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Abstract 
 

Limiting number of fatalities and reducing injury severity of car crashes is a continuing global concern. This study 
investigates crash risk factors including driver, vehicle, roadway, and crash characteristics role in determining injury 
severity levels encountered by drivers in fatal car crashes. Three types of supervised machine learning techniques were 
used; Classification and Regression Tree (CART), Artificial Neural Networks (ANN) and Multinomial Logistic 
Regression. The CART model was used to elect the most influential factors in determining drivers’ injury severity levels. 
The ANN model was used to predict drivers’ injury severity based on crash attributes. The logistic model was used to 
identify the effect of different crash attributes in distinguishing drivers’ injury severity levels and for comparison purposes. 
Consequently, CART model resulted in six significant factors, these factors are: airbag deployment, seatbelt use, driver 
age, vehicle rollover, collision type, and vehicle model year. It was found that airbag deployment has a strong correlation 
with severe injuries and even fatalities. The use of seatbelts appears to reduce injuries and fatalities. Furthermore, elderly 
drivers, front to front collisions, vehicle rollover and older vehicles seem to cause more mortalities and injuries. On the 
other hand, according to the logistic model, all the crash attributes were found significant in distinguishing between drivers’ 
injury severity levels except for the roadway functional system. However, the ANN model outperformed the CART model 
in terms of accuracy and stability. Further, both models seem to outperform the logistic regression model in terms of 
prediction accuracy. 
 
Keywords: Classification and Regression Tree (CART), Artificial Neural Networks (ANN), Multinomial Logistic Regression, Severity, 
Injury, Fatality, Crashes, Fatality Analysis Reporting System (FARS) 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Worldwide, around 1.3 million lives are lost, and 
approximately 50 million people are injured each year due to 
traffic crashes. According to data collected from 178 
countries by the World Health Organization, traffic crashes 
are considered the ninth most common cause of death [1]. In 
2016, around 40,000 lives were lost on U.S roads, an increase 
of 5.6% from the year 2015 [2]. 
Several factors influence crashes injury severity. These 
factors are mostly related to one or more of the following: 
driver characteristics, vehicle characteristics, roadway 
characteristics, crash characteristics and atmospheric factors 
[3,4]. 
 Limiting the number of fatalities and reducing injury 
severity in car crashes is a continuing concern within the 
traffic safety field. Investigating key risk factors of traffic 
crashes helps determine the significant factors that need 
immediate attention by governments and transportation 
agencies in order to eliminate or at least minimize crashes 
number and severity. 
 Although statistical models have been largely employed 
in crashes injury severity detection [5-10], other superior 

supervised machine learning techniques such as decision trees 
and artificial neural networks have proven to provide higher 
prediction accuracy than ordinary statistical models [11-13]. 
Nevertheless, the use of a softmax activation function in the 
neural network design has not been broadly employed in the 
crash injury severity detection field. Moreover, neural 
network designers usually use either early stopping or 
regularization method to improve model generalization 
abilities. The use of both techniques in the same model has 
not been widely implemented either. 
 Therefore, this study used 7,394 car crashes occurred 
across the United States of America in the year 2015 to 
investigate accident risk factors including driver, vehicle, 
roadway, and crash characteristics role in determining injury 
severity levels encountered by drivers in fatal car crashes. 
Data was retrieved from the Fatality Analysis Reporting 
System (FARS). Three types of supervised machine learning 
techniques were utilized for this purpose; Classification and 
Regression Trees (CART), Artificial Neural Networks 
(ANN) and Multinomial Logistic Regression. The CART 
model was used to elect the most influential factors in 
determining drivers’ injury severity levels. On the other hand, 
the multi-layer feedforward ANN model with a softmax 
activation function and both early stopping and regularization 
generalization techniques was used to predict drivers’ injury 
severity based on crash attributes. The utilization of a softmax 
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function in the ANN output layer was not presented in the 
literature; therefore, this study also aims to examine its role in 
the ANN training. The logistic model was used to identify the 
effect of different crash attributes in distinguishing between 
drivers’ injury severity levels and for comparison purposes. 
By determining key risk factors of car crashes and building 
prediction models, safety procedures can be carried out and 
policies can be implemented in order to reduce fatalities and 
injuries caused by car crashes. 
 
 
2.  Literature Review 
 
Several analytical techniques have been used to examine 
crashes attributes. One of the most famous fields in data 
analysis is data mining. Vehicle crashes data can be 
investigated by employing different data mining techniques 
including statistics, machine learning, high-performance 
computing, artificial neural networks, pattern recognition, 
decision trees, data visualization, image and signal processing 
and spatial data analysis [14,15]. Such techniques are able to 
detect relationships and patterns between inputs and outputs 
with a decent accuracy level. 
 
2.1 Statistical Models on Crash Injury Severity 
Statistical analysis has been the most popular technique to 
examine risk factors affecting crashes. Zhang et al. [5] studied 
crashes involving elderly drivers in Ontario, Canada using a 
multivariate unconditional logistic regression model. It was 
found that male drivers older than 75 years old were the most 
vulnerable class to face severe injuries due to their physical 
conditions. Keall et al. [6] used a logistic model to study the 
effect of drivers’ alcohol consumption, their age, and the 
influence of other passengers on drivers’ risk of being fatally 
injured in New Zealand. The model showed high relation 
between blood alcohol concentration and fatality risk. Bedard 
et al. [8] employed a multivariate logistic regression to 
investigate the contribution of driver, vehicle, and crash 
characteristics to driver fatality. It was found that increasing 
seatbelt use and reducing travel speed may reduce drivers’ 
fatalities. It was also found that older drivers and female 
drivers need more attention than younger and male drivers. 
 A group of researchers explored some methodological 
barriers existing in crash data statistical analyses that need 
profound attention such as missing data, unobserved 
heterogeneity, endogeneity, risk compensation, temporal 
instability, spatial and temporal correlations [10,16,17]. 
According to these studies, it is believed that new 
methodological applications like random parameter models, 
latent class models and multi-state switching models have 
great potential in improving the understanding of several 
factors that could affect the likelihood and the injury severity 
level of highway crashes. 
 
2.2 Decision Trees and Artificial Neural Networks on 

Crash Injury Severity 
Decision Trees and Artificial Neural Networks have proven 
to outperform ordinary statistical modeling in terms of 
prediction power. These techniques can easily detect non-
linear relationships between inputs and outputs. 
 Chang and Wang [3] employed a CART model to 
investigate crashes risk factors in Taiwan. It turned out that 
most influential factors were manner of collision, contributing 
circumstances, and driver behavior. However, the proposed 
CART model failed to identify conditions that resulted in a 
fatal injury, thus it was proposed to associate the proposed 

model with other data mining techniques such as artificial 
neural networks. Another Taiwanese study used CART 
modeling focused on truck-involved crashes was carried out 
by [18]. It was concluded that drunk driving is the most 
significant factor in these types of crashes, followed by 
seatbelt use, collision type, vehicle type, contributing 
circumstances, and drivers’ actions. 
 Kashani and Mohaymany [19] used a CART classifier to 
investigate the factors influencing crash injury severity for 
crashes occurring on two-lane two-way rural road in Iran. It 
was found that not using a seatbelt is the most influential 
factor that affects the severity of an injury. In a recent work, 
[20] used a CART model to identify the most significant 
factors that affect car crashes severity and injury for crashes 
on Slovenian Roads. It was concluded that the most vital 
factor in predicting the crash severity is the contributing 
circumstances specially speeding and driving on the wrong 
lane. 
 Tong et al. [12] applied an L1 penalized logistic 
regression and binary decision tree to predict factors causing 
fatal injuries in crashes occurred in Virginia between 2010 
and 2015. An L1 penalized logistic regression is a type of 
logistic regression which enforces a penalty (punishment) to 
prevent the model from having “too many variables”, the L1 
type refers to the Lasso regression (“Least Absolute 
Shrinkage and Selection Operator”); which sums the 
“absolute value of magnitude of coefficients” as a penalty 
term to the loss function. In this study, both models predicted 
different set of variables to be risky; factors such as lighting 
condition, speed limit, roadway alignment, number of 
vehicles and type of intersection were found significant when 
using the penalized logistic regression model. On the other 
hand, weather condition, driver drinking and drug using, 
lighting condition, and type of collision were found 
significant when the decision tree model was used. 
 In a recent study [13], several prediction models using 
decision trees and logistic regression classifiers were 
developed. These models aimed to describe factors that 
contribute the most to non-fatal crashes in Malaysia. Five 
different types of decision trees were used namely Gini, 
Entropy, CART, Logworth, and CHAID. Multinomial 
logistic regression was employed to compare the results. It 
was shown that the decision tree with CART algorithm 
outperformed the other types of decision tree and the logistic 
regression model. It was also concluded that crash cause, road 
geometry, vehicle type, age, and collision type are factors that 
significantly contribute to these types of crashes. 

Chen et al. [21] used classification and regression tree 
along with Support Vector Machine (SVM) model to 
investigate driver injury severity in rollover crashes in New 
Mexico. SVMs are a non-parametric kernel based classifiers 
that are used to investigate patterns in classification problems.  
The CART model was used to detect the significant variables 
causing injuries while the SVM classifier was utilized to 
investigate the injury severity patterns. It was concluded that 
wearing a seatbelt, driving in a comfortable environment, 
alcohol and drug use are highly associated with incapacitating 
and fatal injuries. 
 Feedforward ANNs are vastly used for prediction. Several 
studies used this particular type of ANN to investigate crashes 
risk factors. To name a few, [22] used a feedforward 
backpropagation ANN model to predict the occurrence of 
injuries in vehicle collision crashes in Florida. It was found 
that number of lanes and road surface conditions contribute 
the most to the injury occurrence. A study by [23] considered 
vehicle crashes occurred in Turkey using feedforward 
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backpropagation ANNs. The model revealed that the degree 
of vertical curvature is the most important factor that 
influences the number of crashes followed by the degree of 
the horizontal curve.  
 Other types of ANN have also been used for risk factor 
investigation. Abdelwahab and Abdel-Aty [11] utilized 
multilayer perceptron and fuzzy adaptive resonance theory 
ANN models. It was found that female drivers are more prone 
to severe injuries than males. Further, increased speed and not 
wearing a seatbelt increase the probability of severe injuries. 
Delen et al. [24] utilized a series of ANNs to model the 
relationship between risk factors causing injuries in car 
crashes and the injury severity levels. It was found that the 
use of seatbelts, drivers’ age and gender and their alcohol and 
drug consumption seem to have large contribution to injuries 
severity. 
 Sohn and Shin [25] used three data-mining techniques; 
ANNs, logistic regression, and classification trees to 
determine the influential factors for traffic crashes occurred 
in South Korea and to build prediction models for injury 
severity. It was found that there is no significant difference in 
the accuracy between the three techniques used. It was also 
found that the use of a protective device is the most influential 
factor. Chong et al. [26] employed ANNs and decision trees 
to study traffic crashes data. Decision tree model was found 
to outperform neural networks in terms of prediction 
accuracy. It was also shown that the most significant factors 
in fatal injuries are drivers’ seatbelt use, alcohol intake and 
roadway light condition. 
 Many other studies employed other machine learning 
techniques to investigate crashes risk factors and predict 
injury severity levels. Some of these tools include Bayesian 
networks [27] modified neural network pruning algorithm 
N2PFA [28], recurrent neural networks [29], data clustering 
[30,31], and non-dominated Sorting Genetic Algorithm with 
a neural network classifier [32]. 
 
3. Data Compilation and Reduction 
 
The data used in this study was retrieved from the Fatality 
Analysis Reporting System (FARS). This database system is 
maintained by the National Highway Traffic Safety 
Administration (NHTSA). FARS is a census tool used in the 
United States which provides data regarding fatal injuries in 
motor vehicle traffic crashes. 
 To consider a crash as fatal, at least one fatal injury shall 
be reported. Fatal injuries include all deaths within 30 days of 
the crash date [33]. FARS database contains comprehensive 
information on persons and vehicles involved in the crash 
besides crash circumstances. These data points are collected 
from police reports, state administrative files, and medical 
records by specialists. Moreover, automated error 
examination and data monitoring guarantee that data fall 
within logical ranges [34]. 
 In this study, sixteen accident attributes were utilized as 
input variables to assess driver injury severity levels in fatal 
traffic crashes occurred across the United States of America 
(USA) in the year 2015. Studied variables include driver 
characteristics such as age, gender, use of seatbelt and alcohol 
consumption. In addition, vehicle characteristics such as 
model year and air bag deployment were included, and 
roadway features such as the type of roadway, roadway 
alignment, surface conditions, lighting condition, speed limit 
and whether the crash occurred on an intersection or not. 
Finally, crash features like travel speed, manner of collision, 
ejection and vehicle rollover were also considered as input 

variables. On the other hand, injury severity level was used as 
the target variable. 
 The 16 input attributes were chosen based on previous 
studies such as [3,11,13,18,21,24,35] and based on the 
availability of data records on FARS website. Fortunately, 
choosing this many attributes would make comparisons with 
other studies that focused on only one or more of these 
attributes easier and more comprehensible. Further, other 
attributes are missing some values, thus making the utilization 
of these attributes somewhat cumbersome. These missing 
data points cannot be easily predicted or interpolated, thus, 
choosing these 16 variables led to a dataset that presented 
sufficient attribute values. 
It should be noted that this study focused on drivers’ injury 
solely. The rationale behind this is to reduce noise in dataset. 
In some cases, different injury severities resulted for the same 
vehicle occupants; where all occupants share at least ten 
crashes attribute values, this could lead to misleading 
conclusions. Thus, limiting the scope of this research to 
drivers only reduced noise in dataset and yielded better 
accuracy in prediction. 
 Data had 7,394 crash records occurred in the US in 2015. 
These records are originally coded into a predefined coding 
system developed by FARS database. However, using data as 
it is could lead to incorrect conclusions, and could affect 
models’ development. Therefore, all attributes were re-coded 
in a way that is easily comprehended by users and consistent. 
Table 1 shows the categorical variables used in this study, 
their coding and some descriptive statistics. 
 Another point worth mentioning is that for the neural 
network model, the target variable was coded using the “One 
Hot Encoding” system which converts numerical values into 
a binary system (zeros and ones). Hence, the number of bits 
in the binary number is equivalent to the number of categories 
of the injury severity variable which is three. Therefore, the 
No Injury Category will be coded as [1  0  0], the Injury 
Category is coded as [0  1  0] and the Fatality Category is 
coded as [0  0  1]. 
The following Figures, 1 through 3, illustrate crashes 
distribution according to the continuous variables used in the 
study. Driver age (years), speed limit (mph), and travel speed 
(mph) were rounded to the nearest 5. 
 Figure 1 shows drivers’ distribution by age. The Figure 
indicates a decreasing trend as age increases, which means 
that the majority of roadway users are young drivers. In a 
study done by the AA insurance company, it was found that 
around 25% of young drivers’ crashes occur in the first six 
months of issuing their driving license, and 40% of them crash 
by the age of 23 [36]. Figure 2, on the other hand, shows that 
most crashes occurred on sections where speed limits are 45 
and 55 mph. This does not reflect the danger of these speed 
limits; it rather indicates that a great portion of American 
roads are assigned these speed limits. In addition, Figure 3 
reveals that 1,335 out of the 7,394 crashes include stationary 
vehicles such as in cases where drivers tend to drive at low 
speeds close to zero mph in urban areas, in traffic jams, or 
when standing in a queue at signalized intersections for 
instance. Finally, 1,867 out of the 7,394 crashes happened at 
speeds of 45 and 55 mph, which is consistent with the speed 
limit distribution in Figure 2. 
 
4. Methodology 
 
4.1 Classification and Regression Trees 
Decision trees are one type of supervised machine learning 
techniques that are commonly used to construct classification 
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models. A Classification and Regression Tree (CART) is an 
example of decision trees which are used when the dependent 
variable takes a finite number of distinctive values [37]. 
 A decision tree is a hierarchal structure that grows down 
in the shape of connected nodes. Each node represents an 
input variable where this input node splits down into its 
attribute values. Each attribute value will be connected to a 
new node that represents another variable. The new node will 

also be split into its attribute values. The first node (variable) 
to be chosen is called a root (parent) node. Any following 
nodes will be called an internal (child) nodes. At each splitting 
process, the resulting child nodes become parents their 
successor child nodes. The splitting process continues until a 
class (category) is determined. The last node showing the 
class of the outputs is called the terminal (leaf) node. 

 
Table 1. Categorical Variables Descriptive Statistics 

Variable Code Descriptive Statistics Variable Code Descriptive Statistics 
Driver Injury Severity Horizontal Alignment 

No Injury 0, [1 0 0] 29% Straight 0 87% 
Injury 1, [0 1 0] 41% Curved 1 13% 

Fatality 2, [0 0 1] 30% Surface Conditions 
Driver Gender Dry 0 89% 

Male 1 65% Wet/Icy 1 11% 
Female 0 35% Lighting Conditions 

Seatbelt Use Daylight 1 66% 
Used 1 85% Dark, Lighted 2 14% 

Not Used 0 15% Dark, Not Lighted 3 20% 
Drunk Driving At Intersection 

Drunk 1 9% Yes 1 28% 
Not Drunk 0 91% No 0 72% 

Model Year Manner of Collision 
1980-2000 1 16% Front to Rear 1 26% 
2001-2005 2 25% Front to Front 2 24% 
2006-2010 3 25% Angle 3 41% 
2011-2017 4 34% Sideswipe 4 9% 

Airbag Deployment Driver Ejection 
Deployed 1 59% Ejected 1 4% 

Not Deployed 0 41% Not Ejected 0 96% 
Roadway Type Vehicle Rollover 

Local Road 1 6% Rollover 1 8% 
Collector 2 13% No Rollover 0 92% 

Minor Arterial 3 18% 
   

Major Arterial 4 47% 
   

Interstate 5 16% 
   

 
 

 
Fig. 1. Crashes Distribution According to Driver Age 
 
 The CART model was developed using the Statistical 
Package for Social Sciences (SPSS) software. The aim of 
using such technique is to investigate the contribution of crash 
risk factors in determining drivers’ injury severity in fatal car 
crashes. The Gini impurity measure (the default splitting 
criterion in CART) was chosen in this study. For a given node 
(t), the Gini index is calculated using Equation 1: 
 
Gini (t) =∑ p(j|t))×(1- p(j|t))=1- ∑ [p(j|t)

2

] n-1
j=1

n-1
j=1                      (1) 

 
where p(j|t) is the class distribution or the relative frequency 
of class j at node t, and n is total number of classes. 

 

 
Fig. 2. Crashes Distribution According to Speed Limit 
 
To determine the efficiency of the Gini impurity measure, the 
difference between the degree of impurity of the parent nodes 
and their child nodes will be calculated. The larger the 
difference the better the test condition, thus, a better candidate 
for the next split. This can be expressed numerically by 
calculating the gain value ∆ as in Equation 2: 
 
∆ =Iparent - ∑

N (vi)
N

 I(vi)k
i=1                                                  (2) 

 
where I is the impurity measure for any given node, N (vi) is 
the number of records in the child node i for all different target 
classes, N is the number of records in the parent node for all 
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different target classes and k is the number of attributes 
classes. 
 

 
Fig. 3. Crashes Distribution According to Travel Speed 
 
 Decision trees algorithm usually chooses a test condition 
that maximizes the value of the gain ratio ∆. Since I(parent) is 
the same for all child nodes, maximizing gain value is 
equivalent to minimizing the impurity measure for the child 
nodes. 
 The Gini index tends to favor inputs variables with more 
attribute values (e.g. a variable that has ten values is preferred 
over a binary variable) [38]. Moreover, variables with larger 
number of attribute values usually have a smaller number of 
records for each class label, which will lead to unreliable 
predictions. To overcome this problem, CART algorithm 
adopts binary splitting for the attributes. 
 For tree growth termination, a minimum number of 50 
observations in parent nodes and 25 observations in child 
nodes were chosen to stop tree expansion, i.e. if less than 25 
observations are seen in a child node the tree will stop 
growing and the node will become a terminal node. The 
dataset was divided into 70% training dataset and 30% testing 
datasets to estimate the generalization error. These values 
were determined by trial and error corresponding to a 
minimum generalization error and maximum model 
prediction. Moreover, to overcome overfitting, a maximum 
tree depth of 5 branches was used, plus a post-pruning 
technique; where trimming of a fully-grown tree moves 
upward was implemented. Post-pruning is believed to be 
preferred over pre-pruning, mainly because post-pruning 
relies on the fully-grown tree to decide whether to trim or not, 
while pre-pruning can result in premature termination of the 
tree growing operation [38]. 

Generally, in a classification problem, a confusion matrix 
showing the relationship between the observed and the 
predicted outputs is used in order to fully realize the 
performance of the classifier. A confusion matrix delivers 
detailed information on how output data are classified by the 
model. The matrix consists of rows and columns for each 
category of the target variable class. The categories 
represented in the columns are the predicted categories of the 
target variable while the categories shown in the rows are the 
actual categories. The numbers in each cell represent the 
number of predictions for each class. Therefore, the diagonal 
cells represent the correctly classified cases (where the 
predicted category matches the actual category provided to 
the network). Conversely, the other cells represent the 
incorrectly classified classes. 

 
4.2 Artificial Neural Networks 
ANNs are combination of parallel artificial neurons 
connected by weighted links. Neurons are arranged in layers, 

these layers are: the input layer, the hidden layer(s), and 
output layer. ANNs algorithm starts by multiplying the input 
values stored in the input layer neurons by the weights 
associated to these neurons, next, the sum of the previous 
values will pass through an activation function which will 
produce a value that is an input for the following layer [39]. 
The output of any given layer will be the input of the 
following layer. The process continues until the output layer 
is reached. This process is called feedforward. The 
mathematical operation of the feedforward process is shown 
in Equation 3: 
 
Y = f (𝑋⃗  . 𝑤%%⃗  + 𝑏%⃗ )                                        (3) 
 
where 𝑋⃗  refers to input vector and 𝑤%%⃗  refers to weight vector, 
𝑏%⃗  is the bias vector at each neuron, f is the activation function 
at that layer and Y is the output of the neuron. The weight 
matrix 𝑤%%⃗  in Equation 3 has the following form shown in 
Equation 4: 
 

𝑤%%⃗  = '
w1,1 ⋯ w1,n
⋮ ⋱ ⋮

wk,1  ⋯ wk,n

+                                                     (4) 

 
where (n) is the number of inputs, and (k) is the destination 
neuron associated to the weights. 
 Subsequently, the outputs of the neural network are 
compared to the target data which was fed to the network 
along with the inputs. The difference between the resulting 
output and the fed target represents error. Errors at each 
output neuron are computed and utilized to adjust the weights 
connected to the neurons. This process is called 
backpropagation. The feedforward backpropagation process 
will continue until the error between the targets and the 
network outputs is optimized (minimized). The error at the 
output of neuron k at iteration p is defined in Equation 5: 
 
ek(p)= dk(p)- Ok(p)                                                (5) 
 
where ek (p) is performance function or error function, dk (p) 
is desired or target value for the neuron k at iteration p, and 
Ok(p) is the output of the neuron k at iteration p. The algorithm 
for updating the weights at the output layer is the perceptron 
learning rule shown in Equation 6: 
 
wjk (p+1)= wjk (p)+ ∆wjk (p)                                           (6) 
 
where wjk (p+1) is the modified weight at iteration (p+1), wjk 
(p) is the weight at epoch p and ∆wjk (p) is the weight 
correction term at epoch p. The weight adjustment in the 
multilayer network is computed using Equation 7: 
 
∆wjk (p)= α × Oj(p)× δk(p)                                   (7) 
 
where Oj(p) is output of the hidden layer at iteration p which 
is equal to Xk (p); the input to the output layer (α) is the 
learning rate, and δk(p) is the error gradient at neuron k in the 
output layer at iteration p. The learning rate represents how 
quickly a neural network modifies its weights and biases. The 
error gradient is the derivative of the activation function 
multiplied by the error at the neuron output which is shown in 
Equation 8: 
 
δk(p)= ∂Ok(p)

∂Xk(p)
 × ek(p)                                         (8) 
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where ek (p) is the error function output in neuron k in the 
output layer at iteration p, Xk(p) is an input to the k neuron in 
the output layer at iteration p, and Ok(p) is the output of k 
neuron in the output layer at iteration p. For a sigmoid 
activation function in the hidden layer and a softmax function 
in the output layer, the sigmoid function and the softmax 
function are shown in Equations 9 and 10, respectively: 
 
Oj(p) = 1

1 + e-Xj(p) , at the hidden layer neurons                     (9) 
 
Ok(p) = eXk(p)

∑  eXn(p)N
n=1

 , at the output layer neurons                  (10) 
 
 Where Oj(p) and Ok(p) are outputs of the hidden and 
output neurons, respectively. Xj(p) and Xk(p) are inputs to the 
hidden and output neurons, respectively. 
  
 It is also crucial to normalize the input and output values 
to the same order of magnitude [40]. If inputs and outputs 
have diverse ranges, some variables may seem more 
significant than others which will lead to faulty conclusions. 
In this study, all the data used were scaled from (0 to 1) for 
both input and output values using the linear interpolation 
formula that was suggested by [41] and shown in Equation 
11: 
 
Yi= (Ymax- Ymin)(./- Xmin)

(Xmax-Xmin)
+ Ymin                                      (11) 

 
where Ymin = 0, Ymax = 1, and X is the range of data to be scaled. 
This equation is already stored in MATLAB library as a 
function called “mapminmax” that will be used in this study 
to scale the dataset. 
 Finding the best formulation of the neural network model 
was an iterative process which involved modifying the 
number of hidden neurons until the best performance is 
reached. After several set of iterations, the final neural 
network model consisted of 50 neurons in the hidden layer. 
Biases were connected to both hidden and output layer. In this 
study, both early stopping and regularization generalization 
techniques were used to achieve the best generalization 
performance and to overcome overfitting. The reason behind 
using both techniques is because regularization alone resulted 
in an over-fitted model. Ten validation checks were used to 
terminate the learning algorithm using the early stopping 
technique. Moreover, the dataset was divided into three 
categories: 70% training dataset, 15% validation dataset, and 
15% testing dataset. The training set is used to compute errors 
and gradients and to adjust weights of iterations. The 
validation set is used as an indicator of what is happening to 
the network function in between the training points. The 
testing dataset is set aside and not introduced to the training 
process and used after the training is finished to check the 
generalization ability of the trained network. Figure 4 shows 
the final network design with the activation function of each 
layer.  
 Nevertheless, the prediction accuracy using a confusion 
matrix alone does not entirely describe the efficiency of the 
neural network model. Thus, other means of assessing the 
model’s efficiency are necessary. The receiver operating 
characteristics (ROC) curve, which is also known as the 
relative operating characteristic curve, is a graphical plot that 
demonstrates the classifying ability of a classifier as its 
discrimination threshold is varied. It is represented by plotting 
the fraction of true positives (TPR = True Positive Rate) 
versus the fraction of false positives (FPR = False Positive 

Rate). The area under the ROC curve measures the overall 
classification ability of a test. An entirely random test has an 
area under curve of 0.50, while a perfect test has an area under 
curve of 1.00. 

 
Fig. 4. The Complete Architecture of The Neural Network Model 
 
4.3 Multinomial Logistic Regression 
Multinomial Logistic Regression is a statistical tool used to 
predict a categorical dependent variable that has more than 
two categories using a set of independent variables. These 
variables can be categorical, continuous, or a mix of both. The 
assumptions of linearity, normality and homoscedasticity are 
not considered in logistic regression [13,42]. The p-value of 
likelihood ratio chi-square test is used to determine model 
significance. The Cox and Snell and Nagelkerke Pseudo R-
Square measures are also used to calculate the significance of 
the model. For the variable to be significant, the p-value of 
the Wald Chi-Square test must be less than 0.05. The odds 
ratio is defined as the odds of a certain outcome relative to the 
odds of another outcome. It is used to assess the risk of a 
certain output if another factor is present. The odds of a 
certain event occurring are the probability of that event 
happening divided by the probability of that event not 
happening, as in Equations 12 and 13: 
 
Odds ratio for Event 1= P (E1)

1- P (E1)
                                           (12) 

 
Odds ratio for Event 2= P (E2)

1- P (E2)
                                           (13) 

 
where P(E1) is the probability of event 1 occurring and P(E2) 
is the probability of event 2 occurring. Then using Equation 
14 one can calculate the odds ratio between event 1 and 2: 
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odds ratio for event 1 / odds ratio for event 2                   (14) 
 
 
5 Results and Discussion 
 

5.1 Classification and Regression Trees 
In order to fully comprehend the performance of the CART 
model in predicting injury severity, a confusion matrix 
showing the relation between the observed injury severity and 
predicted injury severity for the training and testing datasets 
is summarized in Table 2. The model showed good 
classification abilities with training and testing prediction 

accuracies of 61.4% and 59.5%, respectively. For the 
individual severity categories, Table 2 shows prediction 
accuracy for each class for no injury, injury and fatality 
classes for both training and testing models. For the training 
model, 75.1% of the no injury class, 59.6% of the injury class 
and 51.1% of the fatality class were correctly classified. In the 
testing model, 74.4% of the no injury class, 56.5% of the 
injury class and 48.8% of the fatality class were correctly 
classified. Both models show good prediction abilities 
compared to literature. It is also noted that the training and the 
testing models have close prediction accuracies which 
indicates high generalization abilities and no overfitting. 

 
Table 2. CART Model Confusion Matrix 

Sample Observed Predicted 
No Injury Injury Fatality Percent Correct 

Training 

No Injury 1108 294 74 75.1% 
Injury 494 1299 387 59.6% 

Fatality 170 597 800 51.1% 
    61.40% 

Testing 

No Injury 486 140 27 74.4% 
Injury 217 478 151 56.5% 

Fatality 80 264 328 48.8% 
    59.5% 

 
 
 Figures 5 and 6 below show the output of the CART 
model using training and testing datasets, respectively. It is 
obvious that only six attributes out of the 16 inputs were 
identified as influential factors in determining the injury 
severity. These factors are: airbag deployment, seatbelt use, 
driver age, vehicle rollover, collision type, and vehicle model 
year. These findings are consistent with [3,11-
13,18,19,21,24,26,32,35]. At least one of the factors which 
were found significant in this study was also significant in 
these studies. 
 Referring to Figures 5 and 6, the first factor which was 
chosen as the primary splitter in the CART model is airbag 
deployment. Surprisingly, data of current study showed that 
most fatalities and injuries have occurred in crashes where 
airbag was deployed (node 1 and 2). These results are 
consistent with [43], where in their study, a great correlation 
was found between airbag deployment and minor/major 
injuries. This finding warrants comprehensive studies 
regarding airbags adverse effect on car crashes in order to 
reduce injuries, prevent fatalities, and protect occupants from 
being harmed. 
 The use of seatbelts was found essential in reducing 
fatalities and injuries; it is clearly seen in nodes 3, 4, 5 and 6 
that not wearing a seatbelt resulted in higher number of 
fatalities and injuries especially in crashes where airbag was 
deployed. This was also addressed by [44], where it was 
found that drivers not wearing seatbelts faced flexion injuries 
in the spine, and some severe fractions in the sternum and 
facial bones. Another interesting finding is shown in node 4; 
it appears that use of seatbelts with no airbags significantly 
reduced fatalities and injuries. This reflects the great role of 
seatbelts in protecting occupants. 
 Drivers’ age is as of similar importance; where it was 
found that elderly drivers (aged 72 and above), had faced fatal 
and severe injuries compared to younger drivers. Although 
elderly drivers comprise only 14% of our data sample, their 
association to fatal and severe injuries was strong. This is 
shown in nodes 9 and 10 and nodes 11 and 12. This finding 

requires a move from legislatures and decision makers; where 
it should be recommended that there would be a maximum 
driving age to prevent such injuries to happen. This also 
forces car manufacturers to increase safety precautions and 
measures to be more suitable for elderly people. 
 Vehicle rollover was also found significant contributor to 
fatalities and severe injuries. Despite the fact that only 9% of 
traffic crashes data included vehicle rollovers, it was found 
that rollover (node 8) increases the risk of severe and fatal 
injuries even when seatbelt is used. Consequently, 94% of the 
cases where rollover occurred had either a severe injury of a 
fatality. This factor is associated with striking the occupant’s 
body with the internal parts of the vehicle. It is also 
considered as an impediment to rescue teams when extracting 
the victims. 
 The manner of collision was also found significant; where 
front to front crashes (node 13) led to the highest rates of 
fatalities and severe injuries compared to front to back, 
angled, and sideswipe crashes (node 14). This seems logical 
because in front to front crashes especially in high speeds, the 
driver’s face strikes the steering wheel causing high pressure 
on the brain leading to internal trauma. This also is related to 
basic physics; where the momentum due to front to front 
impact is the highest compared to the other type of crashes 
 The final factor that was found to be significant is the 
vehicle model year. It was found that vehicles of model year 
higher than 2000 (node 16) had lower fatality and injury rates. 
This makes great sense since newer models usually have 
higher safety measures with higher danger sensing accuracy 
and better restrains system and airbag technologies. 
 It is also likely that some types of crashes are not 
adequately represented in the dataset. This can be obvious 
when analyzing factors such as driving under the influence of 
alcohol, roadway surface conditions, roadway horizontal 
alignment, drivers’ ejection and whether the crash occurred at 
an intersection or not. If we take drunk driving for example, 
this factor is considered one of the most significant factors in 
causing severe and fatal injuries. However, the CART model 
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could not distinguish its sole effect and thus, it was not 
considered as a significant factor. This finding is considered 
surprising. Nevertheless, by analyzing the dataset, only 668 
crashes (9% of the data) included cases where driver was 
under influence. 
 

 
Fig. 5. The Output of the CART Model Using Training Dataset 
 
5.2 Artificial Neural Networks 
The ANN training algorithm showed convergence after 
reaching a constant number of effective parameters (number 
of used weights and biases) of 270. The sum squared 
parameter (sum squared of weights and biases values) also 
converged to a constant value of 99.5. Further, the gradient 
(δ) and the learning rate (α) parameters have converged to 
constant values of 0.0119 and 24, respectively, and the final 
recorded validation mean square error was 0.2868. This 
indicates stability in the performance of the neural network 
model.  
 Comparing the CART model, the ANN model showed 
very good classification abilities with training, validation and 
testing prediction accuracies of 64.8%, 61.1% and 63.5%, 
respectively. For the individual severity categories, Table 3 
shows prediction accuracy for each class of no injury, injury 
and fatality for both training and testing models. For the 
training model, 72.6% of the No Injury class, 64.8% of the 
Injury class and 57.7% of the Fatality class were correctly 
classified. The validation model showed good prediction 
accuracy as well; where 69.3% of the No injury class, 60.5% 

of the Injury class and 54.0% of the Fatality class were also 
correctly classified. The testing model also showed great 
generalization abilities, where 69.8% of the No Injury class, 
63.7% of the Injury class and 56.3% of the Fatality class were 
correctly classified. The model also showed good 
generalization abilities; where the training, validation and 
testing prediction accuracy were close. The matrix also 
reveals that prediction accuracy for the ANN classifier is 
higher than that of the CART model. 
 

 
Fig. 6. The Output of the CART Model Using Testing Dataset 
 
 
 Since the accuracy of the model was 63.5%, the ROC 
curves were used to further evaluate their performance. As 
shown in Figures 7 through 9, the area under the curves of the 
training, validation and testing datasets were greater than 0.5. 
These results indicate satisfactory prediction abilities for new 
unseen data. However, the area under curves for ROC plots 
shows very close prediction accuracy for class 1 and 3 (no 
injury and fatality), and less accuracy for class 2 (injury), this 
could be due to the fact that minor and major injuries were 
used undistinguishably with small dataset size for major 
injury cases. However, the overall prediction accuracy is 
considered acceptable and promising compared with previous 
literature such as [11,22,28,45]. In these studies, the ANN 
prediction accuracy ranged between 55% and 65%. On the 
other hand, the ANN model by [46] resulted in overall 
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prediction accuracy for the testing data of 74.6%. However, 
although their model could predict moderate and minor 

injuries with 81.6% and 74.6%, respectively, the model could 
not predict fatal and severe injuries at all. 

 
Table 3. ANN Model Confusion Matrix 

Sample Observed Predicted 
No Injury Injury Fatality Percent Correct 

Training 

No Injury 1059 332 68 72.6% 
Injury 419 1388 335 64.8% 

Fatality 143 524 908 57.7% 
    64.8% 

Validation 

No Injury 221 88 10 69.3% 
Injury 89 273 89 60.5% 

Fatality 30 126 183 54.0% 
    61.1% 

Testing 

No Injury 245 81 25 69.8% 
Injury 86 276 71 63.7% 

Fatality 25 117 183 56.3% 
    63.5% 

 

 
Fig. 7. ANN Model ROC Curve for the Training Dataset 

 
Fig. 8. ANN Model ROC Curve for the Validation Dataset 
 
 It was also found that using the softmax function in the 
ANN output layer does not largely enhance the prediction 
accuracy of the model compared to other activation functions. 
However, the use of a softmax function in classification 
problems assists the network in distinguishing different 
categories of the target variable. This will eventually lead to 
more reliable model. Furthermore, the network showed more 

stable training performance and better generalization abilities 
compared to other transfer functions. 
 
 

 
Figure 9: ANN Model ROC Curve for the Testing Dataset 
 
 Additionally, it was clearly noted that the ANN model 
outperformed the CART model in terms of accuracy and 
stability, with testing prediction accuracy of 63.5% compared 
to 59.5%. These findings coincide with [28]. This indicates 
that ANNs are powerful tools that can be utilized to detect 
more complex relationships and reveal hidden non-linear 
effects of multiple crash attributes and resulting in better 
prediction abilities. This is why ANNs are considered one of 
the most robust tools used in data mining. 
 
5.3 Multinomial Logistic Regression 
The logistic model resulted in a p-value < 0.001 for the 
likelihood ratio chi-square test. The model also resulted in 
Cox and Snell R-Square value of 0.385 and Nagelkerke R-
Square value of 0.434. Although both values are close to each 
other, they are lower than the prediction accuracy produced 
by both CART and ANN models. 
 According to Table 4, driver’s age was significant in 
determining injury severity. A 5-year increment in driver’s 
age led to 0.9% more odds in facing an injury and 3.7% more 
odds in facing a fatality. Travel speed was also found 
significant in distinguishing between no injury and injury 
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levels. It was found that a 5 mph increment in speed led to 
0.5% higher odds in facing an injury compared to no injury. 
However, speed was found insignificant when comparing 
fatality to no injury level. Moreover, results revealed that an 
increment of 5 mph in a roadway speed limit led to 1% more 
odds of facing an injury and 2.5% more odds of facing a 
fatality. The roadway functional system was found 
insignificant. 
 Daylight driving led to 1.2 times more odds in facing an 
injury and 1.3 times more odds in facing a fatality compared 
to driving lighted roadways at night. On the other hand, when 
roadways are not lighted, facing a fatality will increase by 1.3 
times when compared to lighted roadways. Front to front 
collision was found to have 2.8 times more odds in causing an 
injury and 3.4 times more odds in causing a fatality when 
compared to sideswipe collisions. This reflects the hazardous 
effect of this type of collision. 

Table 4 also shows that airbag deployment is 8 times more 
likely to cause an injury and 11.3 times more likely to cause 
a fatality. The ejection of the driver’s body will also lead to 
11 times more odds in causing an injury and 59 times more 
odds in causing a fatality. 

 Seatbelt seems to save lives and reduce injuries; where an 
injury is 67.7% less likely to happen and a fatality is 91.2% 
less likely to happen when seatbelt is fastened. Further, 
Female drivers are 1.8 times more likely to have an injury and 
around 2.2 times more likely to have a fatality. Vehicle 
rollover increases the odds of having an injury by 4 times and 
increases the odds of having an injury by 4.2 times. 
 Vehicle model year was also found significant, except for 
models between 2006 and 2010 and models newer than 2010, 
in distinguishing between no injury and injury levels. It was 
also found that as vehicle age increases it is more likely to 
have severer injuries. 
 Driving under influence also increased the odds of having 
injury by around 1.45 times and increased the odds of having 
fatality by 2.7 times. Curved roadways increased the odds of 
having injury or fatality 1.3 times. Further, wet and icy 
roadways increased the odds of having injury or fatality by 
1.31 times. Finally, crashes occurred at intersections had 1.2 
times odds having an injury and 1.4 times having a fatality. 
All comparisons are made with the no injury level. 

 
Table 4. Logistic Model Parameters Estimates (Reference Category: No Injury) 

Injury Severitya B Std. 
Error Sig. Exp(B) 

95% Confidence Interval 
for Exp(B) 

Lower Bound Upper 
Bound 

Injury 

Intercept 3.831 1.108 .001       
Age .009 .002 .000 1.009 1.005 1.013 

Travel Speed .005 .002 .003 1.005 1.002 1.008 
Speed Limit .010 .004 .010 1.010 1.002 1.018 

[Functional System=local] -.068 .182 .707 .934 .654 1.334 
[Functional System=collector] -.060 .146 .683 .942 .708 1.254 

[Functional System=minor arterial] .055 .134 .680 1.057 .812 1.375 
[Functional System=major arterial] -.025 .109 .822 .976 .788 1.208 

[Functional System=Interstate] 0b . . . . . 
[Light Condition=Daylight] .195 .096 .042 1.215 1.007 1.466 

[Light Condition=Dark, Not Lighted] .063 .121 .602 1.065 .841 1.349 
[Light Condition=Dark, But Lighted] 0b . . . . . 

[Collision=Front to Rear] .775 .126 .000 2.170 1.694 2.779 
[Collision=Front to Front] 1.021 .139 .000 2.777 2.115 3.646 

[Collision=Angle] .631 .124 .000 1.879 1.475 2.394 
[Collision=Sideswipe] 0b . . . . . 

[Airbag Deployment=Not Deployed] -2.090 .074 .000 .124 .107 .143 
[Airbag Deployment=Deployed] 0b . . . . . 

[Ejection=No Ejection] -2.395 1.039 .021 .091 .012 .698 
[Ejection=Ejection] 0b . . . . . 
[Seatbelt=Not Used] 1.129 .155 .000 3.091 2.283 4.185 

[Seatbelt=Used] 0b . . . . . 
[Gender=Female] .579 .071 .000 1.783 1.551 2.050 
[Gender=Male] 0b . . . . . 

[Vehicle Rollover=No Rollover] -1.389 .186 .000 .249 .173 .359 
[Vehicle Rollover=Rollover] 0b . . . . . 

[Model Year=<2000] .481 .105 .000 1.618 1.316 1.989 
[Model Year=2001-2005] .383 .088 .000 1.466 1.234 1.742 
[Model Year=2006-2010] .106 .084 .210 1.111 .942 1.311 

[Model Year=>2010] 0b . . . . . 
[Drunk Driving=Not Drunk] -.378 .161 .019 .685 .500 .940 

[Drunk Driving =Drunk] 0b . . . . . 
[Road Alignment=Straight] -.255 .115 .026 .775 .619 .970 
[Road Alignment=Curved] 0b . . . . . 
[Surface Condition=Dry] -.267 .108 .013 .766 .620 .946 

[Surface Condition=Wet/Icy] 0b . . . . . 
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Injury Severitya B Std. 
Error Sig. Exp(B) 

95% Confidence Interval 
for Exp(B) 

Lower Bound Upper 
Bound 

[Intersection=No] -.181 .085 .032 .834 .707 .985 
[Intersection=Yes] 0b . . . . . 

Fatality 

Intercept 3.327 1.120 .003       
Age .037 .002 .000 1.037 1.033 1.042 

Travel Speed .003 .002 .125 1.003 .999 1.007 
Speed Limit .024 .005 .000 1.025 1.016 1.034 

[Functional System=local] -.260 .216 .229 .771 .505 1.178 
[Functional System=collector] -.021 .169 .899 .979 .703 1.363 

[Functional System=minor arterial] .099 .157 .525 1.105 .813 1.501 
[Functional System=major arterial] -.021 .129 .873 .980 .761 1.261 

[Functional System=Interstate] 0b . . . . . 
[Light Condition=Daylight] .248 .117 .034 1.282 1.019 1.613 

[Light Condition=Dark, Not Lighted] .280 .141 .047 1.322 1.003 1.743 
[Light Condition=Dark, But Lighted] 0b . . . . . 

[Collision=Front to Rear] .507 .151 .001 1.661 1.237 2.231 
[Collision=Front to Front] 1.222 .158 .000 3.395 2.491 4.628 

[Collision=Angle] .340 .146 .020 1.404 1.054 1.871 
[Collision=Sideswipe] 0b . . . . . 

[Airbag Deployment=Not Deployed] -2.425 .089 .000 .089 .074 .105 
[Airbag Deployment=Deployed] 0b . . . . . 

[Ejection=No Ejection] -4.087 1.031 .000 .017 .002 .127 
[Ejection=Ejection] 0b . . . . . 
[Seatbelt=Not Used] 2.423 .155 .000 11.281 8.323 15.290 

[Seatbelt=Used] 0b . . . . . 
[Gender=Female] .779 .082 .000 2.179 1.855 2.560 
[Gender=Male] 0b . . . . . 

[Vehicle Rollover=No Rollover] -1.435 .197 .000 .238 .162 .351 
[Vehicle Rollover=Rollover] 0b . . . . . 

[Model Year=<2000] 1.310 .119 .000 3.708 2.937 4.681 
[Model Year=2001-2005] .973 .103 .000 2.646 2.162 3.238 
[Model Year=2006-2010] .427 .101 .000 1.533 1.257 1.869 

[Model Year=>2010] 0b . . . . . 
[Drunk Driving =Not Drunk] -.989 .168 .000 .372 .268 .516 

[Drunk Driving =Drunk] 0b . . . . . 
[Road Alignment=Straight] -.262 .128 .040 .770 .599 .989 
[Road Alignment=Curved] 0b . . . . . 
[Surface Condition=Dry] -.269 .123 .029 .764 .600 .973 

[Surface Condition=Wet/Icy] 0b . . . . . 
[Intersection=No] -.353 .100 .000 .703 .578 .854 
[Intersection=Yes] 0b . . . . . 

a: The reference Category is: No Injury. b: This parameter is set to zero because it is redundant. 
 
 
6. Conclusions 
 
This study presented a thorough investigation to identify 
drivers, vehicles, roadway, and crash characteristics that are 
influential in determining injury severity levels sustained by 
drivers in traffic crashes. Sixteen crash attributes based on 
7,394 traffic car crashes occurred across the United States of 
America in 2015 were used in this study. The target variable 
(drivers’ injury severity) was divided into three categories: no 
injury, injury and fatality. Classification and Regression 
Trees, feedforward backpropagation Artificial Neural 
Networks and Multinomial Logistic Regression models were 
used for this purpose. 
 The CART model showed reasonable classification 
abilities with training and testing prediction accuracies of 
61.4% and 59.5%, respectively. Further, out of the sixteen 
crash attributes, six factors showed significant contribution in 

determining drivers’ injury severity levels, these factors are: 
airbag deployment, seatbelt use, drivers’ age, vehicle 
rollover, collision type, and vehicle model year. It was shown 
that most fatalities and injuries are correlated to airbag 
deployment. On another level, the use of seatbelts was found 
essential in reducing fatalities and injuries. It was also found 
that airbag deployment associated with no seatbelt use leads 
to higher fatality and injury rates. Elderly drivers (aged 72 and 
above) were found to be more prone to fatal and severe 
injuries compared to younger ones. It was found that vehicles 
rollover increases the risk of severe and fatal injuries even 
when seatbelt is used. Furthermore, front to front collisions 
resulted in higher rates of fatalities and severe injuries 
compared to front to back, angled, and sideswipe collisions. 
Finally, it was shown that vehicles of model year higher than 
2000 had lower fatality and injury rates. 
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 Both CART and ANN models seemed to outperform the 
logistic regression model. Based on the logistic model, all 
crash attributes were found significant in distinguishing 
between drivers’ injury severity levels except for the roadway 
functional system. The ANN model outperformed both 
models with prediction accuracies for the training, validation 
and testing datasets of 64.8%, 61.1% and 63.5%, respectively. 
This can be related to the capability of ANNs in detecting 
more complex relationships and reveal hidden non-linear 
effects of multiple crash attributes at the same time. Finally, 

although the use of the softmax function in the ANN output 
layer led to more stable training performance and better 
generalization abilities compared to other transfer functions, 
it did not really enhance the prediction accuracy of the model. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License  
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