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Abstract 
 

In the present study, the kinematics of a class of parallel manipulators with two translational and one rotational degrees-of-
freedom are addressed through the analysis of HALF robot. A detailed kinematic and constraint analysis of the robot is 
conducted. In addition, an exhaustive singularity characterization is presented with interpretation of the robot’s behavior 
in singular poses. The implications of this study will initiate further investigations on the design of parallel manipulators 
belonging to the class of manipulators under consideration. 
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1. Introduction 
 
Parallel Manipulators (PMs) with three degrees-of-freedom 
(DOFs) have been widely investigated in robotics research [1, 
7]. The famous Delta robot [8, 9] is the first design involving 
the parallelogram concept. It allows the output link to remain 
at a fixed orientation with respect to an input link. Delta robot 
can output three translational degrees-of-freedom. Later on, a 
three-DOF spatial parallel manipulator with two translational 
and one rotational DOFs named HALF was proposed [10]. It 
was first introduced in two versions: one with prismatic 
actuators and the other with revolute ones. The advantages of 
this manipulator are the combination of spatial translational 
and rotational motions, the usage of parallelogram joint in one 
of its legs, and the high rotational capability of its end-
effector. In 2004, a family of parallel manipulators with two 
translational and one rotational DOFs was introduced [11] 
based on the concept of the HALF design. HANA robot, one 
of the aforementioned family, is constructed by using two legs 
with parallelogram joints. Later on, several works, for 
instance [12, 13], addressed the kinematics and design of PMs 
belonging to the aforementioned family. 
 Screw theory [14-18] and Grassmann-Cayley algebra [19-
22] have been widely implemented in the kinematics and 
singularity analysis of parallel mechanisms. The main feature 
of Grassmann-Cayley algebra is the possibility to provide 
comprehensive geometric and vector forms of parallel 
mechanisms’ singularity conditions. This paper mainly 
focuses on a detailed kinematics and singularity analysis of 
PMs with two independent translations and one rotation 
through the examination of HALF robot. To the best of the 
authors’ knowledge, such an investigation is presented for the 
first time in this paper. Furthermore, this class of mechanisms 
has not been analyzed using Grassmann-Cayley algebra and 
its superbracket decomposition. 
 The present paper approaches the kinematics and 
singularities of a family of PMs with two translational and one 

rotational DOFs through the geometric analysis of HALF 
robot. First the tools and techniques used in the study are 
introduced. A CAD model of HALF is then presented. 
Furthermore, the paper conducts a detailed kinematics and 
constraint analysis of the robot and an exhaustive singularity 
analysis including serial (leg) singularities and parallel 
singularities [21]. Finally, a full interpretation of the singular 
configurations is presented with illustrations and an analysis 
of the robot’s behavior in singular poses. The paper concludes 
with highlights of the obtained results and potential 
applications based on its findings. 
 
 
2. Theoretical background 
 
2.1 Screw theory 
Screw theory began with Plücker's research on line geometry 
in the second half of the 19th century [14–18]. The 
instantaneous motion of a rigid body and its force/couple may 
be described as screws which are denoted by twist and 
wrench, respectively. Thus, screws can be used to describe the 
constraints that a spatial rigid mechanism is subjected to and 
its free motion under the constraints. Additionally, a screw is 
determined by its axis and pitch in geometry, which offers 
excellent ease for applying and promoting the theory of 
screws. 
 Screws are used in the paper in the forms of twists and 
wrenches, respectively, to represent the motions of the robot’s 
kinematic joints and the constraint forces/torques exerted on 
its legs and moving platform. A zero-pitch screw can be 
written as: 
 

     (1) 
 
where  is a unit vector along the screw axis and  is the 
position vector of a point  on the screw axis. In turn, an 
infinite-pitch screw is expressed as: 
 

      (2) 

$0 = (sT ; ra × sT )T

s ra
a

$∞ = (0T ; sT )T
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 Zero-pitch screws represent rotations and forces while 
infinite-pitch screws represent translations and torques. 
 
2.2 Projective space 
In the three-dimensional projective space, there is one plane 
at infinity [20]. Let lower-case letters represent finite 
projective points and upper-case letters represent projective 
points at infinity. A zero-pitch screw corresponds to a finite 
line in the projective space and can be written as: 
 

     (3) 
 
where  is the point at infinity in the  direction. All lines 
parallel to intersect in the plane at infinity at point . In 
turn, an infinite-pitch screw corresponds to a line at infinity 
in the projective space and can be written as: 
 

     (4) 
 
where  and  are the points at infinity in the  and 
directions, respectively. Vectors  and are two 
independent vectors orthogonal to . 

 
2.3 Bracket and super-bracket 
In Grassmann-Cayley algebra [22], the basic elements are 
extensors with a given step. Extensors of step 1, 2, and 3, 
represent points, lines, and planes, respectively. A bracket 

corresponds to the determinant of the 4*4 matrix 
whose columns are the Plücker coordinates of points 
and . A bracket is null whenever the tetrahedron from by 
the four points vanishes, namely, when the four points are 
coplanar, collinear, or coincident. Since all points at infinity 
belong to one plane (the unique plane at infinity), a bracket 
with four points at infinity is always null. Similarly, a bracket 
with repeated points is null. 

 A super-bracket 

corresponds to the determinant of a 6*6 matrix whose 
columns are Plücker lines corresponding to projective lines, 
namely, to screws of either zero- or infinite- pitches. In robot 
kinematics, the superbracket represents the determinant of a 
certain 6*6 Jacobian matrix whose examination provides 
conditions for robot singularities. 
 Using the super-bracket decomposition [19], a super-

bracket  can be transformed to 

24 monomials, each monomial being a product of 3 brackets. 
Using geometric properties among the super-bracket points 
and vanishing conditions of a bracket, the 24 monomials can 
be reduced. Further manipulation of the nonzero monomials 
in Grassman-Cayley algebra yields algebraic and vector 
forms of singularity conditions. 

 
 

3. Kinematics of HALF robot 
 
3.1 HALF robot  
Fig. 1. shows a CAD model of HALF robot. HALF is a 
parallel manipulator with three legs , , and . Legs 

 and  have the  structure while leg  is a  
leg. , , , and  stand for prismatic, revolute, 
universal, and planar parallelogram [23] joints, respectively. 

In each leg, the prismatic joint is actuated. Leg 
, , comprises: a prismatic joint 

allowing translations along , a revolute joint of axis parallel 
to  and passing through point , a revolute joint of axis 

parallel to  and passing through point , and a revolute 

joint of axis parallel to  and passing through point . The 
last two revolute joints thus form a universal joint. It is 
noteworthy that: 
 

,       (5) 
 

       (6) 
 

 Leg  comprises: a prismatic joint 
allowing translations along , a revolute joint of axis parallel 
to  and passing through point , a parallelogram joint 

allowing translations along , and a revolute joint of 

axis parallel to  and passing through point . Notice that: 
 

      (7) 
 

       (8) 

 
Fig. 1. CAD model of HALF robot. 
 
3.2 Kinematics of PRU leg  
The twists associated with the kinematic joints of leg , 

, are: 
 

 
 

 

 
 

$0 = (sT ; ra × sT )T = aS

S s
s S

$∞ = (0T ; sT )T = UV

U V u v
u v

s

[abcd]
a, b, c,

d

ab cd ef gh ij kl⎡
⎣

⎤
⎦

ab cd ef gh ij kl⎡
⎣

⎤
⎦

L1 L2 L3
L1 L2 PRU L3 PRΠR

P R U Π

Li = PiRi1Ri2Ri3 i=1, 2
z

x ai
x bi

y bi

aibi ⊥ x i=1, 2

b1b2 || y

L3 = P3R31Π3R32
z

y a3
a3b3 × n

y b3

a3b3 ⊥ n

n ⊥ y

Li
i=1, 2

Ti
∞1 = (0T ; zT )T = (0,0,0,0,0,1)T

Ti
01 = (xT ; (rai

× x)T )T = (1,0,0,0,zai ,-yai )
T

Ti
02 = (xT ; (rbi

× x)T )T = (1,0,0,0,zbi ,-ybi )
T
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 Applying a linear transformation on the four twist screws 
yields: 
 

 
 
where  
 
 As a result, leg , , is a 2T2R leg with two 

independent translations along  and  in addition to 
two independent rotations about axes that are parallel to the

 plane. 
 The kinematic Jacobian matrix of leg , , is given 
by: 
 

   (9) 

 
Note that: 
 

.  

 
 Accordingly, the constrained motions of leg , , 
are the rotational DOF about axes that are parallel to and 
translations along . 
 
3.3 Kinematics of PR𝜫R leg 
The twist screws associated with the kinematics joints of leg 

are: 

 
 

 

 
 

 
 

 
 Applying a linear transformation on the four twist screws 
yields: 
  

 
 
where  
 
 As a result, is a 3T1R leg with three independent 

translations along , , and  in addition to one 
rotational DOF about an axis that is parallel to . 
 The kinematic Jacobian matrix of leg is given by: 
 

  (10) 

 
 The constrained motions are rotations about axes that are 
parallel to plane.  
 
4. Constraint analysis of HALF robot 

 
4.1 Constraint analysis of PRU leg 
Applying screw reciprocity conditions to the twists screws of 
leg , , its constraint wrench screws are a constraint 

force and a constraint couple expressed as follows:  
 

    (11) 

 
 Similarly, the actuation wrench of leg , , is a 

force as follows: 
 

    (12) 

 
4.2 Constraint analysis of PR𝜫R leg 
Applying the reciprocity of screws to the twist screws of leg 

, its constraint wrench screws are two constraint couples 

and  expressed as follows: 
 

     (13)  

 
As for the actuation wrench of leg , it is a force as 
follows: 
 

   (14) 

 
4.3 Platform’s constraints 
The moving platform’s constraint wrench system spans the 
constraint wrench systems of legs , , and  that are 
expressed in Eqs. (11) and (13). Notice that 

. 
Moreover:  

 
where 
 

 
 
 The constraint wrench system of HALF robot is given by: 
 

 
 

Ti
03 = ( yT ; (rbi

× y)T )T = (0,1,0,-zbi
,0, xbi

)T

span(Ti
∞1 , Ti

01 , Ti
02 , Ti

03 )= span(Ti
∞1 , Ti

01 , Ti
∞2 , Ti

03 )

Ti
∞2 = (0T ; ( aibi × x)T )T

Li i=1, 2

z aibi × x

xoy

Li i=1, 2

JPiRiUi =
0 x 0 y
z rai × x aibi × x rbi × y

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(aibi × x)× z = (0,yaibi ,zaibi )× (0,0,1)= (0,zaibi ,-yaibi )
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z

x

L3

T3
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01 , T3
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∞1 , T3
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T3
∞3= (0T ; (a3b3 × y)T )T
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y
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⎣

⎢
⎢

⎤
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⎥
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Li i=1, 2

Wi
0c Wi

∞c

Wi
0c = (xT ;(rbi × x)

T )T

Wi
∞c = (0T ;zT )T

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   i=1, 2

Li i=1, 2

Wi
0a

Wi
0a = (aibi

T ;(rbi × aibi )
T )T   , i=1, 2

L3

W3
∞c1 W3
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0c , W12
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 Therefore, the moving platform is constrained to translate 
along and to rotate about axes that are parallel to plane.  
The Jacobian of the direct kinematics of HALF robot is 
represented by: 
 

 (15) 

 
It is noteworthy that  may be replaced with . 
 

 
5. Singularity analysis 
 
Awareness of singular poses is of major importance for the 
design and implementation of robot architectures. A detailed 
singularity analysis of HALF robot is conducted in this 
section. Leg singularities are first addressed before 
investigating the parallel singularities.  
 Leg singularities relate to the leg’s kinematic screw 
matrix and occur when the leg’s kinematic twists become 
linearly dependent. Such singularities are associated with a 
loss of degree(s)-of-freedom. 
 Parallel singularities relate to the rank deficiency of the 
direct kinematics’ Jacobian matrix. They can be associated 
with either a loss of control of the moving platform or a 
change in the constrained motions. 

 
5.1 PRU leg singularities 
Leg , , exhibits singularity whenever its kinematic 
Jacobian matrix expressed in Eq. (9) is rank deficient. Since 
the second and fourth columns of the concerned matrix are 
zero-pitch screws along two directions that are independent in 
any leg or robot configurations, the leg singularities 
correspond to the linear dependency of the first and third 
columns which are infinite-pitch screws. Accordingly, leg  
is singular whenever:  

• . Since , the present 

conditions means that . This condition is 

illustrated for leg  in Fig. 2. 

• . This condition is impossible to occur for 

the geometry of leg , . 
 

5.2 PR𝜫R leg singularities 
Leg  is in singularity whenever its kinematic Jacobian 
matrix expressed in Eq. (10) is rank deficient. Accordingly, 
singularities of leg  are related to the linear dependency of 
the three infinite-pitch twists, namely, the first, third, and 
fourth columns of Eq. (10). The singularity conditions for leg 

 are as follows: 
 
• , as illustrated in Fig. 3. Special cases of 

this condition are  and .  

• . Impossible since  in any robot 
configuration. 

• , , and   are parallel to one plane. 

For instance, this occurs if  is orthogonal to 
. 

 

 
Fig. 2. Singular configuration of leg : . 

 

 
Fig. 3. Singular configuration of leg : . 

 
5.3 Parallel singularities  
A parallel singularity arises whenever the direct Jacobian 
matrix expressed in Eq. (15) becomes rank deficient. Parallel 
singularities are examined in this paper for HALF robot using 
the super-bracket decomposition. To form the required super-
bracket, it is required to select two points on each of the 
wrenches (projective lines) constituting the columns of .  
 In the projective space, let and be the points at 
infinity in the  and directions, respectively. 
Accordingly, three lines represent the platform’s constraint 
wrench system as follows:  

x xoz

Jdir = W1
0c W1

∞c W3
∞c1 W1

0a W2
0a W3

0a⎡
⎣⎢

⎤
⎦⎥

=
x 0 0 a1b1 a2b2 a3b3

rbi × x z x rb1 × a1b1 rb2 × a2b2 rb3 × a3b3

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

W1
0c W2

0c

Li i=1, 2

Li

(aibi × x) ! z aibi ⊥ x

aibi || y

L1
aibi || x

Li i=1, 2

L3

L3

L3

a3b3 || xoy

a3b3 || x a3b3 || y

a3b3 || n a3b3 ⊥ n

a3b3 × n a3b3 × y z

a3b3 × n
y

L1 a1b1 || y

L3 a3b3 || xoy

Jdir
X, Y, Z

x−, y−, z −
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      (16) 

 
 In turn, let and  be the points at infinity in the 

directions of lines and , respectively. The 
actuation wrenches are then represented by: 
 

    (17) 

 
 From Eqs. (15), (16), and (17), the super-bracket can be 
formulated as follows: 
 

 (18) 

 
 Using the geometric properties among the super-bracket 
points, the 24 monomials of the super-bracket decomposition 
can be reduced to a certain number of nonzero monomials. 
For instance, any bracket with repeated points or with four 
points at infinity is null and will cause the vanishing of the 
monomial where it appears. Finally, the super-bracket 
decomposition of Eq. (18) leads to only one nonzero 
monomial: 
 

  (19) 
 
Parallel singularities occur whenever  is null. The 
singularity conditions turn out to be: 
1. . This condition requires the collinearity of 

points , and  at infinity, which means that vector 

, line (whose point and infinity is ), and line 

(whose point and infinity is ), are parallel to one 
plane. In vector form, this condition becomes: 

 
    (20) 

 
Different situations for which Eq. (20) holds are listed 
below: 

 
i. . Keeping in mind that both lines 

 and are orthogonal to in any robot 
configuration, the present condition is satisfied 
in two different situations. First, when  and 

are horizontal, namely, parallel to which 
means that the two lines coincide. Clearly, this 
could be avoided by appropriate dimensioning 
of arms  and . Second, when  and 

are parallel but not horizontal which is 
illustrated in Fig. 4. 

ii. . Impossible. 

iii. . Impossible. 

iv. . Unless  and are 
parallel, the present condition appears to be 
impossible since  is parallel to . 

 
2. . This corresponds to , (whose 

point and infinity is ), and  being parallel to one 
plane. In vector form. This condition can be written as: 

 
    (21) 

 
Eq. (21) applies in the following cases: 

i. . Impossible. 

ii. . This includes situations where 

 or . It is noteworthy that 

 corresponds to the flattening of the 
planar parallelogram joint. 

Note that for Eq. (21),  can be replaced with  due 
to the linear transformation performed in Section 4.3 on 
the two constraint forces applied by legs  and . 

3. . This condition cannot 
occur. 

 
Fig. 4. Parallel singularity of HALF robot: . 

 
 

6. Results and Discussion 
 
Section 5 resulted in 11 singularity conditions of which only 
5 conditions appear to be reachable for HALF robot.  
 
Table 1. Possible singularity conditions of HALF robot. 

Singularity 
condition 

Singularit
y type 

Associated 
behavior 

1
. 

, 
 

Leg 
singularity 

Leg  
loses a 

W1
0c = b1X

W1
∞c = XY

W3
∞c1 = YZ

F1, F2, F3
b1a1, b2a2, b3a3

W1
0a = b1a1 = b1F1

W2
0a = b2a2 = b2F2

W3
0a = b3a3 = b3F3

SHALF = b1X b1F1 b2F2 b3F3 XY YZ⎡
⎣

⎤
⎦

SHALF = [b1XF1F2][b1b3F3Y][b1XYZ]

SHALF

[b1XF1F2] = 0

X, F1 F2
x a1b1 F1
a2b2 F2

(a1b1 × a2b2)• x = 0

a1b1 ||a2b2
a1b1 a2b2 x

a1b1
a2b2 y

a1b1 a2b2 a1b1
a2b2

a1b1 || x

a2b2 || x

a1b1× a2b2 ⊥ x a1b1 a2b2

a1b1× a2b2 x

[b1b3F3Y] = 0 b1b3 a3b3
F3 y

(b1b3 × a3b3)• y = 0

b1b3 || y

b1b3 × a3b3 ⊥ y

b1b3 ||a3b3 a3b3 || y

a3b3 || y

b1 b2

L1 L2
[b1XYZ] = 0 ⇒ (x × y)• z = 0

a1b1 ||a2b2

aibi || y
i=1, 2

Li Li
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translation
al DOF 

2
.  

Leg 
singularity 

Leg  loses 
a translational 
DOF 

3
.  

Leg 
singularity 

Leg  
loses 
translation
s along  

4
.  

Parallel 
singularity 

Actuatio
n 
singularit
y, loss of 
control of 
the 
moving 
platform 

5
.  

Parallel 
singularity 

Actuatio
n 
singularit
y, loss of 
control of 
the 
moving 
platform 

 
 Table 1 recalls the 5 possible singularity conditions. 
Further discussion of the robot behavior in singular 
configurations is presented in this section.  

 
1. , . This is a singularity of leg , . 

For instance, for leg , if , the leg’s kinematic 
Jacobian matrix expressed in Eq. (9) will have two iden-
tical columns and thus, the leg loses one translational 
DOF. In such configurations, the leg provides 1T2R mo-
tions, with one possible translational DOF along , ra-
ther than its general pattern of 2T2R motions. 

2. . This is a singularity of leg . In particular, 

if  the leg loses the translational DOF along  

. Otherwise, if  the leg’s Jacobian 
matrix in Eq. (20) will have two identical columns. Both 
situations lead leg  to have 2T1R motions rather than 
its general pattern of 3T1R motions. 

3. . In that case the three translational DOFs of 

leg  reduce to only two independent translations and 
thus, the leg loses the translational DOF along . 

4. . In that case, the actuation forces applied by 

legs  and  are parallel. Accordingly, the wrenches 

, , and  form a -screw sys-
tem. In other words, 

. Clearly, this 
is an actuation singularity associated with a loss of con-
trol of the moving platform. 

5. . Special cases are and 

. Clearly, the constraint wrench system is not 
affected by this conditions. Therefore, this is also an 
actuation singularity condition accompanied by a loss of 
control of the moving platform. 

 
 The results clearly show that HALF robot is free of 
singularities related to the degeneracy of the constraint 
wrench system, which affect the motion pattern of the moving 
platform. 

 
 

7. Conclusions 
 
This paper investigated the kinematics and singularities of a 
family of parallel manipulators with two translational and one 
rotational DOFs through the geometric analysis of HALF 
robot. Using the theory of reciprocal screws, a detailed 
constraint analysis was conducted for each leg and the moving 
platform. Leg singularities were determined and analyzed. 
Using the super-bracket decomposition, a detailed parallel 
singularity analysis was addressed.  
 To conclude, the paper presented tools to completely list 
and interpret singular configurations of parallel manipulators 
with two translational and one rotational DOFs. The obtained 
results provide better understanding of the geometric 
properties of this family of manipulators. Moreover, the 
results would be useful for future works on the type synthesis, 
singularity avoidance, and design of new parallel 
manipulators pertaining to the mentioned family. 
 
This is an Open Access article distributed under the terms of the Crea-
tive Commons Attribution License  
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Nomenclature 
DOF Degree of Freedom 

  Jacobian matrix 
  Finite point 
  Point at infinity 
  Prismatic joint 

PM  Parallel Manipulator 
  Revolute joint 
  Super-bracket  
  Screw 
  Twist 
  Universal joint 
  Wrench 
  Planar parallelogram joint 
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