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Abstract 
 

Map merging is one of the most studied problems in Multi-SLAM, since it allows the deployment of teams of robots in 
unknown environments without any initial condition. The main challenge at dealing with map merging algorithms, who 
work with graphical SLAM maps, is to become them usable in real-time applications. Since in our work this problem is 
approached from the computer vision perspective, we initially proposed a new corner detector as the first step of our map 
merging algorithm. This corner detector showed to be prominent in the field of feature extraction. Thus, in this paper, we 
present a valuable extension and a deep comparison between our corner detector and the most known feature extractors in 
computer vision. The results show that the proposed corner detector has an efficient and trustworthy performance at 
extracting meaningful features, either in graphical SLAM maps or in normal images. The results also show that our detector 
takes less time than the other analyzed feature extractors, allowing its use in real-time applications. 
 
Keywords: Corner detector, SLAM, Occupancy grid map, Feature extractor 
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1. Introduction 
 
Last decade, map merging has been one of the most studied 
problems in Multi-SLAM (Tungadi et al. [1], Lee [2], Lee et 
al. [3], Wang et al. [4], Kojima, Okawa and Namerikawa [5], 
Cortés and Serratosa [6], Lee, Roh and Lee [7]), since it deals 
with different maps provided by autonomous agents in an 
environment. The main goal is to get a complete, consistent 
and unique map of the environment from partial maps. Map 
merging approaches solve this issue using different strategies 
such as setting-up initial operation conditions (robots start 
from a single point of the environment or start from different 
known points), scheduling real encounters in the environment 
(Rendez-vous case), like the approach proposed by Tungadi 
et al. [1], Wang et al. [4], Zhou and Roumeliotis [8], Howard 
[9], or doing an exhaustive search over the maps to find 
common areas. The latter strategy is the most challenging, 
because it does not use any initial condition and it does not 
depend on real encounters.  A  map merging method based on 
the Computer Vision field was proposed in Blanco, et al. [10], 
they addressed the map merging problem as an image 
matching problem using graphical maps which are known as 
occupancy grid maps (OGM). Authors made an analysis of 
different corner detectors and descriptors, selecting the best 
ones and combining them with matching, aligning and 
filtering algorithms to get the best merged map. 
 From the studies made by Blanco, et al. [10], Blanco et al. 
[11], we initially proposed a Corner detector approach 
Velásquez and Prieto [12] that showed having a suitable 
performance in feature extraction step. First results, reported 
in Velásquez and Prieto [12], showed that our approach 

extracts robust features from OGMs in a shorter time than the 
other feature extractors, since it was entirely designed with 
the properties of OGMs. This paper is a reformulation of the 
initial results obtained with our proposed corner detector. We 
made important improvements in the properties of the corner 
detector such as the orientation assignment, the number and 
quality of the extracted features and a new image analysis in 
low resolution. We carried out tests with a dataset of 40 
OGMs built in real and simulated scenarios and, as an 
important result, we also tested our corner detector with 20 
standard RGB images that it performs well with any type of 
image. 
 The proposed corner detector is compared with well-
known features extraction techniques such as Harris detector, 
Shi-Tomasi detector, Trajkovic corner detector and the SIFT 
keypoint extractor. All feature techniques were programmed 
in C++ using the official packages provided by OpenCV 
3.0.0. We did not modify the code to preserve the original 
implementation of the authors. Furthermore, we analyze the 
time consumption of the algorithms, the number and quality 
of the extracted features. Those parameters can explain how 
robust a feature extractor is in OGMs and in standard images. 
 This document is divided as follows: Section 2 briefly 
explains the corner detectors used in our tests. Section 3 
describes extensively our corner detector, showing in detail 
the improvements and the extracted features. In Section 4, we 
describe and discuss the results obtained from the tests we 
carried out. Finally, Section 5 presents some conclusions and 
future work. 
 
 
2. Corner Detectors 
 
In image processing, Corner detectors are the most known and 
used methods for feature extraction. Works detailed in 
Tuytelaars and Mikolajczyk [13], Montero, Stojmenovic and 
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Nayak [14] report tests and comparisons among them. Also, 
a full and detailed study of the most used and known 
techniques of feature extraction is detailed in Li and Nigel 
[15] . 
 Basically, Corner detectors are responsible for selecting 
the most representative feature points from images. Features 
points comprise corners, edges or distinctive regions around 
points, and they always try to detect the center of the feature. 
Those kinds of features always contain pronounced image 
gradients, so the extractor (corner detector o feature extractor 
in this paper) can easily identify where they are in the image. 
The most difficult issues for feature extractor are to find the 
correct center of the feature and to extract a feature with a low 
image gradient when the image has blurred regions or 
illumination changes. In this section, we present and focus on 
the most representative Corner detectors in Computer Vision, 
since they have always been used to make comparisons when 
a new technique in this field is formally presented. 
 
2.1.  Harris corner detector 
Based on the initial corner detector developed by Moravec 
[16], Harris and Stephens [17] proposed a corner detector 
which solves the deficiencies presented in the Moravec 
technique. They specially modified the way the image 
gradient and the corner measure were calculated. This 
technique computes a matrix tensor M for each pixel, Eq.1. 
 

     (1) 

 
 This matrix tensor includes the image derivatives ,  
in x and y axis, which were previously submitted to a 
convolution process with a Gaussian kernel w. Then, the 
Harris corner measure is calculated, Eq.2: 
 

      (2) 
 
 Where k is a constant established between 0.04-0.08. 

 is the determinant of the tensor M, and  is the 

trace of the same tensor. Finally, the corner measure  of 
each image pixel (or image point) is submitted to the next 
conditions to establish whether the point is a corner or not: 
 
• If  and its value is small, the point is considered to 
be on a homogeneous area. 
• If  , the point is on an edge. 

• If  , the pixel is considered to be on a corner. 
 
 This approach showed an advance in the detection of 
feature points. However, it presents a scalability problem, 
since the more image data points are contained in the image, 
the more image processing time is required and the less 
accuracy in feature detection is obtained. It also presents a 
limitation with noisy images, since it still depends on the 
image gradient information. A possible solution is to increase 
the Gaussian kernel, but this could increase the image 
processing time. An improvement of this corner detector is 
shown by Junxiong and Kai [18]. 
 
2.2. Shi-Tomasi detector 

Tomasi and Kanade [19] introduced a modification to the 
original corner detector proposed by Harris. Essentially, they 
changed the corner measure set by Harris: while Harris uses 
the corner measure showed in Eq.1, Shi-Tomasi makes a 
selection of the minimum eigenvalue of the matrix (Eq.3), that 
is: 
 

       (3) 
 
 This simple modification increased the corner detector 
performance, because this corner measure shows better the 
real image gradient information. In fact, Kenney, Zuliani and 
Manjunath [20] proved, through an axiomatic study, that the 
Shi-Tomasi detector is better than the Harris corner detector, 
because Shi-Tomasi complied with the axioms proposed for 
their study. Recently, Das, Pukhrambam and Saha [21] 
showed a real-time application of the Shi-Tomasi detector in 
face detection and facial expression recognition. However, 
these modifications do not solve the thresholding problem, 
because the threshold is responsible for accepting or rejecting 
points after the calculation of corner measures. 
 
2.3. Trajkovic corner detector 
Proposed by Trajkovic and Hedley [22], it performs an 
analysis of the closest neighbors to a point (pixel). It performs 
the corner detection using the closest neighbors of a pixel in 
low and high resolution of the image. In Fig. 1, a pixel C is 
shown with its 4 direct neighbors (points A, A', B and B'). 
However, this method has an extension that includes the 8 
closest neighbors (points A, A', B and B', P, P', Q, and Q' in 
Fig. 1). 

 
Fig. 1. The closest neighbors associated with a point $C$ in the image 
that is being analyzed. 
 
 
 The Trajkovic detector is divided in 3 steps. First step 
performs a low resolution analysis of the image. In fact, it is 
common to reduce the image by half of the original resolution 
to perform the analysis in low resolution. Once the image is 
obtained in low resolution, it uses the following equations to 
determine the horizontal and vertical  intensity 
variation: 
 

    (4) 
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 Where , , ,  and  are the intensity image 
information of points A, B, A', B' and C, respectively. R is the 
minimum value between  and . Two thresholds  and 

 are defined according to the knowledge of the analyzed 

images. So, if , the point is classified as potential 
feature point. 
 In the second step, the detector performs a high resolution 
analysis with the potential candidates extracted in the first 
step. This consideration considerably reduces the search 
space of feature points. In this step, the detector uses the same 
metrics applied on the first step and it only takes into account 
the points extracted previously. Nevertheless, the only 
modification in this step is the use of a different selection 
threshold: . 
 In the last step, points that reach the last step are analyzed 
under the following equations: 
 

     (5) 

 
 ,  are measures based on the intensity variations 
around the pixels A, B, A’, B’ and C. B is the minimum value 
taken between  and , and A is a value related to ,  

and B. Then, if , the detector uses 

. Else, . A point is selected as a 

feature point if . Finally, a non-maximal suppression 
step is performed in order to guarantee the quality of the best 
feature points. 
 
2.4. SIFT keypoint extraction 
As a reference in Image Description and Matching, Lowe [23] 
created a well-known technique called Scale-invariant 
Feature Transform (SIFT) for image extraction, description, 
and matching. This technique proved to be more robust than 
other techniques, since Lowe achieved to show that his 
extracted features are “invariant to image scaling, 
translation, and rotation, and partially invariant to 
illumination changes”, Lowe [23]. 
 This technique starts with the detection of the most 
distinctive points, also called keypoints, in the space-scale 
extreme. To do that, Lowe proposed the use of Difference of 
Gaussian (DoG) at different scales, so DoG can be computed 
as the difference between two nearby blurred and scale 
images, which are separated by a constant parameter. 
 As limitations, the SIFT keypoint extractor requires a long 
processing time to perform the points extraction, although an 
improvement of this technique was introduced by Lowe [24] 
to deal with this issue. Furthermore, there are also works 
presented in Daixian [25], Wang et al. [26], whose main 
objective is to make improvements in the computation time of 
this algorithm. However, it is clear that this method 
introduced a good approximation to the ideal feature 
extractor, since it involves the greatest amount of ideal 
properties for a feature detector.  
 

 
3. The proposed corner detector algorithm for SLAM 
 
Our approach takes the analyzed performed by Trajkovic: it 
analyzes the 8 closest neighbors to a point to classify it as a 
corner. This detector can make a basic thresholding on OGM 
images, since they are composed of 3 levels in the grayscale 
(0, 127 and 255), or it can use a combination between border 
filters and thresholding steps to reduce the grayscale on 
normal images (in this paper, normal images refer to real 
images or images with a high grayscale). Then, it applies 
some metrics to find the features shown in Fig. 3, 4, 5. This 
approach presents an extension to standard images, a greater 
number of detected features and also an assignment of the 
feature orientation. 
 
3.1. General algorithm 
Let I be an image and  be the image intensity of the 
point x, y. A point is considered if its image intensity is white, 

 (considering a normalized scale). This assumption 
ensures that feature points are on the center of a feature, since 
the image gradient in corners is larger around the point. Fig. 
2 shows the analyzed pixel, C, and the 8 closest neighbors A, 
A', B, B', P, P', Q and Q'. 
 

 
Fig. 2. Analyzed pixel C with its 8 nearest neighbors (A, A', B, B', P, P', 
Q and Q'). 
 

 

 
 Figure 2. Analyzed pixel C with its 8 nearest neighbors 
(A, A', B, B', P, P', Q and Q'). The first 4 neighbors are called 
direct neighbors, while the last 4 ones are called diagonal 
neighbors. 
The algorithm performs: 
 

i.Calculate the measures ,  as: 

 

fA fB fA' fB ' fC

rA rB T1
T2

R > T1

R > T2

B1 = fB − fA( ) fA − fC( )+ fB ' − fA'( ) fA' − fC( )
B2 = fB − fA'( ) fA' − fC( )+ fB ' − fA( ) fA − fC( )
B = min B1,B2( )
A =rB − rA − 2B

B1 B2

B1 B2 rA rB
B < 0∧ A+ B > 0

R = rA −
B2

A
R = min rA ,rB( )

R > T2

I (x, y)

I (x, y) = 1

rsup = P + B +Q

rder = P + A+Q '
rinf = P '+ B '+Q '
resqP = A+ P + B

rS rD
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       (6) 

 
ii.Determine a measure r, which denotes the number of pixels 

with value 0 on the grayscale, . 
iii.If , calculate the following measures: 

 Analyze the measure r under the following assumptions: 
• If , then: 

. This 
criterion selects points with the 4 patterns shown in Fig. 3. 

 
Fig 3. Feature points extracted when . 
 
 For the feature orientation, the assignment is made on the 
free diagonal of these patterns, i.e., on the white pixels. The 
orientation values correspond to the angles 45°, 135°, 225° 
and 315°. This assignment considers the coordinate system of 
the image, so the user can define which are points A and B on 
the straight neighbors. Point A corresponds to the X axe, while 
point B corresponds to Y axe. The direction of the axes is 

given by the vectors  and . 
• If  , apply the following selection criteria: 

. This criterion selects points 
with the 4 patterns shown in Fig. 4. 
 

 
Fig. 4. Feature extracted when . It shows the ideal corner around 
the analyzed point C. 
 
 Again, the assignment is made on the white pixels of the 
8 neighbors: the free pixel of one of the diagonals is taken into 
account. These angles correspond to the value of 45°, 135°, 
225° and 315°. The coordinate system is the same as the one 
explained above. 
• If  , apply the following selection criteria: 

. Fig. 5 shows the patterns extracted with this 
criteria. Features with other configuration are rejected, 
because they are interpreted by the algorithm as noise. 
 

 
Fig. 5. Features extracted when . They look strange, but they 
appear in irregular map images, so they were considered as features. 

 
 For assigning the feature orientation, the algorithm 
considers the only two free (or white) pixels that are on the 
edge of the region. These pixels, together with the pixel C, 
form opening angles of 22.5°. These angles correspond to the 
values of 22.5°, 67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292.5° 
and 337.5°. 
 

iv. Points that comply with one of the above conditions are 
considered as Corner, while the others are discarded. 

With these rules, our corner extraction algorithm makes a fast 
search over the workspace by reducing the number of 
analyzed pixels, since it only takes into account white pixels. 
However, discarded pixels or black pixels are only analyzed 
when they are close to a real corner, i.e., they are considered 
when they form a feature around an interest point. 
 Finally, this algorithm can be configured by using all the 
conditions stated in the step iv. It means, it is possible to 
enable or to disable the 3 possibilities of r ( ), and it 
is also possible to include another assumption when , 
but it is necessary to be aware of this condition, because the 
algorithm may detect too many features. Tests proved that 
using the last condition in high scale gray images performs 
well, while in SLAM images it does not provide extra 
detected points, since this kind of condition is not common in 
OGM. 
 
 
4. Results 
 
We carried out different tests with the aim to evaluate our 
proposed corner detector. We used 2 different kind of images. 
The first group is composed of 40 OGMs (or SLAM images) 
with 3 levels of gray. This kind of images are known to have 
a large quantity of noisy information, since SLAM builds 
maps through a probabilistic method applied to sensors, 
localization methods and map reconstruction algorithms. The 
second group is composed of 20 standard images taken from 
different places. 
 We tested each algorithm 20 times to get the average 
computation time of each algorithm. In this manner, we 
gathered information to analyze which algorithm presented 
the best computation performance, since the principal goal of 
this work is to select the best feature extractor algorithm 
applied to OGM in real-time applications.  It is also important 
to mention that the number of extracted features was also 
gathered to do a qualitative analysis. 
 
4.1. Test image bank 
The image bank used in this work is divided into 2 sets. The 
first set consists on 40 maps obtained from SLAM, i.e., 
occupancy grid maps (or OGM). These images do not require 
any filtering, since the information represented in the image 
may correspond to obstacles in the environment. Fig. 6 shows 
6 OGM images as examples of the complete dataset used in 
this work. 
 The second set is composed of 20 standard images. As we 
said, our proposed corner detector was originally designed for 
OGM images; however, it was found out that the corner 
detector is capable to perform, in a good way, the feature 
extraction with this kind of images. Fig. 7 shows 5 images 
used in this group. 
 The results obtained for each technique are presented 
below. They take into account the computation time and the 
number of the extracted features by each technique. No 
additional post-processes are either applied or taken into 

rS = A+ A'+ B + B '
r2 = P + P '
r4 = Q +Q '
rD = r2 + r4

r = rS + rD
r = 4,5,6

r = 4
mod(resqP ) == 0∧ rS == 2∧ rsup + rinf == 3∧ r2 ≠ r4

r = 4

CA
! "!!

CB
! "!!

r = 5
rS == 2∧mod(rsup + rder ) == 0

r = 5

r = 6
rS == 3∧ rD == 3

r = 6

r = 4,5,6
r = 7
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account in the analysis, just the steps and processes applied 
by each technique. 
 

 
Fig. 6. Set of 6 OGM images used for the tests. These images have 3 
levels in the grayscale: 0, 127 and 255. 
 
 
4.2. Programming and setting considerations 

Techniques were programmed in C++ or by using their 
implementation in OpenCV 3.0 and OpenCV Contrib 
packages. The Integrated Development Environment (IDE) 
was QT, which uses an interface or wrapper to call native 
code from OpenCV. The computer used in these tests had a 
2.2 GHz processor with turbo boost, 8GB Ram and Ubuntu 
14.04 LTS 64 bits. 
 Since this work aims to make a comparative analysis of 
different corner detector algorithms, it was performed a 
parameter configuration, since we wanted to guarantee an 
optimal performance of each analyzed algorithm. Based on 
earlier works done by Trajkovic and Hedley [22]; Bargrowski 
and Luckner [27]; Chen, et al. [28] and Velásquez and Prieto 
[12], the parameters for Harris and Shi-Tomasi remained the 
same, since they have similar steps. For these techniques, the 
Gaussian filter was set to 1 and the kernel size was established 
in a window of  pixels, since an increase in the kernel 
size did not improve the performance of the algorithms, but it 
increased the computation time.  
 

 

 
Fig. 7. Second image set composed of images in high-dimensional grayscale, such as those obtained with common RGB cameras. 
 
 Finally, for the Trajkovic corner detector, the analysis was 
performed with its 4 closest neighbors. The  and  
thresholds were experimentally set according to the type of 
the group of images. The SIFT keypoint extractor did not need 
to be configured, because the OpenCV Contrib package has 
the best implementation of this technique, so it was not 
necessary to do any extra modification. 
 
4.3. First group of images - OGM images 
OGM images, as it was mentioned above, are generated by 
SLAM algorithms in 3 levels of the grayscale:  black color 
that represents occupied state (0 in grayscale), gray color that 
represents unknown state (127 in grayscale)  and white color 
that represents free state (255 in grayscale). 
 Fig. 8, 9, 10, 11 and 12 show the results obtained with 
images from Fig. 6. The techniques have an outstanding 
performance with these images, except for the Trajkovic-
Hedley detector. As mentioned in Velásquez and Prieto [12], 
the topology and the high level of noise contained in the OGM 
images make the Trajkovic detector extract all the edges as 
characteristic points. Since OGM images are threshold 
images, the gradient of the image is very large at the edges 
due to high changes in image intensity, so it is normal for this 
technique to make detection in these regions. 
 

 
Fig. 8. Results obtained from the Harris corner detector in OGM 
images. 
 

  
Fig. 9. Results of the feature extraction step made by Shi-Tomasi 
detector in OGM images. 
 

3× 3

T1 T2
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Fig. 10. Results obtained from the Trajkovic corner detector in OGM 
images. 
 

  
Fig. 11. Feature points obtained with the SIFT keypoint extractor in 
OGM images. 
 

  
Fig. 12. Feature points obtained with our corner detector method in 
OGM images. 

 
 From Fig. 8, 9, 10, 11, 12. It is also notable the quality of 
the feature points extracted by our technique, since they were 
detected correctly in the most representative areas of corners, 
showing robustness to detect points in OGM images. 
 Robustness to noisy data is an important property in OGM 
merging, since noise will always be present in those images 
due to the stochastic nature of SLAM algorithms, so the map 
fusion should not depend on feature points extracted from 
noisy data. For instance, if we analyze the feature points 
extracted by the Harris and Shi-Tomasi techniques, they tend 
to detect feature points in areas with poor or noisy data in the 
map. This problem is also present in the results obtained from 
the SIFT keypoint extractor. In fact, in all OGM images, the 
SIFT keypoint extractor detects points in homogenous areas 
(with no relevant information), so this unsuitable behavior is 
not good, since it would make lose processing time to the map 
merging algorithm. Results obtained from Trajkovic show 
that this technique is also noisy, so its behavior is not suitable 
to perform in OGM images. 

 
Table 1. Number of corners and average computation time obtained from the first group of images. 

 Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 
Technique Corner 

# 
Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Harris 
detector* 

96 536 123 5990 158 5447 93 960 138 6137 102 8296 

Shi-
Tomasi 
detector 

52 475 152 5151 160 4292 57 803 166 4605 261 6929 

Trajkovic 
detector** 

153 347 493 2519 512 2341 266 643 578 2616 1425 6765 

SIFT 
keypoint 

51 6503 390 66667 285 62197 93 10120 288 72341 455 75719 

Our 
corner 
detector 

20 113 59 930 42 767 28 157 55 857 81 964 

*threshold=140         **   
 
 On the other hand, the time consumption spent by each 
technique was calculated and it is shown in Tab. 1. In this 
group of images, it is clear that our corner detector had the 
best (lowest) average time consumption from all images. In 
this table, we can also note a difference between the Shi-
Tomasi detector and the Harris corner detector. The best time 
consumption is reached by Shi-Tomasi detector, despite the 
noisy point detection. The number of extracted points is less 
than the ones extracted by the Harris corner detector. As we 
stated, the SIFT keypoint extractor does not have a good time 
consumption, i.e., it is higher than the others algorithms, 

because it uses a space-scale calculation to extract key points 
and that step takes too much time to do a real-time feature 
detection in applications such as map merging in Multi-
SLAM. 
 From the results, we can also infer that the dispersion step 
applied by Shi-Tomasi does not help to do a good extraction, 
because this step increased the false feature points detected 
and, as we stated above, the map merging algorithm could 
make a wrong fusion map if the detected features are not 
reliable or consistent with the environment they represent. 
This situation is showed in Fig. 13. 

T1 = 8000 T2 = 4000
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Fig. 13. The left image shows the results obtained by the Harris corner 
detector, while the right image the results obtained by the Shi-Tomasi 
detector. It could be noted how the Shi-Tomasi technique makes bad 
detections in the middle of the map (gray circular region) due to its 
dispersion step. 
 
4.4. Second group of images 
These images are images in high dimension of gray levels. 
These images present the challenge to obtain the best and 

higher number of key points, since they contain a lot of 
information with noise, blur and other common properties. In 
these images, our corner detector requires a common edge 
extractor like the sobel border filter. This extra step was 
required because the algorithm was developed specially for 
low grayscale images (such as OGMs). Nevertheless, this 
extra step does not imply any considerable increment in 
computation time. 
 Fig. 14, 15, 16, 17, 18 show the results obtained with 
images from Fig. 7. From these results, it is possible to deduce 
that the Shi-Tomasi and our proposed corner detector have the 
best performance in terms of the scattering of extracted points 
because they do not concentrate on specific areas. They can 
explore the entire space and extract the vast majority of 
representative features. In this case, the step of dispersion 
applied by Shi-Tomasi helps it to have a good performance in 
detection, but as it was stated above, this property is not useful 
in all images. The user has to know the type of images to be 
treated in their application. 

 

 
Fig. 14. Results obtained from the Harris corner detector in standard images. 
 

  
Fig. 15. Results of the feature extraction step made by Shi-Tomasi detector in RGB images. 
 

  
Fig. 16. Results obtained from the Trajkovic corner detector in RGB images. 
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Fig. 17. Feature points obtained with the SIFT keypoint extractor in standard images. 
 

  
Fig. 18. Feature points obtained with our corner detector method in standard images. 
 
 Another important point is the difference between the Shi-
Tomasi detector and the Harris corner detector. From Fig. 14 
and 15, it is clear that Harris only concentrates its detection in 
areas with large gradient changes, so it tends to form clusters 
of points, while Shi-Tomasi disperses the point detection over 
the whole image. This behavior has a possible explanation: 
the corner measure applied by Harris Corner and Shi-Tomasi. 
Meanwhile, the first one uses a measure based on the 
complete Hessian Matrix (it uses the determinant and trace of 

the matrix), the second one only uses the minimum 
eigenvalue of this matrix. 
 On the other hand, Trajkovic corner detector has a good 
performance at detecting corner and edges with a large 
gradient change, but, as can be noticed, it is not capable of 
detecting edges from blurred or noisy areas. That is the case 
of the image of the woman, where it could not detect points 
in the background of the image. 

 
Table 2. Number of corners and average computation time obtained from the second group of images. 

 Img 1 Img 2 Img 3 Img 4 Img 5 

Technique Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Corner 
# 

Time 
(μs) 

Harris 
detector* 

1157 21112 1841 21448 1793 19819 395 20004 893 12363 

Shi-Tomasi 
detector 

1035 16220 840 16211 551 16848 607 16477 477 11057 

Trajkovic 
detector** 

1014 6210 1547 9528 791 5244 1214 8081 937 6711 

SIFT 
keypoint 

2000 222554 2000 229727 1266 217639 1294 221016 606 142823 

Our corner 
detector 

927 3554 871 4486 398 3415 607 3652 384 2049 

 * Threshold: 150 

**   

* Threshold: 93 

**   

* Threshold: 131 

**   

* Threshold: 165 

**   

* Threshold: 188 

**  

 
 Tab. 2 presents the number of feature points extracted by 
each technique and also the average time consumption. 
Despite the number of points detected, our proposed corner 
detector preserves the lowest time consumption: twice faster 
than Trajkovic and, approximately, 4 times faster than Shi-
Tomasi. Therefore, our detector seems to be a good feature 
technique for detecting points in real-time applications. 
Finally, it can be noticed again that SIFT keypoint had the 

highest average time consumption due to the space-scale 
analysis applied to images. 
 
 
5. Discussion 
 
From the results shown above, it is notable that the proposed 
technique and the Shi-Tomasi detector are the best techniques 

T1 = 4000
T2 = 2000

T1 = 3019
T2 = 1509

T1 = 2038
T2 = 1019

T1 = 4000
T2 = 2000

T1 = 4000
T2 = 2000
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in terms of number/quality of extracted feature points. Both 
techniques detect features on the same areas, but there is an 
evident difference when noisy data is on the image: our 
proposed corner detector performs more robustly than the 
Shi-Tomasi detector, since it has been designed to deal with 
this kind of images. 
 Despite Shi-Tomasi works well in images in low 
dimension in the grayscale, its dispersion parameter 
influences the quality of the extracted feature points, since the 
algorithm is forced to accept points that are located in poor 
regions. It is also important to mention that the proposed 
technique has a notable performance with images in high 
dimension in the grayscale, despite using an edge extractor 
that can increase its time consumption. In Fig. 13, it is notable 
how in some gray zones, the Shi-Tomasi detector extracts 
points, while our proposed corner detector does not, showing 
robustness to noisy areas. 
 On the other hand, despite the results obtained with the 
Trajkovic-Hedley detector and the Harris corner detector, 
they are not suitable for extracting feature points from images 
in real-time applications, since they require a parameter 
tuning which depends on the type of the source image and the 
noise present in the data. Tab. 1 and 2 show how these 
parameters change from one group to another. To deal with 
this, it must be necessary to do an automatic tuning, which 
means to add an extra process to the feature extraction step. 
Furthermore, as it was shown in Section 4, the Trajkovic 
corner detector does not have a suitable performance in OGM 
images due to its sensibility with large image gradients. 
 

6. Conclusions 
 
From the results explained above, two detectors presented a 
notable performance in feature detection taking into account 
the quality, number and time consumption: the Shi-Tomasi 
detector and our proposed corner detector. These detectors 
showed a good performance in different type of images (low 
and high dimension in the image grayscale) and both detectors 
do not require any additional parameter configuration if the 
image data changes. So, those properties enable them to be 
used in real-time applications such as object tracking, OGM 
merging algorithm and SLAM techniques. 
 Finally, taking into account that our detector was initially 
designed to deal with OGM images, the results in this paper 
showed that our detector also has a notable performance in 
both OGM and normal images, so the initial results presented 
in Velásquez and Prieto [12] were also checked and ratified 
in this study. Furthermore, these results extend the use of our 
corner detector to other applications, since it showed to be 
more robust and faster than the other analyzed techniques. As 
a future work, it is necessary to explore other properties 
related to the field of Corner Detectors such as scale-space 
invariance and robustness to illumination changes. It is also 
proposed to make an analysis of border extractors when our 
corner detector performs with standard images. 
 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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