

	

Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39
	

Research Article

Overhead Interspersing of Redundancy Bits Reduction Algorithm by
Enhanced Error Detection Correction Code

Lean Karlo S. Tolentino1,2,*, Ira C. Valenzuela1,3 and Ronnie O. Serfa Juan4

1Department of Electronics Engineering, Technological University of the Philippines, Manila, Philippines
2University Extension Services Office, Technological University of the Philippines, Manila, Philippines

3University Research and Development Services Office, Technological University of the Philippines, Manila, Philippines
4Department of Electronic Engineering, Cheongju University, South Korea

Received 15 March 2018; Accepted 28 March 2019

Abstract

Additional check bits, which are commonly attached to the message’s input data, are normally used to minimize the error
during data transmission. The receiver system implements a checking algorithm to determine if an error was occurred in
the received data. This algorithm will correct a corrupted bit and recover the original message. An enhanced error
detection correction code was presented to better detect and correct the corrupted conveyed bits. It improves the existing
limitations of utilizing cyclic redundancy checking (CRC), Hamming code, and other checksum techniques. Also, it
reduced the length of the redundancy bits which exists in CRC, the overhead of interspersing of the redundancy bits in a
typical Hamming code, and the system resources such as processor time and bandwidth in checksum techniques. This
paper was synthesized and simulated using the Xilinx Spartan 6 (XC7Z020-2CLG4841) FPGA. Results show that the
resource utilization of the designed memory architecture using EEDC is lower compared to CRC, Hamming, and
Checksum algorithms.

Keywords:checksum, cyclic redundancy checking, enhanced error detection correction code, Hamming, redundancy
__

1. Introduction

In today’s setting, digital communication plays a vital role in
electronic communication world. However, due to this high
level of complexity in hardware and software setups, it
implies that the system is also extremely susceptible to
errors [1][2]. Therefore, fault tolerance is an absolute
requirement for most communication systems [3]. In
addition, there are factors affecting the quality of
transmission such as environmental interference and
infrastructure defects. These can cause random bit errors
during data transmission. Also, in digital communication, a
quality output depends upon its characteristics. These factors
activate the delay data communication such as propagation
time tprop, transmission rate R, distance d between the
transmitter and receiver, and the required check sum which
is inserted to minimize the error of the system. In addition,
each error correct codes requires different length of check
bits. These correction bits may consume many overhead bits
which contributes in the delay and directly affects the
communication system. There are numerous techniques that
aims to reduce these drawbacks in communication
technology (e.g. propagation delay and required number of
check bits). However, the existing algorithms always
depends on the number of input bits. Thus, it greatly
consumes overhead bits in the transmitted packet of data.
Some procedures like compressing the messages’ bit
representations which consist of order of symbols and

contain few bits can help to resolve the communication
problem but in implementing these algorithms, a preserved
original information and the lossless and reversible
compressions must be achieved.

Fig. 1. Transmission Delay

 Queuing delay is one additional problem which exists in
packet transmission. Although it differs from packet to
packet, it has a significant impact. As an example, if arrival
rate (in bits) is more than the transmission rate of link for a
certain period, packet will queue and wait to be transmitted
on. Also, some packets can be lost if memory or buffers are
filled up. The theoretical concept of queuing delay is show
in Equation 1.

Traffic intensity = L i a

R
 (1)

where L is the number of bits, (a) as the average rate at
which traffic makes it to the queue in packets/s, and R as the

transmission rate. If

L (a)
R

 > 1, the average rate is more than

the rate at which the bits can be send. Thus, the queue will
bias on the way to approaching infinity. Hence, the system

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

*E-mail address: leankarlo_tolentino@tup.edu.ph	
ISSN: 1791-2377 © 2019 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.
doi:10.25103/jestr.122.05

Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39

	 35

must be reconfigured to achieve a traffic intensity which is
less than 1 [4][5][6][7].
 As shown in Equation 1, if the whole transmitted bits are
lessened, there will be a higher transmission speed and a low
occurrence of errors. Thus, in ensuring a consistent data
transfer, a suitable method of detection and correction of
error is required. During transmission, there are extra parity
(bits for checking) which are attached to the transmitted
message. These bits result from their input data and
undergone a deterministic algorithm. The said algorithm has
been utilized by the receiver to check any errors and confirm
the reliability of the transmitted information. The received
information will be recovered, compared and matched to
achieve the corrected of the sent error bits.
 Furthermore, if an error causes in changing a 0 to 1-bit
flip in the received data, the information is totally different.
Hence, fault tolerance is becoming a matter of concern to
provide the ability of a system in maintaining its
functionality. A fault tolerant technique allows a system to
continue its process properly instead of failing completely.
These soft errors can be counteracted by using error
correction codes [8][9]. Conventionally, there are two basic
techniques in error treatment. First is by adding adequate
extra bits, which are relayed into the data stream, in the
transmitted data block to allow the receiver to identify what
the sent information must have been. Second is to include
only adequate redundancy to allow the receiver to determine
that error is present, and a request for retransmission is
acknowledge. A new method is proposed in this paper which
enhances the drawbacks of CRC and Hamming code.
 The next section presents and discusses related works in
CRC, Hamming codes, and other useful checksum encoding
methods. Section 3 presents the proposed different error
detection and correction method. In Section 4, the
experimental testing and results were presented. Lastly,
Section 5 concludes this paper.

2. Review of Related Works

There are few existing works which are already
implemented in solving the issues in communication errors.
A well-known error detection method like the cyclic
redundancy checking (CRC) [10][11][12][13] and correction
technique such as the Hamming code [14][15][16] are being
used but has their own limitations. CRC codes require a
constant number of redundancy bits due to the assigned
polynomial generator in every application upon
implementation. For this reason, the transmission speed
decreases. On the other hand, Hamming codes consume
overhead bits due to the interspersing of the computed
redundancy bit. Another method is called checksum in
which it is mostly used to detect errors in data transmission
on communication networks. In checksum, the block of data
which is being transmitted are added up and its the sum
along with the data are transmitted. The received data blocks
are added up by the receiver and the matching of the
received checksum bits with the calculated checksum are
being done [17][18].

2.1. Cyclic Redundancy Checking (CRC) Codes
CRCs are applied in most communication networks which
deliver low-cost and effective error detection abilities [19].
On transmission mode, as information transmission rates and
the amount of the stored data increases, the requirement for
an uncomplicated but powerful error detection codes

increases. Whenever high-speed transmission rate is
essential, serial implementation does not achieve this
requirement. However, CRC hardware operation is based on
Linear Feedback Shift Registers (LFSRs), which utilizes
serial transmission. LFSR is constructed from common shift
registers with a few number of XOR gates and is utilized for
random number generation and counters.

CRC code can be denoted as polynomial codes (sent
strings of bit can be understood as a polynomial wherein its
coefficients consist of values of bit string, 0 and 1) since all
codewords of the form C(x) = Cn-1Cn-2…C0 are denoted as a
polynomial degree n-1 [4] as presented in Equation 2.

C (x) = Ci x

i

i=0

n-1

∑

 (2)

 CRC and most cyclic codes demand that “every valid
code polynomial be a multiple of a generator polynomial
g(x)” (for example, g(x) = 10101 = x4 + x2 + 1; message
polynomial m(x) = 1010111). This polynomial code can be
referred to as a basis for good error correction methods.
However, it contains a constant length of check bits since it
rests on the generator polynomial’s nth degree that is
required to attached throughout the transmission [20]. For
this reason, a reduced network transfer rate has been
achieved. Similarly, correction is not enforced by CRC
codes, retransmission is executed when they encounter an
error.
 To demonstrate the CRC process, basic bitwise
algorithm is used to represent its process. The bitwise
algorithm (CRCB) is basically a software implementation
utilizing a linear feedback shift register (LFSR). Figure 2
shows a basic hardware implementation. The LFSR is
triggered by a clock. In each clock pulse, the input data m(x)
is shifted and transmitted into the register. When the entire
input bits have been dealt with, the LFSR holds the CRC bits
that are shifted out on the data line.

Fig. 2. Generating CRC Utilizing a Linear Feedback Shift Register
(LFSR)

 The following algoritzm can be utilized in the software
implementation:
 The check bits are assumed to be kept in a CRC register.
Then, the implementation using the software resulted to:

1) CRC ← 0.
2) If the CRC left-most bit equals 1, the succeeding bit

of the message must be shifted, and the register must be
XORed with the generator polynomial; or else, the shift
must be done in the succeeding bit of the message.

3) Second step is repeated until the shifting in of all the
bits of the improved message were carried out.

 There will be a faster implementation by treating the data
as higher units than bits when its size is not larger than the

Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39

	 36

generator polynomial’s degree. Nevertheless, the speed gain
matches to an increase of memory since precomputed values
(lookup tables or LUT) will be utilized.
 The decoding method is like the encoding process. It
splits up every word received into the message and the
remainder portion, and it examines if the calculated
remainder from the message resembles to the sent bits. An
error will be expected if mismatch occurs and the receiver
will request for the retransmission (ARQ) of message.
 Although, CRC is not difficult to be implemented using
hardware such as ASICs and FPGAs. It is not ensured that
the intended modification of data will not happen. Likewise,
an overflow of data may be likely. Thus, an error correction
method must be implemented as well as utilizing CRC for
the system to be efficient. Furthermore, a disadvantage of
CRC is the Serial Architecture which takes additional time
to transmit the message [21].

2.2. Hamming Codes
The implementation algorithm using the designed Hamming
code encoding and decoding circuit by transmission gate
logic is shown in [22]. Simulations has been verified using
the tanner tools and results showed a reduced-on channel
length and minimized the dissipation on power consumption.
The combined Hamming and Hadamard codes have been
used in [23] which showed a minimized bound on
transmission rate.

In [24], the effectivity of two types of linear block codes
namely Hamming and cyclic codes are shown. They are
used as error-detecting and error-correcting scheme in long
distance communication. The resulting implementation
managed to detect and correct errors in a communication
channel.

Hamming code is an error-correcting and linear block
code which are used for transmitted error bits’ detection and
correction. Likewise, two simultaneous error bits and a
single error bit can be detected and corrected, respectively,
using this method [20][25][26][27]. Figure 3 shows that
when Hamming code is implemented, the n-bit data word
(D) is appended to the redundancy bits (r), generating a
single word which results to an overall number of bits of D
+ r bits. The required number of Hamming bits n should be
at least D + r + 1.

Fig. 3. 1 data unit contains D data bits and r Hamming bits [12]

 A nonappearance of errors needs to be acknowledged by
single code of the D + r codes. Any position of the bit
where its location has an occurrence of error needs to be
recognized by all the D + r codes. Thus, the amount of
required r bits is stated in Equation 3 since 2r unlike codes
can be produced by r bits.:

2r ≥ D + r + 1 (3)

 These r bits are to be appended at binary positions of the
bit with the unique bits of data. At that point, the whole bit
positions are allocated for the data to be coded (i.e., 3, 5, 6,
7, 9, 11, 13, 14, 15, 17, etc.). Therefore, overhead will

increase due to interspersing the r bits together for both parts
of the transmitter and receiver.

As shown in Table 1, the position of the data bits and the
respective Hamming bits are presented where a value of X,
which represents a don’t care condition, is either in a random
or non-sequential form.

Table 1. Position of the Data Bits and Its Respective
Hamming Bits

Bit
Position

1 2 3 4 5 6 7 …

Power of 2 20 21 22 …
Encoded
position

r1 r2 D1 r3 D2 D3 D4 …

Required
parity bits

position
for ‘r’

r1 X X X …
 r2 X X X …
 r3 X X X …

Furthermore, Hamming codes performs better on
networks where the streams of data are vulnerable to errors
of single-bit. Nevertheless, if various errors are existing,
these the errors can be detected by Hamming codes.
However, it is expected that extra correct bit will be
modified and causes an extra error to exist on the data as
presented in [28].
2.3. Checksum codes
A checksum is a method of checking the redundancy and
detecting the errors in a transmission of data in a typical
communication network. In a checksum, the entire data
block which is being sent are added up and the sum are
appended with the data. Then, the received data blocks are
added up by the receiver and are checked if these checksum
bits correspond to the computed checksum. In the simplest
way, a checksum is formed by computing the binary values
in a data block using some algorithm and keeping the
outputs with the same data. Single-Precision, Double-
Precision, Honeywell, and Residue Checksum methods
[18][29][30][31][32][33] are the four methods that can be
seen in the Checksum Encoder/Decoder.

Fig. 4. Checksum Method

 In a single-precision checksum, every data byte is added
to form a single byte while in a double-precision checksum,
every location of the n-bits data is added into the 2n-bits’
location. Honeywell checksum is an improved form of
double-precision where the entire pairs of consecutive words
are appended to form double-precision words. The words
are summed in a location whose length is twice the data
word size. Lastly, residue checksums are a modified form of
single-precision checksums. The carry from the most
significant bit (MSB) of the checksum is taken out by the
residue checksum. It will be added to the least significant bit
(LSB) of the checksum. There are examples where the four
checksum methods are implemented [32][33]. The

Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39

	 37

effectiveness of checksums in detecting error during data
transmission is presented in [34].

3. Enhanced Error Detection Correction (EEDC) Codes

The proposed Enhanced Error Detection Correction (EEDC)
code as shown by its flowchart in Figure 5 aims to improve
the existing drawbacks of the error detections and
corrections above. EEDC demands that every acceptable
codeword of C bits must contain the acceptable input data
bits Di. When the C bits are changed in any acceptable Di
unit, an unacceptable codeword will be produced. Therefore,
the total number of codewords which corresponds to the
acceptable data unit is C + 1. For the meantime, the total
quantity of codewords is (C + 1)2Di

 for every 2Di acceptable
patterns of data. The probable quantity of patterns is 2C in
each Di bit codeword. Hence, a limitation on the number of
acceptable and unacceptable codes which may occur will be
achieved. Hence,

C + 1()2Di ≤ 2C (10)

Fig 5. Flowchart of the proposed EEDC algorithm

and, this may be represented by Equation 4

 C = Di + r (4)

and Equation 5

Di + r + 1()2Di ≤ 2Di+r (5)

so the inequality shown in Equation 6 should be met by the
total number of the desired r bits:

Di + r + 1() ≤ 2r (6)

 The input data Di together with the required r bits will be
altered into a polynomial notation with an n-1 degree as
presented in Equation 7:

D(x) = Di x

i

i=0

n-1

∑

 (7)

and

r(x) = ri x

i

i=0

n-1

∑ (8)

 The product G(x) consists of the degree of polynomial
D(x) and the redundancy bit’s nth value:

G(x) = D(x) • Xn (9)

 Therefore, the construction of the EEDC code is
concluded as presented in Equation 10:

EEDC codes = G(x) + r(x) (10)

 Assume that an input of 1001110 will be applied by
utilizing the EEDC method. The data input in polynomial is
X6 + X3 + X2 + X. Thus, the least number of r to satisfy
Equation 9 is 4, and its polynomial result is r3X3 + r2X2 +
r1X + r0. G(x) value is X10 + X7 + X6 + X5 by applying
Equation 16.
 To determine the suitable bit of the r bits, r3, r2, r1, and r0
are in position 8, 9, 10 and 11, respectively.
 The check bits in 8th and 9th positions are set a 1st, 3rd, 5th,
7th, and 2nd, 3rd, 6th, 7th positions, respectively. Check bits in
8th and 9th positions are applied using even parity and odd
parity, respectively, thus the r3 is 0 while r2 equals 1.
The check bit in 10th position is situated at 4th, 5th, 6th, 7th
positions. In contrast, the check bits in 11th are only r3, r2, and
r1. The value of r1 is 1 and r0 is 0 because odd parity and even
parity is encountered, respectively.
 Lastly, the EEDC codes in polynomial form and binary
form is X10 + X7 + X6 + X5 + X2 + X and 1001110r3r2r1r0,
respectively. Bits r3, r2, r1, and r0 equals 0110 and are to be
appended at 8th, 9th, 10th, and 11th, respectively. Hence, the
final EEDC code is 10011100110.

4. Experimental Testing and Results

An experimental set-up is conducted to analyze the proposed
method against the existing schemes. First, the set-up

Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39

	 38

parameters are necessary to determine the performance of
the proposed method. During testing, a set-up is required to
meet the condition of simulation. A sequence of frame bytes
from 1 byte to 8 bytes was fed as an input to determine the
performance of each method.

Table 2 shows the set-up parameters used in the
experiment. This was simulated and implemented in Xilinx
Spartan 6 (XC7Z020-2CLG4841) FPGA using Verilog
hardware description language. FPGAs were commonly
chosen to reconfigure embedded devices [35][36] because
their implemented designs are cost-effective in contrast with
using ASICs and there are no extensive modifications on
software or hardware [37][38].

Table 3 shows the resource utilization using the
implementation using FPGA. The proposed algorithm
(EEDC) was compared with the three existing schemes,
namely: CRC, Hamming, and Honeywell checksum. The
resource utilization of the designed memory architecture
using EEDC is lower compared to CRC, Hamming, and
Checksum implementations in terms of the length of look-up
tables (LUT), LUTs for implementing distributed RAMs
(LUTRAM), utilized flip-flops (FF), and input & output
pads (IO). The number of DSP elements for EEDC is lower
than CRC and Hamming but same with Checksum
implementation. Lastly, global clock buffers were highly
utilized in checksum method compared to the other three
methods.

Table 2. Set-up parameters

Parameters Value
Number of cycles 64

Cycle duration 6 ms
Sample clock 12 ns

Payload length 20 words

Table 3. Resource utilization
Resources Hamming CRC Checksum Proposed

(EEDC)
Available

LUT 7,342 7,202 8,422 6,032 54,300
LUTRAM 756 742 865 726 16,400

FF 5,234 4,236 5,344 4,124 108,600
DSP 3 3 2 2 220
IO 146 146 168 142 200

BUFG 2 2 3 2 32

5. Conclusion

Based on the results obtained, minimized overhead payload
bits were achieved using EEDC codes compared to CRC,
Hamming code and checksum techniques. The resource
utilization of the designed memory architecture using EEDC
is the lowest among the CRC, Hamming, and Checksum
implementations. The proposed EEDC codes can be used as
an alternate error detection and correction technique.

Future work includes implementing the proposed
algorithm of enhanced error detection and correction code
(EEDC) for other communications applications such as
packet transmission to attain a better throughput. Moreover,
the developed EEDC implementation will be applied with
other overhead implementations.

Acknowledgements
This work is funded and supported by the Technological
University of the Philippines through the University
Research and Extension Council and the University
Research and Development Services Office.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution License

References

[1] J. Yang, P. Wang, Y. Zhang, Y. Cheng, W. Zhao, Y. Chen, and H.

H. Li, Radiation-induced soft error analysis of STT-MRAM: A
device to circuit approach. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 3, pp. 380–393,
(2016).

[2] S. Rehman, K.-H. Chen, F. Kriebel, A. Toma, M. Shafique, J.-J.
Chen, and J. Henkel, Cross-layer software dependability on
unreliable hardware. IEEE Transactions on Computers 65, 1, pp.
80–94, (2016).

[3] A. Sanchez-Macian, P. Reviriego, and J. A. Maestro, Enhanced
detection of double and triple adjacent errors in hamming codes
through selective bit placement. IEEE Transactions on Device and
Materials Reliability 12, 2, pp. 357–362, (2012).

[4] J. F. Kurose and K. W. Ross, Computer networking: a top-down
approach, Pearson (2012).

[5] C.L. Chen, Y.L. Lai, C.C. Chen, and K.C. Chen, Construction of a
Real-Time and Secure Mobile Ticket System, Journal of
Information Science & Engineering 25, 3, pp. 807-825, (2009)

[6] M. T. Beck and C. Linnhoff-Popien, On delay-aware embedding of
virtual networks, AFIN 2014: The sixth international conference
on advances in future internet, Lisbon, Portugal, pp. 55-59, (2014).

[7] P. Venkataram, S. Chaudhari, R. Rajavelsamy, T. R. Ramamohan,
and H. Ramakrishna, Disk-oriented VCR operations for a
multiuser VOD system, Journal of the Indian Institute of Science
84, 5, pp. 123-140, (2004).

[8] X. She, N. Li, and D. W. Jensen, SEU tolerant memory using error
correction code. IEEE Transactions on Nuclear Science 59, 1, pp.
205–210, (2012).

[9] M. Imran, Z. Al-Ars, and G. N. Gaydadjiev, Improving soft error
correction capability of 4-d parity codes, 14th IEEE European Test
Symposium, (2009).

[10] I. R. Irvin, Cyclic redundancy checks with factorable generators,
IEE Proceedings – Communications 150, 1, pp. 17-20, (2003).

[11] R. O. Serfa Juan and H. S. Kim, Utilization of DSP algorithms for
Cyclic Redundancy Checking (CRC) in Controller Area Network
(CAN) controller, 2016 International Conference on Electronics,
Information, and Communications (ICEIC), Da Nang, Vietnam,
pp. 1-4, (2016).

[12] R. O. Serfa Juan and H. S. Kim, Utilization of High-Speed DSP
Algorithms of Cyclic Redundancy Checking (CRC-15) Encoder
and Decoder for Controller Area Network, Jurnal Teknologi 78, 5-
9, pp. 13-19, (2016).

[13] L. K. S. Tolentino, M. V. C. Padilla, and R. O. Serfa Juan, FPGA-
based redundancy bits reduction algorithm using the enhanced
error detection correction code, International Journal of
Engineering and Technology 7, 3, pp. 1008-1013, (2018).

[14] S. I. Park and K. C. Yang, Extended Hamming accumulate codes
and modified irregular repeat accumulate codes, Electronics
Letters 3, 10, pp. 467 – 468, (2002).

[15] R. G. Marquart and J. C. Hancock, Performance of Hamming
Codes, IEEE Transactions on Space Electronics and Telemetry 9,
4, pp. 115-126, (1963).

[16] N. Shep, and P. H. Bhagat, Implementation of Hamming Code
using VLSI, International Journal of Engineering Trends and
Technology 4, 2, pp. 186-190, (2013)

[17] Available online:
http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems/simul
ator/Checksum/Checksum_Encoder_Decoder_-
_Instructions.html

[18] N. R. Saxena and E. J. McCluskey, Analysis of checksums,
extended-precision checksums, and cyclic redundancy checks,
IEEE Transactions on Computers 39, 7, pp. 969-975, (1990).

Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39

	 39

[19] P. Koopman, 32-bit Cyclic Redundancy Codes for Internet
Applications, Proceedings International Conference on
Dependable Systems and Networks, Washington, DC, USA, pp.
459-468, (2002).

[20] S. Sreelatha and G. Murali, Error correction and detection
techniques in quantum cryptography protocol, 2017 International
Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), Chennai, India, pp. 3584-3588, (2017).

[21] D. Muthiah and A. A. B. Raj, Implementation of high-speed LFSR
design with parallel architectures, 2012 International Conference
on Computing, Communication and Applications (ICCA),
Tamilnadu, India, pp. 1-6, (2012).

[22] D. R. Choudhury and K. Podder, Design of Hamming Code
Encoding and Decoding Circuit Using Transmission Gate Logic,
International Research Journal of Engineering and Technology 2,
7, pp. 1165-1169, (2015).

[23] Z. Li, S. J. Lin, and H. Hu, On the Arithmetic Complexities of
Hamming Codes and Hadamard Codes, Journal of Latex Class
Files 14, 8, pp. 1-22, (2017).

[24] I. N. John, P. W. Kamaku, D.K. Macharia, and N. M. Mutua, Error
Detection and Correction Using Hamming and Cyclic Codes in a
Communication Channel, Pure and Applied Mathematics Journal
5, 6, pp. 220-231, (2016).

[25] B. K. Gupta and R. L. Dua, 30 bit Hamming code for error
detection and correction with even parity and odd parity check
method by using VHDL, International Journal of Computer
Applications 35, 13, pp. 31 – 38, (2011).

[26] W. Tomasi, Advanced Electronic Communications Systems, 6th
edition, Pearson, (2014).

[27] J. C. Dimayuga, I. C. Fernandez, A. E. Lopez, R. Pangilinan, L.
Alarcon, M. T. de Leon, R. J. Maestro, M. Rosales, and C. V.
Densing, A study on the effects of dynamic voltage and
frequency scaling on an error detection block for a LoRa
communications system, TENCON 2017-2017 IEEE Region 10
Conference, Penang, Malaysia, pp. 1538-1543, (2017).

[28] M. S. Sadi, M. F. Hossain, and M. I R. Shuvo, Tolerating Double
Bit Errors by Rearranging Bit Positions, Journal of Modern
Computer Networks 1, 2, pp. 1-5, (2017).

[29] R. A. C. Varma and Y. V. Apparao, High-Throughput VLSI
Architectures for CRC-16 Computation in VLSI Signal
Processing, Lecture Notes in Electrical Engineering 471, pp. 23-
32, (2018).

[30] C. E. Stroud, Merging BIST and Concurrent Fault Detection, A
Designer’s Guide to Built-In Self-Test, pp.267-286, (2002).

[31] A. Azahari, R. Alsaqour, M. Uddin, and M. Al-Hubaishi, Review of
error detection of data link layer in computer network, ARPN
Journal of Engineering and Applied Sciences 9, 1, pp.1-4, (2014).

[32] B. Peterson, Data Coding and Error Checking Techniques, Virtium
Technology, (2015).

[33] I. A. Khan, N. Y. Yun, S. Muminov, and S. H. Park, 2012. A
Reliable Error Detection Mechanism in Underwater Acoustic
Sensor Networks, Advanced Methods, Techniques, and
Applications in Modeling and Simulation, pp. 190-199, (2012).

[34] T. C. Maxino, and P. J. Koopman, The effectiveness of checksums
for embedded control networks, IEEE Transactions on
Dependable and Secure Computing 6, 1, pp. 59-72, (2009).

[35] A. R. M. Khan, S. M. Gulhane, and S. L. Badjate, FPGA based
design & implementation of embedded system for tilt
measurement, International journal of advancements in
technology 2, 3, pp. 335-349, (2011).

[36] L. Pyrgas, A. Kalantzopoulos, and E. Zigouris, Design and
Implementation of an Open Image Processing System based on
NIOS II and Altera DE2-70 Board, Journal of Engineering
Science and Technology Review 9, 5, (2016).

[37] R. O. Serfa Juan, and H. S. Kim, Reconfiguration of an FPGA-
Based Time-Triggered FlexRay Network Controller using EEDC,
Journal of Circuits, Systems, and Computers 27, 6, pp. 1-11,
(2018).

[38] S. P. Pouros, V. D. Vassios, and D. K. Papakostas, FPGA-Based
Mixed-Signal Circuits Testing System Implementation, Journal
of Engineering Science and Technology Review 9, 6, pp. 131-
134, (2016).

