2(train)=0.989, R2(test)=0.960 Bunawan et al. [108] 

Bearing capacity c, Dc, lc, ds, φs Bearing capacity of stone 
column 

R2(train)=  0.986,  R2(test)= 
0.979 

RMSE(train)= 2.06, RMSE 
(test)= 1.45 

Das and Dey [109] 

Bearing capacity qc, fs, lp, Dp Bearing 
capacity of piles 

R2(train)=  0.970,  R2(test)= 
0.960 

RMSE(train)= 0.0594, RMSE 
(test)= 0.0647 

Harandizadeh et al. [110] 

Erosion Re, K, ls, S, C, P, Mf Soil erosion R2=0.8275, RMSE= 1.4276 Islam et al. [112] 
Frost heaving w, �d, Vf, Hw, PI, Sc Frost heaving ratio R=0.987, RMSE= 0.382 Yiming et al. [39] 
Permeability Mc, σn, c, φ, ɵw, ɵs, sr, 

ue, n 
Unsaturated soils 

permeability 
R2= 0.9605, RMSE= 
1.63E−05m/s, VAF= 

96.0531% 

Jokar et al. [111] 

Groundwater level Rr, Ir, Pr Groundwater level R2=0.96, RMSE= 0.02 Emamgholizadeh et al. 
[100] 

Note: φ=friction angle, φs=friction angle of stone column, �b=bulk unit weight, �d=dry unit weight, ɵe= field capacity, ɵr=wilting point, ɵs=saturated 
volumetric water content, ɵw=volumetric water content, σo’=effective overburden stresses, σn= normal stress, σ3=confining pressure, Ar=improvement 
area ratio, c=cohesion, cc=coefficient of curvature, cr= cohesion ratio, cu=coefficient of uniformity C=vegetation cover and management factor, 
Cc=coarse content, ds=spacing between the stone column, Dc= diameter of stone column, Dp=diameter of pile, e=void ratio, fc= finest content, fd=fractal 
dimension, fs=sleeve friction, hEPS=thickness of EPS geofoam, Hw=groundwater level, Ir=irrigation returned flow, CEC=cation exchange capacity, 
CSR=cyclic stress ratio, EC=electrical conductivity, K=soil erodibility factor, lc=length of stone column, lp=length of pile, ls=slope length, LL=liquid 
limit, n=porosity, N=N-value(SPT), Mf=microbes factor, MS=matric suction, OM=organic matter, P=support practice factor, Pr=pumping rates, 
PI=plasticity index, PL=plastic limit, PSD=particle size distribution, qc=cone tip resistance, rc=rubber content, Re=rainfall erosivity factor, Rr=rainfall 
recharge, S=steepness factor, Sc=ion content, sr=soil suction at residual water content conditions, t=time, ue=air-entry value, Vf=frost penetration rate, 
w=moisture content, z=depth, zc=column height. 
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 Research in this field began in 2004 by predicting 
earthquake properties, i.e. shear modulus and the damping 
coefficient of the sand samples. This study was conducted by 
Akbulut et al. [42] by comparing the statistical performance 
rating of three developed models, i.e. ANFIS, ANN and 
multiple regression analysis methods (MRM). The ANFIS 
model is trained using the hybrid learning algorithm 
approach. The SC method is used to determine the optimum 
number and form of FR. The statistical performance 
assessment for all three developed models is shown in Table 
4. The results show that the ANFIS model is an alternative 
method that can predict more accurately compared to the 
ANN and MRM methods. The authors conclude that it can 
have an impact on efforts towards encouraging other 
researchers to use ANFIS in their study. 
 
Table 4. Statistical performance for ANFIS model [42]. 

Models R2 (shear modulus) R2 (damping ratio) 
ANFIS 1 1 
ANN 0.84 0.65 
MRM 0.72 0.63 

 
 After nearly five years without any development, two 
articles on the prediction of engineering properties were 
published in 2009. Among these reports is the purpose of 
predicting unconfined compression strength (UCS) of 
granular soils. Kalkan et al. [96] performed comparisons of 
the developed models of ANFIS and ANN. Both of these 
models use seven input parameters such as clay (%), fine silt 
(%), coarse silt (%), fine sand (%), medium sand (%), coarse 
sand (%) and gravel. A total of 84 soil samples with different 
particle size distribution were compacted at optimum water 
content. Both of these models were trained with 64 samples 
while 20 samples forecasted UCS. The SC method was used 
to determine the number and form of FR. The statistical 
performance of both models is shown in Table 5. The value 
of R2 for UCS forecasts for ANFIS and ANN models were 
0.99 and 0.86. The results show that ANFIS is the best model 
for predicting UCS. 
 
Table 5. The performance indices of the ANFIS and ANN 
models developed [96]. 

Models R2 
Traning 

ANFIS 0.9912 
ANN 0.8637 

Performance in the prediction 
ANFIS 0.999 
ANN 0.8668 

 
 Kayadelen et al. [97] developed two Sugeno ANFIS 
models to predict the angle of shearing resistance of soils. 
ANFIS I model has 16 linear parameters, 16 nonlinear 
parameters, 55 neurons and 16 FR. ANFIS II model has eight 
linear parameters, 12 nonlinear parameters, 22 neurons and 2 
FR. The SC and GP methods are used for the ANFIS I and 
ANFIS II models to generate the Gaussian MFs for each input 
variable. Input parameters used are the percentage of fine-
grained the percentage of coarse-grained, liquid limit and bulk 
density. A total of 122 data sets were used, 75 for training, 32 
for testing and 15 for validation. Due to optimize parameters, 
hybrid learning algorithms are used in both models. Based on 
statistical performance, ANFIS I model has a high accuracy 
prediction with an R-value of 0.89 compared to ANFIS II with 
0.86. RMSE for ANFIS I and ANFIS II models are 1.90 and 

2.06 respectively. The results of this study found that the 
ANFIS I model can be used for the prediction of the angle of 
shearing resistance of soils. 
 In the two years that follow, there was no development 
until in 2011, Kayadelen [40] developed two types of ANFIS 
models to predict the safety factor for liquefaction of soils. 
With the 569 sets of data provided, 400 data sets were used 
for training, and the remaining 169 data sets were performed 
for testing. The standard penetration test, percentage of finest 
content, effective overburden stresses, cyclic stress ratios and 
angle of shearing resistance are the ANFIS I model input 
parameters, while ANFIS II model consists of the standard 
penetration test, the percentage of finest content, cyclic stress 
ratios and angle of shearing resistance. The ANFIS I model 
has 72 linear parameters, 36 nonlinear parameters, 176 
neurons and 72 FR. In contrast, the ANFIS II model has 81 
linear parameters, 36 nonlinear parameters, 193 neurons and 
81 FR. Based on the results obtained, all of these models give 
satisfactory agreement in terms of the statistical evaluation 
criteria. ANFIS model has the best R-value of 0.98. When the 
models are compared through RMSE, ANFIS II model has the 
lowest value of 0.21. The authors conclude that based on the 
assessment and from the statistical performance, it is clear 
that these two models have good prediction ability. 
 For almost three years thereafter, no researcher appeared 
to report research activities in this area. However, in 2014, 
more studies emerged with various findings presented. They 
are beginning with Ikizler et al. [98] who studied the 
engineering properties of swelling pressures of expansive 
soils using Sugeno's ANFIS model. Two ANFIS models were 
successfully developed. The ANFIS I model was developed 
to predict lateral swelling while ANFIS II model predicts 
vertical swelling. The FR of ANFIS I and ANFIS II are 12 
and 16, respectively. Inputs for these two models are time and 
thickness of EPS geofoam. A total of 139 data sets are 
provided, of which 103 were randomly selected to be used for 
training purposes while 36 were used for testing. The ANFIS 
I model has MFs of 3 and 4 while ANFIS II has 4 Gaussian 
types that are found to yield the best results. After training the 
models, performance tests produced the same R2 both models, 
i.e. 0.998. RMSE for ANFIS I and ANFIS II models are 3.052 
and 3.25 respectively. This means that the ANFIS I model has 
better predictive capabilities than ANFIS II because of the 
lower RMSE value. 
 The prediction of permafrost properties reported by 
Yiming et al. [39] uses the ANFIS model to predict soil frost 
heaving. The model was developed with six inputs, 21 FRs 
using SC method and one output. The input parameters 
consist of initial water content, initial dry unit weight, frost 
penetration rate, groundwater level, plasticity index and ion 
content while frost heaving ratio is the output parameter. The 
ANFIS model is trained using hybrid learning algorithms 
namely BP and LS. This study has made comparisons of 
statistical performance between the ANFIS models and the 
backpropagation neural network. The result of the regression 
analysis namely, the value of R and RMSE for the ANFIS 
model are 0.987 and 0.382, respectively. Based on these 
results, the ANFIS model has a higher prediction accuracy 
than the backpropagation neural network model. The authors 
also suggest that ANFIS models can be the better choice and 
is a powerful tool for predicting frost heaving hazard in 
seasonally frozen regions. 
 Kumar et al. [41] successfully produced a report on 
predicting earthquake properties. In this study, the 
comparison of ANFIS model performance and multiple linear 
regression (MLR) was done to predict soil potential 



Rufaizal Che Mamat, Anuar Kasa and Siti Fatin Mohd Razali/Journal of Engineering Science and Technology Review 12 (5) (2019) 75 - 90 

 
 

82 

liquefaction. Five input parameters are used: depth, SPT-N 
value, bulk density, particle size finer than 0.075 mm and 
natural or field moisture content. The liquefaction potential 
assessment in this study uses the analytical method presented 
by Idriss and Boulanger [99] in 2006. The results of this 
method are used to develop prediction models using ANFIS, 
and MLR approaches. A variety of parameter values, i.e. 
earthquake magnitude (6.0, 7.0 and 8.0 in Richter scale) and 
water table (0, 2, 4, 6 and 8 in m from ground surface) are 
used for parametric studies. GP method with triangle type MF 
is used to generate FIS for input variables while MF linear 
type is used for output variables. The hybrid learning 
algorithm is used as an optimization technique for FIS 
training. Output parameters in the ANFIS model are designed 
to be answered in like or unlike format. Comparison of 
predictive performance among ANFIS models is shown in 
Table 6. Based on statistical performance, the ANFIS model 
has a better liquefaction potential than the MLR model. The 
authors conclude that the ANFIS model can be used 
effectively and highly reliable because of its more accurate 
prediction ability. 
 
Table 6. Performance statistics of ANFIS and MLR models 
[41]. 

Water 
level 
(m) 

Earthquake 
magnitude  

(Richter 
scale) 

ANFIS MLR 
R2 RMSE R2 RMSE 

0 6 0.9943 4.490 0.5866 71.47 
0 7 0.0079 3.995 0.7154 72.58 
6 8 0.9922 3.606 0.4325 85.08 

 
 Emamgholizadeh et al. [100] conducted further studies on 
other properties. He developed ANFIS and ANN models to 
predict groundwater levels. The data collected for nine years 
are pumping rates, rainfall recharge and irrigation return flow 
which is used as input parameters for both models. This study 
uses hybrid and BP type algorithm learning while MF on the 
input and output are a trapezoid and linear type, respectively, 
proven to yield the best result. The statistical ratings are as 
presented in Table 7 that shows that the ANFIS model is 
better than the ANN model in the test phase. The authors 
conclude that the strength of the ANFIS model is due to the 
combination of both neural networks and fuzzy logic. 
Therefore, it has the potential to yield benefits based on the 
advantages of both methods in a single framework. 
 
Table 7. The best performance indices of the models 
developed [100]. 

Models R2 RMSE 
ANN 0.83  1.06  

ANFIS 0.96 0.02 
 
 In 2015, the study returned to a state of scarcity in a 
publication with only one reported by Demir [101]. His report 
is related to settlement as the main factor in embankment 
stability. He compared ANFIS model performance with 
genetic expression programming (GEP) to predict the 
compression index of soils. A total of 299 sets of data 
comprising five input parameters namely natural water 
content, liquid limit, plastic index, specific gravity and void 
ratio are used to develop three predictive models for each of 
these approaches. The composition of split data sets for 
training and tests are 233 and 66, respectively. The MF of 
each input variable is generated using the GP method while 
hybrid learning algorithms with MF type triangles are 
selected to optimize parameters. The ANFIS I model has 243 

linear parameters, 45 nonlinear parameters, 524 neurons and 
243 FS while the ANFIS II models have 64 linear parameters, 
48 nonlinear parameters, 158 neurons and 64 FS. In contrast, 
the ANFIS III model has nine linear parameters, 18 nonlinear 
parameters, 35 neurons and 9 FS. The R and RMSE are 
selected as statistical verification criteria to find out the 
performance of each model as presented in Table 8. The 
ANFIS model produces satisfactory results with R-value 
between 0.900 and 0.850, while RMSE ranges from 0.032 to 
0.900. Overall, the approach used in this study is very 
encouraging, based on the results of the model evaluation. 
The authors conclude that the five input parameters used are 
reasonable to predict the compression index of soils. 
 
Table 8. Performance statistics indices of the models [101]. 

Performan
ce index 

ANFIS  GEP 
Mod
el I 

Mod
el II 

Mod
el III 

Mod
el I 

Mod
el II 

Mod
el III 

R 0.900  0.870 0.852 0.910  0.870 0.866 
RMSE 0.032  0.090 0.037 0.029  0.034 0.035 

 
 Throughout 2016, only two articles were successfully 
published on physical properties. Xue and Xiao [102] 
developed three models using BP, particle swarm 
optimization (PSO) - BP and ANFIS to predict internal 
stability of soils. This study uses a hybrid learning method to 
train FS while SC is used to optimize the amount of FR. The 
Sugeno type ANFIS model is developed with six input 
parameters, 14 rules (14 input MFs and 14 output MFs) and 
one output parameter. Clay content, fines content, sand 
fraction, gravel fraction, the coefficient of uniformity and 
coefficient of curvature are the input parameters used for 
training and testing. After the model is trained, the Gaussian 
MF type is used on input parameters. This ANFIS model has 
98 linear parameters, 168 non-linear parameters and 205 
neurons. The number of data sets used for the training and 
verification is 50 and 12, respectively. Table 9 shows the 
performance evaluations for the three models. Based on the 
comparison of statistical performance, the ANFIS model is 
able to predict the internal stability of soils under seepage 
accurately. The authors conclude that this model has the 
capability to interpolate input parameters and can predict 
under various situations. In addition, the author also 
suggested that the ANFIS model is used to predict other 
criteria as proposed by the literature with correct input data. 
Hence, the development of the ANFIS model is more 
attractive compared to some other criteria. 
 
Table 9. Comparison of the performance indices of model 
developed [102]. 

Models RMSE 
Training Testing Total 

ANFIS 0.011 0.027 0.038 
BP 0.073 0.413 0.486 

PSO-BP 0.033 0.072 0.105 
 
 The evaluation studies for estimating saturated soil water 
content with ANFIS model approach were conducted by 
Fashi [103]. Input parameters such as medium porosity (P), 
sand (%), silt (%), clay (%), organic carbon (%) (OC), 
permanent wilting point (PWP), field capacity (FC) and bulk 
density (BD) are used to develop saturated soil water content 
pedotransfer functions (PTFs). An evaluation of the 
contributions of various MFs is made by the author based on 
the estimation of saturated groundwater content as each type 
of MF has an important role in the implementation of the 
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ANFIS approach. In this study, the development of the 
ANFIS model is based on the best selection of inputs. 
Therefore, there are five ANFIS models developed with 
multiple inputs and MFs used. The statistical performance for 
all the best PTFs is shown in Table 10. The P1 model has the 
best predictive accuracy feature. The authors concluded that 
the results of this study are encouraging. The authors also 
suggested that the approach of using the ANFIS model can be 
used for modelling saturated soil water content. Also, the 
author also proposed fine and medium textured classes to be 
considered as input parameters in future studies. 
 
Table 10. Model performance indices during validation for 
the best selected PTFs [103]. 

Models Input 
variables 

R2 RMSE MF 
(Input) 

MF 
(Output) 

Epoch 

P1 Sand, Silt, 
Clay 

0.5527 0.0733 gauss2mf Constant 150 

P2 Sand, Silt, 
Clay, BD 

0.5265 0.0779 gaussmf Constant 150 

P3 Sand, Silt, 
Clay, P 

0.5218 0.0745 gaussmf Constant 150 

P4 Sand, Silt, 
Clay, P, BD 

0.4977 0.0792 trapmf Constant 150 

P5 Sand, Silt, 
Clay, P, 
BD, OC 

0.519 0.0804 gbellmf Constant 150 

 
 In 2017, no reports were reported by researchers. 
However, this activity re-emerged in 2018, when a total of 
eight articles were successfully published based on recent 
advances. The breakdown of the number of publications for 
physical, engineering and other properties are 2.5 and 1 
respectively. The use of ANFIS for physical properties 
reported by Abbaspour-Gilandeh and Abbaspour-Gilandeh 
[104] is to predict soils cone index values as criteria for soil 
compacting. Linguistic variables such as very low (VL), low 
(L), medium (M), high (H) and very high (VH) are used for 
fuzzification of input and output parameters. 5 MF triangles 
are used for each input variable parameter as it produces high 
accuracy. MF at the output is of linear type. The composition 
of the training data sets and validation is 80% and 20% based 
on the 450 empirical data provided. Hybrid optimization 
methods are used for ANFIS model training with 30 epochs. 
The assessment of statistical parameter rating found that R2 

and RMSE were 0.979 and 0.0621, respectively. The 
predicted results of the ANFIS model show that the measured 
value is almost the same as the predicted value. The author 
concludes that ANFIS can become a powerful tool, where the 
data generated from this model has very high compatibility 
with experimental data. Therefore, this model can be used as 
a fast, accurate design method with low cost. 
 In related work, Marashi et al. [105] in their study 
evaluated and compared ANFIS capabilities with multiple 
linear regressions (MLR) to obtain the pedotransfer function 
between the soil aggregate stability indices, mean weight 
diameter (MWD) and geometric mean diameter (GMD). A 
total of 101 samples were used for two sets of readily 
measured factors data. These data sets are used separately as 
inputs for predicting MWD and GMD. The three commonly 
used MF types are trimf, gaussian curve (gaussmf) and 
gaussian combination (gauss2mf) with the different number 
of epochs segregated by genetic command1 to get the best 
training efficiency with minimum error. ANFIS training uses 
Sugeno's FIS structure with GP. The hybrid-learning 
algorithm is used to identify Sugeno type parameters. MF of 
FIS is trained by BP and LS methods. Model evaluation 
criteria are presented as in Table 11. Based on the evaluation 
of these models, the ANFIS model shows better potential for 

predicting the stability index of soil aggregates compared to 
the MLR model, which has a low prediction accuracy. 
 
Table 11. Model performance evaluation of MLR and 
ANFIS using the first dataset (P1) and the second dataset 
(P2) [105]. 

Models MWD GMD 
R2 RMSE R2 RMSE 

First dataset (P1) 
MLR 0.78 0.18 0.58 0.12 
ANFIS 0.92 0.10 0.90 0.07 

Second dataset (P2) 
MLR 0.90 0.11 0.85 0.09 
ANFIS 0.97 0.06 0.94 0.05 

 
 The prediction of engineering properties of unsaturated 
soils shear strength performed by Jokar and Mirasi [106] was 
successfully carried out using the cluster approach. In this 
study, the two fuzzy clusterings are SC (S-ANFIS) and fuzzy 
c-means clustering (F-ANFIS), which are used to create an 
ANFIS model with a minimum number of FR. A total of 10 
ANFIS models were developed using five semiempirical 
models consisting of five S-ANFIS models and five F-ANFIS 
models. The input parameters for ANFIS models were 
obtained from experiments in laboratories, and they are net 
normal stress, matric suction, effective cohesion and angle of 
frictional resistance. Comparison through statistical 
performance is performed between two ANFIS models and 
the empirical model. The epochs are set to 2000 for initial FIS 
training. After the training evaluation, the validation and 
testing process found that all the developed ANFIS models 
yield almost equal measured and predicted values. The 
statistical performance assessment, i.e. R2 for training, 
validation and testing using input parameters proposed by 
[107] are 0.9868, 0.9848 and 0.9941, respectively. The 
authors conclude that all the ANFIS models display a high 
ability to predict shear strength. The ANFIS models can also 
be used in future studies to predict the soil-water 
characteristic curve with nonlinear relationships with inputs. 
 Besides, Bunawan et al. [108] predicted bearing capacity 
of cohesive soft soils reinforced with soil-cement columns. 
This study developed two prediction models using ANFIS 
and ANN methods. The ANFIS model has 108 linear 
parameters, 18 nonlinear parameters and 78 neurons. A total 
of 21 FRs with three input parameters, i.e. column 
height/ground model height, improvement area ratio, and 
cohesion ratio were used to develop the ANFIS model. The 
statistical performance of the test data, R2 for the ANFIS and 
ANN models, are 0.960 and 0.903, respectively. Overall, the 
performance comparison between the two models shows that 
the ANFIS model overcomes the ANN model. The authors 
also suggested that the ANFIS model can be used as a 
powerful and feasible tool to predict the bearing capacity of 
cohesive soft soils reinforced with soil-cement columns. 
 Relevant work has also been done by Das and Dey [109] 
to predict the bearing capacity of a stone column. A total of 
105 data sets consisting of data of stone and sand columns 
obtained from previous technical literature were used to train 
and test ANFIS models. This study developed three ANFIS 
models: ANFIS-E (experimental data as input), ANFIS-A 
(analytical or numerical result as input) and ANFIS-EA 
(experimental data and analytical or numerical result as 
input). The input parameters used in this study are the 
diameter of the stone column, undrained cohesion of soft soil, 
the length of the stone column, the spacing between the stone 
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column, and friction angle of stone column material while 
bearing capacity is the output parameter. The performance 
statistics of the predictive accuracy of training and test data 
are as shown in Table 12. Based on these performance 
statistics, the ANFIS model-EA has a smaller RMSE but a 
larger R2 compared to the other two models. Therefore, the 
ANFIS-EA model has a greater ability to predict more 
accurately. The authors concluded that larger data sets would 
yield better precision. 
 
Table 12. Statistical performance for ANFIS model [109]. 

Models R2 RMSE 
Traning 

ANFIS-E 0.971 7.55 
ANFIS-A 0.960 8.26 

ANFIS-EA 0.986 2.06 
Testing 

ANFIS-E 0.964 7.4 
ANFIS-A 0.940 7.9 

ANFIS-EA 0.979 1.45 
 
 Next, Harandizadeh et al. [110] used ANFIS to predict the 
bearing capacity of piles. Two improved ANFIS models were 
developed using a combination of the group method of data 
handling (GMDH) and fuzzy polynomial (FP). A total of 72 
sets of data are used to train and test these models. Cone tip 
resistance, sleeve friction of cone penetration test, length and 
diameter of the pile are used as the input parameters. The 
ANFIS-GMDH model is optimized using the gravitational 
search algorithm. Both models were developed with 10 FR to 
be trained with a hybrid training algorithm in the ANFIS 
structure. The performance of both models is compared to 
multiple linear regression (MLR) and multiple linear and 
nonlinear regression (MNLR). Table 13 shows that the FP-
GMDH model has the best predictive capabilities compared 
to other models. MLR produces a larger computational error 
followed by MNLR, where the RMSE values are 0.163 and 
0.132, respectively. Based on ANFIS model performance, the 
writer concludes that soft computing tools can help to solve 
any problems in geotechnical engineering. 
 
Table 13. Summary of performance indices for bearing 
capacity of piles [110]. 

Models R2 RMSE 
Traning 

ANFIS–GMDH 0.965 0.065 
FP–GMDH 0.970 0.0594 

Testing 
ANFIS–GMDH 0.940 0.082 

FP–GMDH 0.960 0.0647 
MLR 0.810 0.163 

MNLR 0.850 0.132 
 
 The ANFIS model developed by Jokar et al. [111] 
intended to predict unsaturated soils permeability (kunsat). A 
total of 4660 records from 245 types of land were acquired 
and collected from around the world to be used as data to 
model kunsat. The data set includes nine soil parameters, i.e. 
suction, saturated permeability, kunsat, initial saturation, void 
ratio, specific gravity, uniformity coefficient, clay content, 
silt content and sand content. SC was used and trained by 
ANFIS using the hybrid learning algorithm. The optimum 
number of epochs is 100 while the number of clusters between 
35 and 50 with 43 rules. The results of the training, validation 
and testing found that the ANFIS model has good predictive 

ability, as shown in Table 14. Good relationships can be seen 
between the measured and predicted kunsat. The author 
suggested the ANFIS model developed in this study to be 
used to predict used kunsat in geotechnical engineering design. 
It can save time and reduce costs without requiring 
complicated experiments. 
 
Table 14. The performance indices of ANFIS model [111]. 

Performance 
index 

Training Validation Test Total 

R2 0.9657  0.9455 0.9510 0.9605 
RMSE (m/s) 2.40E−05  1.39E−05 4.77E−06 1.63E−05 

VAF (%) 96.5737  94.5501 95.1001 96.0531 
 
 The prediction of other properties, i.e. soil erosion based 
on the revised universal soil loss equation (RUSLE) model 
parameter was conducted by Islam et al. [112]. Erosivity 
factor, soil erodibility factor, slope length and steepness 
factor, vegetation cover and management factor, support 
practice factor and microbes factor are the RUSLE 
parameters. Model evaluation on method combination and the 
various ANFIS configurations, i.e. MF types, MF counts, 
optimization methods and epoch numbers were conducted to 
obtain the best prediction. The 500 epochs are used to obtain 
minimum RMSE during the training period while the ANFIS 
network is trained using hybrid learning methods. A total of 
60 data sets are provided with four triangular MF (trimf) 
inputs used in this study. Sugino type FIS is generated by 
genfis1 using GP of the data. The best performance errors 
obtained are 1.4276 and 0.8275 for R2 and RMSE, 
respectively. The authors conclude based on the results of this 
study that the ANFIS model is able to predict soil erosion 
within a short period of time even though no performance 
comparison was made with other models. This is because the 
authors believe that the results obtained show some 
confidence in the use of ANFIS models to predict soil erosion. 
 
 
5. Optimization Approach 
 
Training efficiency is enhanced by using optimization 
methods that serve to learn about training data [21]. ANFIS 
has two commonly used learning algorithms, namely BP and 
hybrid methods, to minimize errors between measured and 
predicted data. Recently, researchers have shown an increased 
interest in the development of ANFIS predictive models with 
various optimization approaches. It is divided into two types: 
derivative-based and derivative-free methods. However, 
derivative-free methods are often used because they do not 
require derivation of the objective function and are more 
robust to find the global minimum [113]. Metaheuristic 
algorithms are part of the derivative-free method and are 
divided into two categories, namely evolutionary algorithms 
and intelligent swarm algorithms [114]. Evolutionary 
algorithms and swarm intelligent algorithms are based on the 
biological evolution and social behaviour of animals. Among 
the popular examples of evolutionary algorithms are genetic 
algorithms (GA) and differential evolution (DE) while 
particle swarm optimization (PSO), shuffled frog leaping 
algorithm (SFLA) and satin bowerbird optimization 
algorithm (SBO) are swarm intelligent algorithms. Each 
algorithm has its own advantages in terms of computational 
complexity, convergence speed, accuracy and the number of 
control parameters. 
 Holland [115] in 1975 introduced GA and received a good 
response to date due to its simplicity, easy execution, 
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efficiency and flexibility [116]. It is also known as a search 
method that can be used to model evolution systems and to 
solve problems. It is very effective for optimization tasks in 
situations where multiple inputs interact with each other to 
produce a large number of output possibilities [117]. Due to 
this advantage, researchers used GA with ANFIS widely for 
predictable tasks [118–122], control systems [123–125], 
classification [126,127], optimization [128–130] and decision 
making [131,132]. However, there are also investigators 
comparing ANFIS model performance between GA and PSO 
[119,132–135], DE [133,135,136], BP [135,137], ant colony 
optimization (ACO) [132,135], simulated annealing 
[137,138] and others. 
 An alternative algorithm other than GA is DE which was 
first introduced in 1995. It is known as a highly effective 
global optimizer as it is a simple mathematical model with a 
large and complex natural evolution process [139]. Its 
purpose of development was to replace the mutation and 
classical crossover schemes of the GA. Recent developments 
highlighted by Vasan and Simonovic [140] in 2010 suggested 
the DE algorithm to achieve the best optimal solution in its 
study. It has the advantage of faster and more robust in 
numerical optimization in finding global optimum than 
genetic algorithms [141]. Recently, some researchers 
compared ANFIS prediction models between DE and GA 
[118,133,136,142–144], particle swarm optimization (PSO) 
[142,143,145], ant colony optimization for continuous 
domains (ACOCD) [118], firefly algorithm (FA) [145] and 
found that the use of DE has the best predictive performance. 
 Optimization methods based on intelligent swarm 
techniques have improved over the past few decades. The use 
of PSO dominates in this technique as it is flexible in many 
cases. It was introduced by Kennedy and Eberhart [146] based 
on the simulation of social behaviour reviewing global 
optima. Subsequently, Shi and Eberhart [147] introduced the 
inertial weight parameters to produce better performance. 
PSO has been successfully used in various fields and 
applications. Recently, some researchers used ANFIS - PSO 
for predicting work [148–151], control systems [152,153] and 
classification [154,155]. Researchers also compared the 
performance of the ANFIS model between PSO with GA 
[156,157], BP [152], ACO [132,155], FA [155] and found 
that ANFIS-PSO can produce better results. 
 Among the latest discoveries in intelligent swarm 
techniques is the one highlighted by Chen et al. [158] who use 
SFLA as an optimization method and successfully solves the 
problem of non-linear dimensions. SFLA was first introduced 
in 2003 by Eusuff and Lansey [159]. This algorithm is very 
efficient for discrete data because of its high speed in reaching 
convergence [160]. In recent years, the literature on the 
development of the ANFIS-SFLA model [158,161–164] is on 
the rise. Some studies have compared the performance of the 
ANFIS model between SFLA and GA [164], and PSO [158]. 
 In addition, Samareh Moosavi and Bardsiri [165] have 
introduced SBO to customize ANFIS components through 
small and reasonable changes in the variables. After it was 
introduced, some researchers used this algorithm and found 
that the results were very positive in various developed AI 
models [166–168]. In another study, some researchers 
compared the performance of the AI model using SBO with 
GA [168]. At the same time, Tian et al. [169] introduced a 
new algorithm based on SBO and the no free lunch theorem, 
i.e. multi-objective satin bowerbird optimizer (MOSBO). 
Through the comparisons made with other benchmark 
models, it was found that this algorithm not only has excellent 

optimization capability, but it also improves the accuracy and 
stability of the projection simultaneously. 
 
 
6. Discussion and Future Perspective 
 
The first objective of this paper is to summarize previous 
studies on the development of the ANFIS model to predict the 
stability of the road embankment. Result discussions begin 
with the use of ANFIS to predict the main factors of stability 
of road embankment. Based on literature surveys from 2004 
to 2018, only Demir [101] conducted a prediction study on 
soil settlement that can be used on ground foundation and 
embankment. The findings reveal that there is no 
comprehensive study to predict the stability of the 
embankment by linking two significant factors of settlement 
and slope stability. In contrast, secondary factors related to 
embankment stability, such as soil and permafrost properties, 
are being implemented. The findings are not expected and 
suggest that this study is done in the future. 
 The selection of input parameters is also an essential 
factor in developing predictive models. Since no investigators 
predict the stability of road embankment that makes a 
settlement and slope stability as output, it is recommended 
that maximum deflection, maximum deflection location, 
maximum settlement and FOS. These input parameters are 
relevant based on literature, supported and used by some 
researchers in their study [170–173]. It is suggested that these 
parameters are further investigated to be considered as input 
parameters of the AI prediction model in future studies. 
 One of the most important current discussions in the 
development of the ANFIS model is the more efficient 
optimization approach to the performance of embankment 
stability predictions. Many researchers use optimization 
techniques with hybrid approaches (classic algorithms), 
namely BP and LS. Also, the classic algorithm has difficulty 
calculating the gradient in each step, and the use of chain rule 
can cause local minimum problems and very slow 
convergence of the parameters [10,165]. Nonetheless, there is 
research comparing the performance of the classical 
algorithm models with evolutionary and swarm intelligence 
algorithms. The results of these comparisons show that 
evolutionary and swarm intelligence algorithms produce 
better result precision compared to classic algorithms 
[135,137,174]. These findings further support the idea that 
researchers develop a predictive model of stability of road 
embankment approach ANFIS with optimization method 
using evolutionary and swarm intelligent algorithms such as 
GA, DE, PSO, FLA and SBO. 
 
 
7. Conclusion 
 
Researchers from various countries have successfully 
published a total of 19 research studies related to road 
embankment stability using the ANFIS approach. This good 
response to ANFIS is due to its ability to reduce search space 
dimensions by distributing input information over the 
network. Advantages and benefits through a combination of 
neural networks and fuzzy logic in a framework are the 
strengths of the ANFIS model, a researchers’ choice for use 
in predictive model development studies. 
 This paper examines the importance of developing road 
embankment stability prediction models with ANFIS 
applications. One of the more significant findings of this 
study is the limited number of researchers who predict road 
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embankment stability by linking settlement and slope 
stability. Although many researchers developed ANFIS 
models for soil properties, it has been shown that this field of 
study is still poorly understood, possibly due to limited 
literature. More research in this area would mean a start of 
more novel research in the road and geotechnical engineering. 
By increasing the projection of road embankment stability, 
researchers can select appropriate input parameters to avoid 
underfitting of models. This effort can also help in choosing 
the appropriate number and the type of MF. 
 Overall, many researchers developed the ANFIS Sugeno 
model with hybrid learning algorithm and SC type cluster 
method. Based on a literature review in this paper, the ANFIS 
approach yields better accuracy than the ANN, MLR, MNLR, 
MRM and GEP methods. However, the accuracy of the results 
is dependent on optimization techniques, as some researchers 
compared the classic approaches to algorithms (BP and LS) 
with the PSO. On the other hand, many researchers used 
evolutionary and swarm intelligent algorithms in different 
fields and have proven to yield amazing performance results. 
It will be even more interesting if there are more predictive 
project performance reviews with optimization techniques 
such as GA, DE, PSO, SFLA and SBO. In addition, the cluster 
method approach also affects the accuracy of results as it is 
proven by some researchers who compare ANFIS model 

performance based on conventional cluster method (GP and 
SC) with fuzzy c-means. 
 Based on the discussion presented in this paper, it can be 
concluded that the evidence and the results of the study can 
give some contribution to the current literature. Hence, the 
findings of this study have important implications for future 
practice. This is because the information and findings 
presented are beneficial to researchers, especially in the field 
of road embankment stability with the ANFIS approach. 
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