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Abstract 
 

The increasing demand of urban distribution aggravates urban congestion and environmental pollution. In view of the 
growing serious environmental problems, the urban distribution of electric vehicles (EVs) can alleviate the pollution 
caused by vehicle emissions to a certain extent. However, in practical application, this urban distribution is affected by 
the scarce distribution of public charging piles and the limited mileage per charge, which bring difficulties to the 
operation scheduling. An optimization method considering the distribution of public charging piles and carbon emissions 
was proposed to improve the efficiency of the urban distribution of EVs. With the minimum total distribution cost as the 
optimization objective, an optimization model based on the distribution of the public charging pile network and 
considering the restriction of mileage per charge was established. Hill-climbing algorithm was introduced in accordance 
with the requirements and characteristics of the optimization model to improve the standard genetic algorithm (SGA) and 
its local solving capability. The feasibility and validity of the model and hill-climbing genetic algorithm (HCGA) were 
verified by solving small- and large-scale numerical examples. Results demonstrate that the optimization model and 
HCGA proposed can effectively provide optimized solutions for the urban distribution of EVs. The designed HCGA has 
a better searching capability than SGA. For the small-scale numerical example, the average total cost of the feasible 
solutions obtained by HCGA is 18.2% less than that by SGA, whereas for the large-scale example, the cost is 6% less 
than that by SGA. This study provides references for saving on the distribution cost and guiding the urban distribution 
scheduling and optimization of EVs. 

 
Keywords: Distribution; Vehicle routing problem (VRP); Standard genetic algorithm (SGA) 
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1. Introduction  
 
With the rapid development of China’s economy and 
urbanization, e-commerce has become increasingly 
prosperous, thereby increasing urban distribution. In China, 
the government calls for green logistics, which requires 
increasing the proportion of green vehicles in the urban 
distribution system. Developing green low-carbon logistics 
has a positive effect on alleviating urban environmental 
problems. The January 2019 sales report of BYD, a leading 
manufacturer of electric vehicles (EVs) in China, compared 
with the statistics of the same period last year, indicates that 
the sales of EVs have increased by 38516.67%, whereas the 
sales of fuel vehicles have decreased by 64.95%. Under the 
influence of policy support, environmental awareness 
enhancement, and energy shortage, the popularization and 
application of EVs are becoming a growing trend. However, 
numerous problems, such as the limited mileage per charge 
caused by battery capacity, insufficient distribution of public  
charging piles, and long charging time of EVs, hamper the 
practical application of EVs. Therefore, considering the 
distribution of public charging piles and mileage per charge, 
this study focuses on the urban distribution optimization of 

EVs in the low-carbon logistics environment, which can 
guide third-party logistics enterprises in managing and 
operating the urban distribution of EVs. 

Recently, several studies have been conducted on the 
urban distribution optimization of EVs [1,2]. However, 
numerous problems remain, such as the oversimplification 
of constraints of the optimization model and low solving 
quality of algorithms, which lead to the unreasonable 
scheduling scheme of EVs. Therefore, combining the 
technical characteristics and development reality of EVs, 
constructing a scientific and practical optimization model for 
the urban distribution of EVs, and designing an efficient 
algorithm are urgent problems to be solved. 

For this reason, an optimization model for the urban 
distribution of EVs is established, considering the 
distribution of public charging piles, mileage per charge, and 
carbon emissions of EVs. An improved genetic algorithm 
(GA) is designed for the optimized solution of the model, 
which can provide reference for the distribution operation 
and management of EVs of third-party logistics enterprises.  
 
 
2. State of the art  
 
Dantzig and Ramser [3] first proposed the vehicle routing 
problem (VRP) in 1959, which attracted considerable 
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attention worldwide. Many scholars continue to analyze the 
problem for practical applications. Golden et al. [4] studied a 
VRP with uncertain driving cost and multiple vehicle types. 
Considering the diversified customer demands, complexity 
of the distribution network, and other uncertainties, VRP 
with time window has emerged. Grosso [5] constructed a 
VRP model with access time windows from the actual 
situation of prohibiting trucks from entering the central city 
in Europe and discussed the effect of time constraints on 
transportation costs. Salma Naccache et al. [6] investigated a 
simultaneous delivery problem with time windows and 
developed a hybrid adaptive large neighborhood search with 
improved operation through branch and bound and heuristic 
algorithms. Xie [7] analyzed a VRP with multiple soft time 
windows. On the basis of the number of vehicles, driving 
cost, and penalty cost of the deviation from the time window, 
an optimization model was established considering the 
constraints of vehicle loading capacity and maximum route 
length. Wu [8] examined a VRP with multi-resource 
constraints of vehicle battery and loading capacity, 
established static and dynamic models under the constraints, 
and used CPLEX12.6.2 to find the solution. VRP is a typical 
NP-hard problem. To improve the efficiency of the 
algorithm searching capability, Xu [9] evaluated a dynamic 
VRP and designed a standard ant colony algorithm (ACA) to 
fuse the improved k-means and crossover to obtain 
improved solutions. However, existing studies mostly regard 
minimum cost and time or maximum profit as the 
optimization objectives and consider the constraints of 
vehicle loading capacity, time window, and demand 
satisfaction. The algorithms designed are mainly traditional 
and simple. 

Recently, many advanced technologies have been used 
to enhance the efficiency and safety of vehicles [10]. With 
the popularity of the low-carbon concept, energy 
conservation and environmental protection are considered in 
VRP modeling, which is gradually becoming a research 
trend. Zhang et al. [11] incorporated the fuel, carbon 
emission, and vehicle use costs into modeling and designed 
an improved tabu search algorithm (RS-TS) to find the 
solution. The battery capacity of EVs will limit the mileage 
per charge. However, existing studies have not considered 
this problem. Liu [12] optimized the network of urban 
charging piles for EVs, which is important for EV 
distribution research. Keskin et al. [13] investigated the VRP 
of EVs with time window, regarded EV charge as 0–1 mixed 
integer linear programming, and developed an adaptive large 
neighborhood search algorithm. Yao et al. [14] proposed a 
multi-objective collaborative planning strategy to solve the 
optimization problem of integrated power distribution and 
charging systems for EVs. When energy consumption and 
emissions of the vehicles are introduced into the VRP model, 
the GVRP model is proposed [15-18]. Goel [19] established 
an optimization model with the objectives of minimum route 
length and delivery time, considering carbon emission and 
energy utilization. However, the mileage per charge 
restricted by battery capacity was neglected. The most 
widely used algorithms for solving VRP are GA [20] and 
ACA [21]. The drawbacks of ACA include low convergence 
rate and susceptibility to local optimum solutions. In 
addition, the search is prone to stagnation. Lang et al. [22] 
combined the GA and hill-climbing algorithm to obtain an 
improved optimal solution, which provided reference for the 
algorithm design in the present study. Hence, an 
optimization model for the urban distribution of EVs 
considering carbon cost and EV characteristics is developed, 

and an improved GA is designed to solve the optimization 
model. 

In summary, existing studies mainly focus on improving 
the objective function and constraints of the VRP model, 
such as expanding a single objective to multiple objectives 
and considering soft or hard time windows in the constraints. 
Thus, such studies neglect the mileage per charge and 
charging time of EVs, which causes the solutions to be 
inconsistent with reality. Therefore, a VRP optimization 
model considering the distribution of public charging piles 
and the restriction of driving mileage is constructed, and an 
improved GA is designed to solve the model. 

The remainder of this study is organized as follows. 
Section 3 establishes the VRP optimization model of EVs. 
Section 4 designs the hill-climbing genetic algorithm 
(HCGA) and proves its effectiveness by testing small- and 
large-scale numerical examples. Finally, Section 5 
summarizes the conclusions and presents future research 
directions. 
 
 
3. Methodology 
 
The charging electricity of EVs is transferred to the 
environmental cost of carbon emissions and included in the 
total distribution cost of the objective function. In this study, 
a VRP optimization model of EVs based on a public 
charging pile network, which considers the constraints of 
vehicle loading capacity, mileage per charge, and carbon 
emission cost, is established. 
 
3.1 Model establishment  
A GVRP model considering loading capacity and mileage 
per charge is established on the basis of the technical 
characteristics of EVs. This study assumes that each vehicle 
starts from the distribution center with full power. During 
distribution, if the vehicle power cannot meet the 
distribution requirements, then it will look for a public 
charging pile to charge. If the customer’s demand is higher 
than the vehicle loading capacity, then the vehicle will return 
to the distribution center to load for the subsequent 
distribution. The maximum driving mileage for EVs is set to 
avoid the second charge. If the distribution distance exceeds 
the maximum driving mileage of the vehicle, then it will 
find a nearby charging pile to charge and then continue to 
work. When calculating the total distribution cost, the 
average fixed cost of single delivery, the variable cost of 
single delivery, the cost of electricity consumption, and the 
environmental cost caused by the carbon emissions of 
upstream enterprises are considered. 
 
3.1.1 Model assumptions 
1) The EVs only deliver goods and do not pick-up goods 
during delivery. 
2) Only one distribution center exists, which is also the 
origin and destination of all EVs. 
3) All EVs have the same type and indicators. 
4) For EVs that complete the delivery, when the power of 
the vehicles cannot meet the requirements, they will charge 
at nearby charging piles and are fully charged every time. 
5) The customers are deterministic, that is, a static VRP is 
analyzed in this study. 
6) Vehicle charging is accomplished at public charging piles 
or in the distribution center. The charging mode is fast 
charging, that is, ignoring the cost of charging time. 
7) Transporting goods between customers is not permitted. 
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3.1.2 Model formulation 
To meet the demands of n, the distribution task is assigned 
by the distribution center 0S . pQ  is the loading capacity of 
EVs; jq represents the demand of goods by customer j . The 
demand by the distribution center is 0. Under the premise of 
satisfying all customers’ demands, the model sets the 
minimum total cost as the optimization objective. For 0S , 
the minimum vehicle number needed k is expressed as 

 

  

k = int
qj

j∈N
∑

∂Qp

+1                                   (1) 

 
where ∂ indicates the full loading rate of vehicles.  
Therefore, the GVRP model of EVs is as follows: 
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ijkX is the decision variable. 
Equation (2) presents the objective function with the 

minimum total cost. In Equation (3), the distribution center 
serves each customer only once. In Equation (4), the goods 
loaded cannot exceed the maximum loading capacity of the 
vehicles. In Equation (5), the departure and return depots of 
each vehicle are distribution centers. In Equation (6), the 
driving distance of a vehicle should not exceed the mileage 
per charge. In Equation (7), the driving distance should not 
exceed the maximum driving mileage. 

The following describes the meaning of symbols: 
V : set of EVs, { }, 1,2,3V k k m= = ⋅ ⋅ ⋅ .m is the number 

of EVs in the distribution center and a variable to be 
determined; 

C : set of customers, { }, 1,2,3C i i n= = ⋅ ⋅ ⋅ , where n   
denotes the number of customers; 

N : set of vertices, including n customer points to be 
served and p  public charging pile points; 

r
kO : vertex set of the thr open sub-path of vehicle k  

(open sub-path indicates that vehicle k moves from one 
charging pile to the other); 

l
kN : vertex set of the thl closed sub-path of vehicle k     

(closed sub-path indicates that vehicle k has departed from 
distribution center 0S and returned to 0S ); 

l
kC : customer vertex set of the thl closed sub-path of 

vehicle k ; 

jq : demand for goods of customer j ; 

PQ : loading capacity of EVs; 

ijd : distance from i to j ; 

0P : mileage per charge; 

maxP : maximum driving mileage; 

1A : average fixed cost per delivery of EVs; 

2A : variable cost per km of EVs; 

3A : unit cost per KWh; 

l : power consumption per km of EVs ( )1−⋅⋅ kmhkw  ; 
λ : carbon emission coefficient of electric energy 

( )( )1−⋅hkwkg ; 
γ : percent of thermal power for unit electricity amount. 

 
3.2 Algorithm design 
A VRP, including a single distribution center and multi-
customer depots, is studied. When designing the algorithm, 
several factors, such as loading capacity, mileage per charge, 
and distribution of public charging piles, must be considered. 
Therefore, an algorithm with comprehensive search 
capability and high search tolerance should be designed 
when solving the model. Considering these factors, GA is 
adopted to solve the model. GA is widely used because of its 
powerful global searching capability and simple process. 
However, the standard genetic algorithm (SGA) has the 
disadvantage of poor local search capability. Hence, the hill-
climbing algorithm is introduced to improve the local search 
capability of SGA. The hill-climbing algorithm, also known 
as a local search method, is a single direction search 
algorithm based on domain search technology, which can 
improve the quality of the solution. This algorithm has a 
strong local search capability, but its global search capability 
is insufficient. Hence, the combination of hill-climbing 
algorithm and SGA, namely, HCGA, can learn from one 
another and effectively overcome the weakness of SGA in 
local search capability. Figure 1 presents the flow chart of 
HCGA.  

The adopted particle representation scheme is direct and 
easy to realize; besides, it no longer needs to prescribe the 
number of communities of a network, because it can 
automatically determine this. 

 
3.2.1 Chromosome design and population initialization  
When designing the GA, { },( 1,2,3 )C i i n= = ⋅ ⋅ ⋅ is randomly 
generated by using the demand depots as the genes and 
adopting integer coding. Each permutation represents a 
chromosome of length n . For example, a randomly 
generated chromosome { }1,2,5,4,3 represents a chromosome, 
where the gene sequence is the distribution order of a 
vehicle. Considering the vehicle loading capacity, each 
customer is added to the distribution route one by one, until 
the total demand of goods attains the vehicle loading 
capacity. When the vehicle cannot meet the next customer’s 
demand, the distribution route will be reconstructed from 
this customer depot. This process is repeated until all 
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customers are assigned to the EVs and all routes are 
identified. 

 
Initialize the control 

parameters
Initialize the control 
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Fig. 1.  Flow chart of HCGA 
 
3.2.2 Fitness function  
Fitness function is determined in accordance with the 
objective function and is the only criterion for natural 
selection. The fitness function is non-negative. The objective 
of the optimization model is minimum cost; therefore, the 
reciprocal of the objective function is used as the fitness 
function. 
 
3.2.3 Genetic operator  
 
1) Selection 

Selection is the operation of the survival of the fittest 
among individuals in a population. The fitness determines 
the probability of chromosomes being inherited by the next 
generation. The higher the chromosome fitness, the more 
likely it is to be inherited, and vice versa. The selection 
method adopted in this study is roulette selection. 

The detailed steps are as follows: first, the fitness value 
of all individuals in population iF is calculated. Then, the 
probability that chromosome i is selected and passed on to 
the next population i iip F F= ∑ is calculated. Finally, on 
the basis of a certain random rule, the chromosome 
individuals are selected to enter the next generation. 
2) Crossover 

Crossover refers to the exchange of genes between two 
pairs of chromosomes in a way that creates two new 

individuals. The new individual retains the basic 
characteristics of the father generation. Two-point crossover 
is adopted, which is generally implemented in two steps. 
The first step is to pair individuals randomly in a group. The 
second step is to set two crossover nodes randomly in the 
paired individuals, then exchange the genes between the 
crossover nodes, and modify the two obtained chromosomes. 
3) Mutation 

The GA can improve the local search capability through 
mutation, maintain the population diversity, and prevent the 
premature phenomenon. In this study, the chromosome is 
constructed in the form of a customer code, and the charging 
effect is considered in decoding. Therefore, when mutating, 
changing the customer distribution order is considered to 
improve the group diversity. The mutational mode of mutual 
reciprocity is adopted, that is, two points in the chromosome 
are randomly selected and their values are exchanged. 
4) Hill-climbing operation 

In comparison with the SGA, the hill-climbing operation 
is used after mutation, and a fixed number of hill climbing is 
introduced. The detailed process is as follows. In the optimal 
individuals of each generation, we select a gene segment, 
reverse the sequence of the gene segment, repeatedly 
perform the operation, obtain the fitness value each time, 
and record the maximum fitness and its corresponding 
individuals. If the fitness value is higher than that before the 
climbing operation, new individuals are accepted; otherwise, 
the operation is invalid. 
 
3.2.4 Decoding method  
The algorithm decoding process mainly includes two parts: 
1) Divide code S in accordance with the constraints of 
loading capacity and mileage per charge, and the detailed 
method is as follows: 
(1) 1i = ; 
(2) Start route , and 0 is the distribution center; 
(3) Attempt to add the first point in code S to iR . If the 
loading capacity and mileage of the vehicle are satisfied, 
then proceed to the step (4); otherwise, 1i i= + and repeat 
step (2); 
(4) Delete the first code of S . If S is empty, then proceed to 
step (5); otherwise, repeat step (3); 
(5) Output each sub-path. 
 
2) Cut each obtained route to meet the mileage constraint. 
For each route, 
(1)  1k = , 1 0d = ; 
(2) Calculate the current driving distance 1 1 2d d d= + , where 
2d is the distance between nodes k and 1k + .  

 
 Then, calculate 3 1 4d d d= + , 
where   d4 =min(dmat6) . 6dmat  represents the distance 
between node 1k + and all charging piles. If 4 maxd L≤ , 
where maxL is the maximum length permitted, then proceed 
to step (3); otherwise, proceed to (4); 
 
(3) For  1k k= + , if  k n> , then proceed to step (5); 
(4) For 1 0d = , add the nearest charging pile into the path, 
and repeat step (3); 
(5) Output the result. 
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3.2.5 Parameter setting and algorithm termination 
conditions 
The HCGA parameters mainly include the climbing times, 
population size, termination algebra, and probability of 
different genetic operations. The population size, number of 
iterations, and times of hill climbing depend on the actual 
situation. The range of crossover probability is generally 
between 0.4 and 0.99, and the range of mutation probability 
is generally between 0.0001 and 0.1. The condition for the 
termination of the algorithm is that when the iteration 
number reaches the maximum, the algorithm is terminated 
and the optimal route is obtained. 
 
 
4 Result Analysis and Discussion  
 
4.1 Case introduction  
Company A is responsible for urban distribution in a certain 
area of the city. The goods are delivered to the distribution 
center by the upstream distributor and then delivered to each 
supermarket. The company plans to use the EVs for urban 
distribution, and the vehicle costs 250,000 RMB. 
Considering the subsidies for the EVs, the company can 
acquire 50,000 RMB from the Chinese government and 
25,000 RMB from the local government. If the subsidies are 
considered, on the basis of the service period of EVs, the 

fixed transport cost 1 42 /A RMB vehicle time= ⋅ , and the 
variable cost per vehicle 2 0.60 /A RMB km= . The average 
driving speed is 50 km/h, and the electricity consumption 

0.5 /kw h km⋅=l .The electricity price 3 0.82 /A RMB kw h= ⋅ . 
The electric energy conversion coefficient 0.94λ = . The 
proportion of thermal power generation 0.72γ = . The 
environmental cost caused by carbon emission 

4 0.315 /B RMB kg= . The loading capacity of the EVs is 1.6 
t. The mileage per charge 800P km= , and the maximum 
driving mileage 180maxP km= . Then, small- and large-scale 
numerical examples are used to solve the model. 
 
4.2 Small-scale numerical example  
The coordinate of the distribution center is (30, 30). The 
customer coordinates can be obtained on the basis of the 
actual position of each customer, as shown in Table 1.  

Fast charging is adopted to minimize charging time. 
Table 2 shows the location of the fast charging piles within 
the distribution area. The experiments on the two kinds of 
benchmark networks have demonstrated the effectiveness of 
the proposed PSO-net algorithm for network clustering. In 
the next step, we test the algorithms on some real-world 
networks. 

 
Table 1. Customer coordinates and demand 

 

Custome-rdepot 1 2 3 4 5 6 7 8 9 10 
x 7.5 12 15 25.5 3 55.5 57 30 30 21 
y 36 4.5 15 22.5 49.5 1.5 3 10.5 39 45 
Demand 0.4 0.2 0.2 0.4 0.4 0.2 0.4 0.2 0.2 0.2 
Custome-rdepot 11 12 13 14 15 16 17 18 19 20 
x 55.5 22.5 7.5 48 24 15 25.5 6 9 30 
y 39 28.5 33 18 45 12 42 12 22.5 15 
Demand 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.2 0.4 0.2 
 
 
Table 2. Charging pile coordinates 
Charging piles C1 C2 C3 C4 C5 
X 36 18 16.5 42 25.5 
Y 48 52.5 7.5 21 37.5 

 
MATLAB (R2016a) is used to find the solution for the 

optimization model. In the designed algorithm, the 
population size is set to 100, the maximum evolutionary 
algebra to 500, the crossover probability to 0.7, the mutation 

probability to 0.09, and the climbing times to 20. The 
solution is randomly determined 10 times, and Table 3 
presents the results (in two decimal places).

 
Table 3. Results of small-scale numerical examples by the HCGA 
 1 2 3 4 5 6 7 8 9 10 
Cost (RMB) 581.39 590.25 567.58 566.32 580.63 616.03 553.82 570.38 576.42 593.10 
Iterations of the 
optimized solution 
(times) 

155 454 458 317 477 184 450 307 299 419 

Running time (s) 56.12 56.71 55.90 55.93 55.68 56.07 56.50 54.90 56.21 55.25 
 
Table 3 shows that the feasible solutions are obtained 

within these 10 solutions by the HCGA. The average total 
cost is 579.60 RMB, and the average running time is 55.93 s. 
The seventh solution has the highest quality with a total cost 
of 553.82 RMB. Table 4 shows the detailed distribution 
scheme. 

To compare the quality of solutions, SGA is used to 
solve the model randomly for 10 times, with a maximum 
number of 500 iterations, a population size of 100, a 

crossover probability of 0.7, and a mutation probability of 
0.05. Table 5 presents the results.  

The SGA also obtains feasible solutions, with an average 
total cost of 709.35 RMB, which is 18.2% more than that by 
the HCGA. The running time is 12.36 s. The seventh 
solution has the highest quality, and the total distribution 
cost is 673.59 RMB. 

Figure 2 shows the optimization process for solving the 
small-scale example by using the SGA and HCGA
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Table 4. Optimization scheme for the urban distribution of EVs (small scale)
Route Distance (km) Cost (RMB) 
0→3→19→16→18→2→C3→20→0 97.3677 150.7204 
0→8→6→7→14→C4→11→0 122.4056 178.6777 
0→4→12→15→17→9→0 49.7851 97.5898 
0→13→1→5→10→0 75.9762 126.8347 

 
Table 5. Results of small-scale examples solved by the SGA 
No. 1 2 3 4 5 6 7 8 9 10 
Cost (RMB) 681.86 717.52 710.44 724.36 707.80 673.59 726.15 691.96 737.82 721.90 
Iterations of the 
optimal solution 
(times) 

331 299 348 90 450 453 324 393 48 311 

Running time (s) 12.67 12.61 11.98 12.45 12.08 11.86 12.29 12.94 12.17 12.53 
 

As shown as Figure 2, in the entire evolution process, 
except for a few search stages, the quality of solutions of the 
SGA is lower than that of the HCGA, and its convergence 
speed is not as fast as the latter. Under the same search times, 
the optimization and convergence of the SGA are less 
efficient than that of the HCGA. 

 

4.3 Large-scale numerical example  
To verify the generality of the algorithm further, 30 
customers are added into the small-scale example. EVs are 
assumed to charge only once during the distribution. 
Therefore, considering the increase in distance between 
customers, the other type of EVs is used with a rated loading 
capacity of 2.0 t. The mileage per charge is 120 km, and the 
maximum driving mileage is 220 km. Table 6 presents the 
customer information. 

Fig. 2. Process for solving the small-scale example 
 
Table 6. New customer coordinates and demand 

 
 
 

Customer depot 21 22 23 24 25 26 27 28 29 30 
x 15 12 15 42 25.5 55.5 51 37.5 42 28.5 
y 36 22.5 30 22.5 54 42 31.5 16.5 24 52.5 
Demand 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.2 0.2 
 
Table 6. New customer coordinates and demand (continued) 
Customer  depot 31 32 33 34 35 36 37 38 39 40 
x 25.5 24 22.5 43.5 27 13.5 52.5 34.5 22.5 12 
y 34.5 43.5 48 9 34.5 12 16.5 15 55.5 13.5 
Demand 0.2 0.4 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0.2 
 
Table 6. New customer coordinates and demand (continued) 
Customer depot 41 42 43 44 45 46 47 48 49 50 
x 42 51 34.5 3 45 9 19.5 37.5 43.5 34.5 
y 39 6 12 25.5 30 43.5 28.5 37.5 4.5 21 
Demand 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.2 0.2 
 
Table 7. Charging pile coordinates 
Charging piles C1 C2 C3 C4 C5 C6 C7 C8 C9 
x 36 18 16.5 42 25.5 51 40.5 22.5 45 
y 48 52.5 7.5 21 37.5 37.5 19.5 42 15 
 

Similarly, we design HCGA in MATLAB (R2016a) to 
solve the model. The population size is set to 100, the 
maximum evolutionary algebra is 500, the crossover 
probability is 0.7, the mutation probability is 0.09, and the 

climbing times are 20. A total of 10 solutions are randomly 
performed, and Table 8 presents the results (in one decimal 
place). 

 
Table 8. Results of large-scale examples by the HCGA 

 

No. 1 2 3 4 5 6 7 8 9 10 
Cost (RMB) 1675.6 1668.3 1693.2 1673.1 1659.2 1664.7 1697.5 1604.1 1701.9 1670.3 
Iterations of the 
optimal solution 
(times) 

362 179 249 494 391 168 390 420 242 405 

Running time (s) 113.0 112.1 113.5 111.8 111.5 112.7 113.6 113.8 112.4 113.1 
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Table 8 shows that feasible solutions are obtained within 
the 10 solutions by the HCGA. The average total cost is 
1670.8 RMB, and the average running time is 112.75 s. The 

eighth solution has the highest quality, and the total 
distribution cost is 1604.1 RMB. Table 9 displays the 
detailed scheme. 

 
Table 9. Optimization scheme for the urban distribution of EVs (large scale)
Route Distance (km) Cost (RMB) 
0→27→2→22→15→33→C5→29→45→43→0 193.6818 258.2643 
0→12→9→3→16→36→18→34→C8→0 151.7400 211.4322 
0→7→48→11→26→C6→24→31→40→0 192.5179 256.9647 
0→35→20→4→38→28→30→0 108.6115 163.2752 
0→8→50→10→39→41→C7→42→6→0 175.8775 238.3841 
0→1→19→49→14→37→C4→47→0 140.5043 198.8859 
0→17→32→13→44→23→0 71.0574 121.3424 
0→21→5→25→46→0 101.6861 155.5422 
 

To compare the quality of solutions, the SGA is used to 
solve the model randomly for 10 times, with a maximum 
number of 500 iterations, a total group size of 100, a 

crossover probability of 0.7, and a mutation probability of 
0.05. Table 10 presents the results. 

 
 

Table 10. Results of large-scale examples solved by SGA 
Times 1 2 3 4 5 6 7 8 9 10 
Cost (RMB) 1749.1 1771.5 1754.7 1781.1 1775.2 1801.7 1746.4 1751.1 1792.5 1810.7 
Iterations of the 
optimal solution 
(times) 

354 298 143 93 272 242 425 361 186 293 

Running time (s) 39.7 39.5 40.1 39.8 39.5 39.8 39.7 39.3 39.5 40.0 
 

As shown in Table 10, the SGA also obtains feasible 
solutions with an average value of 1773.4 RMB, which is 
6% more than that by the HCGA. The running time is 
approximately 39 s, which is approximately 1/3 of the time 
of the HCGA. The seventh solution has the highest quality, 
and its total distribution cost is 1746.4 RMB.  

Similarly, Figure 3 exhibits the optimization process for 
solving the large-scale example by using the SGA and 
HCGA.  

 

 
Fig. 3. Process for solving the large-scale example 
 

The optimization and convergence capability of the SGA 
are inferior to those of the HCGA. With the iterations, the 
solution quality of the two algorithms improves 
continuously, but the corresponding running time also 
increases. Through the comparative analysis, the following 
characteristics of the HCGA are summarized as follows:  

 
1) Both algorithms can obtain feasible solutions, and the 

quality of solutions increases with the number of iterations. 
However, in view of the quality of feasible solutions and the 
optimized solution, the HCGA is better than the SGA, which 
reflects that the HCGA has better optimization performance. 

2) In the entire iteration process, except for a few stages, 
the solution quality of the HCGA is better than that of the 
SGA. Only a few iterations are required to obtain high-
quality solutions, which reflects that the HCGA has better 
convergence capability than the SGA. 

3) As the process of the HCGA is more complex than 
that of the SGA, additional running time is required for the 

HCGA under the same computer condition (CPU, i5-5200u; 
memory, 4 GB). However, with the improvement of 
computer performance, the speed of HCGA will also 
improve. 
 
 
5 Conclusions  
 
An optimization method is investigated to improve the 
economical efficiency of the urban distribution of EVs and 
ensure the practicability of the scheduling scheme. When 
establishing the model, carbon cost is added to the 
optimization objective, and realistic factors, such as the 
distribution of public charging piles and the mileage per 
charge of EVs, are considered. Then, an improved GA is 
designed to solve the model. The conclusions are as follows: 
 

1) The energy consumption of EVs is converted to 
carbon cost and considered in the objective function. When 
designing the constraints, the loading capacity, mileage per 
charge, and distribution of public charging piles are 
considered simultaneously, so that the model will reflect the 
actual distribution scenario and to ensure that the 
distribution optimization scheme is close to reality. 

2) By solving small- and large-scale numerical examples, 
the quality of optimized solution obtained by the HCGA is 
found to be higher than that by the SGA, which proves that 
the HCGA has a better performance. Given the complexity 
of the HCGA, its computing time is long, but with the 
improvement of computer performance, its computing time 
is within acceptable range. An efficient and reliable 
algorithm guarantees the accuracy of the optimized solution 
and helps achieve an efficient scheduling scheme. 

 
This study considers the practical constraints of the 

mileage per charge of EVs and insufficient distribution of 
public charging piles, which have a certain reference value 
for the practical operation of logistics enterprises. However, 
in practical logistics distribution, many types of VRPs exist. 
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In the future, we will further examine the complex 
distribution routing problems of EVs, such as time window 
constraints, simultaneous pick-up and delivery, and transfer 
of goods between customers. This study focuses on the static 
VRP, which can be extended to dynamic VRP in the future.  
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