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Abstract 
 

Gearboxes are the most commonly used transmission components in heavy equipment such as helicopters, shearers, and 
ships. The failure rate of gearboxes is high, and the characteristic signals under faulty conditions tend to be extremely 
weak and are often overwhelmed by strong noise. Thus, extracting sensitive characteristic parameters is difficult. In order    
to optimize the characteristic parameters of gearboxes and improve diagnosis efficiency, this study proposed a method for 
fault diagnosis of gearboxes that combines empirical mode decomposition (EMD) with rough sets and neural networks. 
First, the principle of EMD was explored. The indicators for measuring characteristic parameters were identified to 
compare the feature set composed of energy values with those comprising approximate entropy parameters. Second, the 
conditional attribute reduction technique for rough sets was investigated. An algorithm for attribute reduction based on 
conditional equivalence classification was put forward for parameter optimization. Then, a neural network was employed 
to identify the feature sets before and after the attribute reduction. Results show that the energy characteristic set is the 
most sensitive to failures. The attribute reduction technique reduces the characteristic parameters from 6 to 4, thereby 
effectively lowering the input vectors of the neural network. The training time is also decreased from 1.024 s to 0.351 s, 
obviously promoting the efficiency of fault diagnosis. The study provides references for improving the performance of 
online real-time fault diagnosis. 
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1. Introduction 
 
Gearboxes are the most important transmission components 
of heavy equipment, and they play an important role in 
transmitting torque and adjusting speed. Failures during the 
operation of heavy equipment are inevitable due to excessive 
loads or poor working environments. The characteristic 
signals under faulty conditions are extremely weak, and they 
are often overwhelmed by strong noise. Moreover, the 
signal-to-noise ratio is considerably low, and the degree, 
location, and type of faults exert a great influence on 
characteristic parameters. Therefore, extracting sensitive 
parameters and realizing online real-time fault diagnosis is 
difficult [1-2]. 

At present, the methods for extracting characteristic 
parameters include the time domain averaging method, 
cepstral analysis, refinement spectrum analysis, high-order 
cepstrum, envelope demodulation, etc., most of which are 
based on Fourier transform and are only applicable to the 
processing of stationary signals. Meanwhile, the vibration 
signals of gearboxes are non-stationary. The techniques to 
deal with non-stationary signals include short-time Fourier 
transform, Winger–Ville distribution, wavelet transform, etc. 
However, short-time Fourier transform could not guarantee 
the resolution in the time and frequency domains at the same 
time [3]. In Wigner–Ville distribution, cross-interference 
terms are apparent between components [4]. Moreover, 
wavelet transform is most suitable for processing with low-

frequency components [5]. By contrast, empirical mode 
decomposition (EMD) could display a full view of signals in 
the time and frequency domains simultaneously, especially 
during treatment of non-stationary and nonlinear signals [6-
10]. Rough sets are a kind of mathematical tool to describe 
the incompleteness and uncertainty of data. This tool could 
effectively analyze and deal with incomplete information, 
discover hidden knowledge, and reveal potential laws [11]. 
The attribute reduction technique in rough sets can optimize 
characteristic parameters under faulty conditions. If 
combined with neural networks and rough sets, the method 
can promote the efficiency of fault diagnosis and lay a 
foundation for enhancing the performance of online real-
time fault diagnosis. 

 
 

2. State of the art 
 
Scholars all over the world have extensively studied EMD 
and applied it to various fields, such as medicine, machinery, 
and geography. Rubén applied EMD to process and analyze 
physiological characteristic signals, which are beneficial for 
the pathological study of diseases [6]. EMD was also used to 
decompose seismic waves to obtain the intrinsic information 
of signals [7], which provided technical support for 
effectively identifying earthquake levels. Improved EMD 
algorithms have been developed and applied to fault 
diagnosis [8-9]. Tabrizi studied the problems of endpoint 
effects and false components and improved EMD in wind 
speed prediction [10]. These existing studies mainly focused 
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on the application of EMD, particularly its improvement, 
and could only slow down problems such as endpoint effects, 
false components, and modal aliasing according to signal 
characteristics. Solving these problems completely is 
impossible, and the related research on the faulty signals of 
gearboxes is rare. In line with the particularity and 
complexity of signals, a method combining window 
functions with mirror extension is utilized in the current 
study to relieve endpoint effects. Ensemble EMD is also 
used to prevent modal aliasing and ultimately obtain initial 
characteristic parameters accurately. 

Conditional attribute reduction is the most critical 
technique in rough sets [11-12]. Minimal attribute reduction 
sets have been obtained by using attribute frequency in a 
difference matrix as heuristic information [13]. The 
information entropy of attributes has been employed as 
heuristic information to optimize feature sets [14-15]. To 
find attribute reduction sets quickly and efficiently, studies 
have applied the ant colony algorithm to attribute reduction 
[16], and some have combined particle swarm optimization 
and attribute reduction [17]. The genetic algorithm has been 
utilized to reduce the number of parameters and thereby 
obtain good results [18]. Although group-intelligent 
optimization algorithms could quickly obtain the attribute 
reduction sets of a decision table, they cannot ensure that the 
reduction sets are minimal. The present study proposes an 
attribute reduction algorithm that is based on conditional 
equivalence classification. The proposed method avoids the 
calculation of heuristic information and the problem of 
group-intelligent optimization algorithms falling into the 
local optimal solution while ensuring that all attribute 
reduction sets are minimal. 

The remainder of this study is organized as follows. 
Section 3 presents the principle and improvement of EMD, 
rough sets, and neural networks. Section 4 describes the 
extraction of the characteristic parameters of a gearbox 
under faulty conditions. In this section, the feature set is 
optimized by an attribute reduction technique in rough sets, 
and a neural network is employed to identify fault patterns. 
A method for gearbox fault diagnosis that combines EMD 
with rough sets and neural networks is constructed and 
verified. Section 5 discusses the conclusions. 
 
 
3. Methodology 

 
3.1 EMD 
EMD is a method that decomposes signals on a time scale 
into a number of finite intrinsic mode functions (IMFs). 
Each IMF represents one kind of vibration mode and 
describes the local characteristics of the original signals fully. 
During decomposition, problems such as endpoint effects, 
modal aliasing, and false components are inevitable. In this 
work, the method is raised to mirror the two ends of a signal 
first, and then a window function is added to the signal to 
ensure that the signal is not distorted. Finally, the extension 
part is cut off so as to avoid the endpoint effect. In addition, 
a random white noise sequence with finite amplitude is 
added to the original data every time before EMD. The 
sequences should be uncorrelated, the mean should be zero, 
and the variance should be equal. EMD is performed on the 
composite signal. Then, different white noise sequences are 
utilized each time, and complex signals are decomposed at 
least 100 times. Ultimately, the mean is used as the final 
decomposition result, and thus, modal aliasing is avoided. 
False IMF components may appear during EMD, and their 

elimination has been studied previously [9-10]; however, 
now work has been able to completely remove them. 
Theoretically, false components are independent of the 
original signal, and therefore, the effective components are 
obtained by calculating the correlation coefficients. To 
obtain a valid IMF component, the current work sets the 
threshold to 0.06; that is, components with correlation 
coefficients greater than 0.06 are selected, and the others are 
removed.  
 
 3.1.1 Extraction technology of feature sets based on 
EMD 
When a gearbox fails, the energy of each IMF changes, and 
the energy distribution of all IMFs can help distinguish the 
different kinds of fault types. Therefore, energy values can 
be extracted as a characteristic parameter set [19]. 

In 1991, Steven M. Pincus proposed the use of 
approximate entropy to measure the complexity of time 
series. In the current work, this technique is applied mainly 
to measure the probability of generating new patterns in 
vibration signals. A complex signal coincides with a large 
approximate entropy value [20], and thus, approximate 
entropy parameters are also constructed as a feature set. 

Suppose that    {u(i), i = 1,2,!, N}  is the original data 
sequence, which contains N  numbers. Assuming that the 
dimension is m  and the similar capacity is r , the 
approximate entropy can be obtained by the following 
formula: 

 

  Ap

En (m,r , N ) = Φm (r ) −Φm+1 (r )               (1)  
 
 Equation (1) shows that the approximate entropy value 

En

p
A  is related to the values of N , m , and r ; therefore, the 

appropriate parameters must be selected. N  should be in the 
range of 100–5000 to ensure effective statistical 
characteristics and small errors. For the dimension, 2m =  is 
usually applied. The statistical characteristics are deemed 
reasonable when r  is located between 0.1

D
S  and 0.25

D
S , 

where 
D
S  is the standard deviation of the original signal. 

 
3.1.2 Indicators for measuring characteristic parameters 
Different characteristic parameters can be obtained by 
different methods. However, measuring characteristic 
parameters is difficult in the field of fault diagnosis. 
Characteristic parameters should satisfy two conditions: 
stability, that is, the values of each sample should be as close 
as possible under the same working condition; sensitivity, 
that is, the difference between the parameters of the samples 
under different working conditions should be large. The 
qualitative description of the characteristic parameters of 
faults has been provided previously. Diagnostic accuracy is 
the only indicator used to judge characteristic parameters. A 
quantitative method to gauge feature sets is proposed in this 
work. Two quantitative indicators are root mean square 
(RMS) and mean. RMS is also statistically called the 
standard deviation used to measure the degree of 
fluctuations of samples. A small RMS is indicative of good 
stability. The mean is used to survey the average degree of 
samples; a great difference between the mean values of 
samples under different working conditions indicates good 
sensitivity. Suppose that in a certain working condition, p  
delegates the number of samples  (i = 1 : p) , q  represents the 
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number of characteristic parameters in a sample   ( j = 1 : q) , 

jT  is the mean of the jth characteristic parameter in all 

samples, and 
ijH  indicates the jth parameter of the ith 

sample. RMS is expressed as: 
 

  
RMS = ∑

j=1

q

Hij −Tj( )
i=1

p

∑ p q             (2)  

 
3.2 Rough sets 
Rough sets are usually applied to analyze uncertainty, and 
they have been widely used in data mining, decision analysis, 
and other fields. The attribute reduction technology can 
particularly delete redundant components and simplify 
spatial dimensions so as to optimize characteristic 
parameters. ( ), , ,q qS U V f= Ω consists of U , a non-empty 

finite set called the universe; and Ω , a non-empty finite set 
of attributes, with C DΩ = U , where C  is a condition 
attribute set and D  is a decision attribute set. For each 
q∈Ω , qV  is called the domain of q , and qf  is an 
information function : qqf U V→ . The related concepts are 
as follows [11]: 
Definition 1: If ( ), , ,q qS U V f= Ω  is a decision table, 

B⊆Ω and X U⊆ , then the B-lower and B-upper 
approximation of X are defined respectively as follows: 
                         

{ }BX Y U BY X= ∈ ⊆U .                                 (3) 

                              

{ }BX Y U B Y X φ= ∈ ≠U I .                        (4) 

                                                    
Definition 2: If  C ⊆Ω and D⊆Ω ,  POS

C
D( )  is a C  positive 

region of D : 
 

( )
X U D

CPOS D CX
∈

= U
.                          (5) 

                                                                                   
Definition 3: If S C⊆ , only when S  is D  independent 
subset of C , and ( ) ( )

S C
D DPOS POS= , S  is D  reduction of 

C . The intersection of all reduction sets is the nuclear 
feature set. 
 
3.2.1 Conditional attribute discretization 
Rough set theory can only deal with discretized data. 
Discretization methods commonly include equidistant 
division, equal frequency division, naive scaler algorithm, 
semi naive scaler algorithm, etc. On the basis of the study of 
various discretization algorithms, an improved naive scaler 
algorithm is employed in the current work [19], and good 
results are obtained. 
 
3.2.2 Attribute reduction algorithm based on conditional 
equivalence classification 
At present, the heuristic reduction algorithm proposed by 
Pawlak. Z et al. [11] is popular. Two kinds of common 
heuristic information are dependency degree and 
information entropy of attributes. Minimal reduction sets 
may not always be available. According to the analysis of 
various algorithms, an attribute reduction algorithm based on 
conditional equivalence classification is proposed. This 

algorithm avoids the calculation of heuristic information and 
the problem in which group-intelligent optimization 
algorithms fall into the local optimal solution. It also 
completely solves the attribute reduction sets from the 
perspective of classification ability, and it can find all the 
minimal reduction sets of a decision table. 

  S = U ,C , D  is the decision table,    U = x
1
, x

2
,!, x

N{ }  

is the domain with N  samples, C  is the conditional 
attribute set, D  is the decision set, and ( )iD x  is the value 

of the decision attribute of sample ix . The calculation 
process of the reduction algorithm based on the conditional 
equivalence classification is as follows. Algorithm 1 is used 
to calculate the kernel attributes. Algorithm 2 is utilized to 
obtain the minimal reduction set. 
Algorithm 1: 
Step 1) Define the kernel attribute set as an empty set 
CORE =∅ , and compute ( )CPOS D of the decision table. 
Step 2) Remove any attribute iC  from C  to obtain a new 
condition attribute set Cʹ , and calculate ( )CPOS D . If 

( ) ( )C CPOS D POS Dʹ = , proceed to (2) directly. If 

( ) ( )C CPOS D POS Dʹ ≠ , iCORE CORE C= + , and then 
proceed to (2). 
Step 3) Output CORE . 
Algorithm 2: 
Step 1) Calculate the kernel attribute set CORE  according 
to Algorithm 1. 
Step 2) Compute the conditional equivalence classifications 
U CORE  and decision classifications U D . Find the 
conditional equivalence classifications that cannot be 
accurately classified into the decision classifications 
{ } { },, , ,a c eb dx x x x x … 

Step 3) Assume D C CORE= − , and find the conditional 
attribute sets ,E F , which can differentiate the samples in 

   
xa,xb{ }, xc,xd ,xe{ }! . Suppose   P = E∩ F , and choose an 

element hC  from P  so that the reduction set is 

min hC CORE C= U . If P φ= , then choose any element 

,i jC C  from ,E F  respectively so that the reduction set is 

min i jC CORE C C= UU . 
The method directly targets the condition classifications 

of core attributes that cannot be correctly classified into 
decision classifications by the kernel attribute set. It also 
finds the attributes that can distinguish unclassified 
condition classifications and finally constructs the minimal 
reduction set. This method can quickly find all the minimal 
reduction sets of a decision table, thereby reducing the 
calculation time and improving the efficiency of reduction. 
 
3.3 Neural networks 
The artificial neural network is a nonlinear dynamic system 
with strong parallel processing ability; approximation ability 
for nonlinear mapping; and self-organization, self-learning, 
and associative memory. Therefore, it is usually used to 
recognize failure modes in the field of fault diagnosis. Back 
propagation (BP) neural network is trained with the 
algorithm of back propagation of errors, and it is the most 
widely applied [21]. A BP neural network usually has three 
layers: an input layer, a hidden layer, and an output layer. 
Neurons in the same layer have no connections, and neurons 
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in different layers are connected by weights. Generally, a 
neural network can have only one input or output layer and 
multiple hidden layers. However, any nonlinear function can 
be approximated using an implicit layer. In this work, a BP 
neural network with three layers is adopted to pattern 
identification. 
 
 
4. Analysis and Discussion 
 
4.1 Signal acquisition and preprocessing 
Signal acquisition is the most important step in fault 
diagnosis. The test apparatus of gearboxes is mainly 
composed of a motor, coupling, a gearbox, and a magnetic 
powder brake (Fig. 1). A gearbox consists of an input shaft, 
an intermediate shaft, an output shaft, three pairs of rolling 
bearings, two pairs of gears, and a case (Fig. 2). In the 
experiment, the rated speed is 1200 r/min, the load is 300 
Nm, and the sampling frequency is 4000 Hz. According to 
the failure rates of the parts in the gearbox, five kinds of 
work conditions are set: tooth fracture, crack in the outer 
ring of the bearing, pitting in the inner ring of the bearing, 
tooth fracture and crack in the outer ring, and tooth fracture 
and pitting in the inner ring. One tooth of the driven gear on 
the intermediate shaft is broken. At the same time, the crack 
in the outer ring and the pitting in the inner ring are arranged 
on the rolling bearing of the intermediate shaft close to the 
magnetic powder brake. According to fault types, the 
measuring point V is selected for signal collection. The 
signals are analyzed in the time and frequency domains, as 
demonstrated in Fig. 3. 
 

 
Fig.1. Test apparatus for fault diagnosis 
 

 
Fig. 2. Simplified diagram of a gearbox 
 
4.2 Characteristic parameters 
The signals in the time domain are processed by EMD 
according to the principle in Section 3.1. The first six 
components are selected to calculate the characteristic 
parameters. Table 1 shows the feature set composed of 
energy values based on EMD. Table 2 presents the set made 
up of the approximate entropy parameters based on EMD. 

Five samples are taken for each work condition, and thus, 
the total number of samples is 30. , , , , ,a b c d e f  represent 
the characteristic parameters of each IMF component, and 
1,2,3,4,5,6  correspond to the six work conditions, namely, 
normal state, tooth fracture, crack in the outer ring of the 
bearing, pitting in the inner ring of the bearing, tooth 
fracture and crack in the outer ring, and tooth fracture and 
pitting in the inner ring. 

 
(a) Normal state 

 
(b) Tooth fracture 

 
(c)  Crack in the outer ring of the bearing 

 
(d)  Pitting in the inner ring of the bearing 
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(e) Tooth fracture and crack in the outer ring 

 

 
 

(f) Tooth fracture and pitting in the inner ring 
 

Fig. 3. Vibration signals in time and frequency domains 
 

 
Table 1. Feature set composed of energy values  

U a b c d e f D 
x1 0.8645 0.3926 0.1926 0.1902 0.1524 0.0446 1 
x2 0.8372 0.3903 0.2182 0.2635 0.1691 0.0330 1 
x3 0.8578 0.3683 0.1946 0.2466 0.1703 0.0309 1 
x4 0.8768 0.3518 0.1885 0.2397 0.1162 0.0305 1 
x5 0.8522 0.3935 0.1995 0.2394 0.1440 0.0322 1 
x6 0.9140 0.3088 0.2080 0.1334 0.0824 0.0383 2 
x7 0.9111 0.3063 0.2161 0.1510 0.0793 0.0183 2 
x8 0.9193 0.2848 0.2182 0.1360 0.0792 0.0369 2 
x9 0.9141 0.2997 0.2246 0.1341 0.0732 0.0300 2 
x10 0.8913 0.3176 0.2596 0.1709 0.0863 0.0244 2 
x11 0.8851 0.4151 0.1780 0.0840 0.0724 0.0194 3 
x12 0.8655 0.4556 0.1595 0.1153 0.0590 0.0331 3 
x13 0.9110 0.3739 0.1489 0.0730 0.0507 0.0134 3 
x14 0.8791 0.4365 0.1519 0.0970 0.0597 0.0237 3 
x15 0.9121 0.3657 0.1493 0.0945 0.0519 0.0191 3 
x16 0.9475 0.2884 0.0919 0.0951 0.0370 0.0145 4 
x17 0.9297 0.3345 0.1156 0.0881 0.0495 0.0130 4 
x18 0.9221 0.3575 0.1040 0.0998 0.0318 0.0128 4 
x19 0.9253 0.3369 0.1330 0.0948 0.0571 0.0217 4 
x20 0.9345 0.3222 0.1143 0.0875 0.0408 0.0231 4 
x21 0.9247 0.3331 0.1267 0.1245 0.0457 0.0164 5 
x22 0.9391 0.3022 0.1394 0.0762 0.0360 0.0116 5 
x23 0.9420 0.2895 0.1332 0.0933 0.0480 0.0097 5 
x24 0.9089 0.3651 0.1590 0.1133 0.0492 0.0072 5 
x25 0.9164 0.3582 0.1386 0.1031 0.0434 0.0112 5 
x26 0.8517 0.4268 0.2028 0.1882 0.1177 0.0457 6 
x27 0.8516 0.4407 0.1992 0.1710 0.0967 0.0477 6 
x28 0.8612 0.4416 0.1951 0.1333 0.0803 0.0327 6 
x29 0.8894 0.3706 0.2067 0.1396 0.0924 0.0283 6 
x30 0.8788 0.3942 0.1765 0.1573 0.1195 0.0456 6 

 
According to the method in Section 3.1.3, the RMS of 

each work condition is computed. The RMS values  of the 
set in Table 1 are 0.0149, 0.0108, 0.0154, 0.0106, 0.0129, 
and 0.0161. The RMS values of the set in Table 2 are 0.0160, 
0.0268, 0.0186, 0.0204, 0.0246, and 0.0203. The RMS 
values of the former are smaller than those of the latter and 
thus indicate better stability. Similarly, the mean value of 
each set is calculated separately, and the difference of the 
means between two operating conditions is obtained. Finally, 
the minimal value is taken as an indicator of sensitivity. For 
the six work conditions, the values of the first set are 0.0056, 
0.0017, 0.0026, 0.0003, 0.0013, and 0.0046; and the 
corresponding values of the second set are 0.0007, 0.0016, 
0.0059, 0.0037, 0.0009, and 0.0065. The sensitivities of the 

two sets are basically the same. Therefore, the energy 
characteristic parameter set is the most suitable for gearbox 
fault diagnosis. Table 1 is used as basis to recognize faulty 
modes.   
 
4.3 Characteristic parameter optimization based on 
attribute reduction  
According to rough set theory (Section 3.2), the 
characteristic parameters in Table 1 are discretized, and the 
feature set is reduced with the algorithm based on 
conditional equivalence classifications. The kernel attribute 
set is  , The minimal reduction sets are  , . To verify the 
correctness of the reduction method, this study calculates the 
positive domains of the set before and after the reduction 
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according to Equation (5). The results show that the positive 
domains are exactly the same, and thus, the method 
proposed in this study is effective and feasible. 
 
4.4 Fault pattern recognition based on neural network 
The neural network theory described in Section 3.3 is 
adopted for pattern recognition. Table 1 shows five samples 
for each condition; the first four samples are the training 
samples and, the fifth sample is the test sample. The 

structure of the BP neural network used to recognize the set 
before reduction is 6-12-6, and that after reduction is 4-8-6. 
The curves of the training error before reduction are shown 
in Fig. 4. The curves of 

min 1
C  and 

min 2
C  are shown in Figs. 5 

and 6, respectively. Table 3 presents the test results of the 
neural network. 

1 2 3 4 5 6
, , , , ,X X X X X X  represent the actual 

output.

 
Table 2. Feature set composed of approximate-entropy parameters  

U a b c d e f D  
x1 1.5721 1.3253 0.9758 0.6435 0.6277 0.5192 1 
x2 1.5405 1.3357 0.9710 0.6714 0.6246 0.5166 1 
x3 1.5742 1.2881 0.9783 0.6843 0.6295 0.5060 1 
x4 1.6127 1.2955 1.0183 0.6554 0.6125 0.5186 1 
x5 1.5883 1.3315 0.9355 0.6765 0.6299 0.5086 1 
x6 1.5486 1.3591 1.1657 0.8021 0.6093 0.5476 2 
x7 1.5693 1.3616 1.0315 0.7001 0.5948 0.4819 2 
x8 1.5986 1.3374 1.0609 0.7280 0.6024 0.5730 2 
x9 1.6015 1.3393 1.0133 0.6987 0.5980 0.5269 2 
x10 1.5614 1.3553 1.1233 0.7200 0.6011 0.5242 2 
x11 1.5935 1.4872 1.0182 0.6825 0.6303 0.5532 3 
x12 1.5785 1.4751 1.0553 0.7132 0.6557 0.5914 3 
x13 1.5999 1.4704 1.0122 0.6731 0.6236 0.5267 3 
x14 1.6205 1.4406 1.0078 0.7347 0.6286 0.5646 3 
x15 1.6097 1.4386 0.9976 0.6868 0.6200 0.5335 3 
x16 1.5111 1.4861 1.0647 0.7576 0.5735 0.5001 4 
x17 1.5078 1.5004 1.1065 0.7531 0.6117 0.4800 4 
x18 1.4382 1.5158 1.0879 0.7791 0.6140 0.5178 4 
x19 1.4821 1.4652 1.1032 0.7686 0.6147 0.5377 4 
x20 1.4204 1.5160 1.0619 0.7785 0.5805 0.5010 4 
x21 1.5564 1.4328 1.0535 0.7375 0.6037 0.5403 5 
x22 1.5776 1.4216 1.0200 0.6918 0.5926 0.4923 5 
x23 1.6002 1.4197 0.9912 0.7342 0.6029 0.4978 5 
x24 1.5873 1.4615 1.1305 0.7267 0.5980 0.4188 5 
x25 1.5628 1.4685 1.0650 0.6919 0.5929 0.4978 5 
x26 1.5719 1.4073 0.9840 0.7132 0.6362 0.5683 6 
x27 1.5984 1.3972 1.0033 0.7079 0.6141 0.5902 6 
x28 1.5996 1.3873 1.0105 0.7024 0.6378 0.5419 6 
x29 1.6256 1.3921 0.9824 0.6781 0.6245 0.5557 6 
x30 1.6395 1.3796 1.0814 0.7617 0.6271 0.5765 6 

 
4.5 Discussion 
 
The BP neural network is applied to recognize fault patterns. 
The results show that the accuracies of the three sets can 
reach 100%. However, Fig. 4 indicates that the training 
accuracy is 0.000301, the training frequency is 69 times, and 
the training time is 1.024 s. Moreover, the precision of 

min 1
C  

is 0.000224, the frequency is 16 times, and the time is 0.476 
s. Meanwhile, the accuracy of 

min 2
C  is 0.000248, the 

frequency is 13 times, and the time is 0.351 s. The training 
precision of the sets after reduction is smaller than that 
before reduction, and 

min 2
C  has the lowest training frequency 

and shortest time. 
The simulation results of the BP neural network 

highlight the feasibility of the method for fault diagnosis of 
gearboxes that combines EMD with rough sets and neural 
networks. In guaranteeing the effects of online real-time 
diagnosis, the number of characteristic parameters should 
not be excessive. The algorithm for attribute reduction based 
on conditional equivalence classifications reduces the 
characteristic parameters from 6 to 4 and promotes the 

efficiency of fault diagnosis, thereby benefitting online real-
time diagnosis. 

 

 
Fig. 4. Training error of C 
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Table 3. Testing results of neural network 
Set Condition 1X  2X  3X  4X  5X  6X  

C  

Normal state 0.9967 0.0098 0.0053 0.0028 0.0178 0.0238 
Tooth fracture 0.0124 0.9876 0.0045 0.0031 0.0249 0.0421 

Crack in the outer ring of the bearing 0.0678 0.0320 0.9605 0.1023 0.0726 0.0673 
Pitting in the inner ring of the bearing 0.0011 0.0025 0.0087 0.9975 0.0389 0.0154 

Tooth fracture and crack in the outer ring 0.0367 0.0410 0.0947 0.0012 0.9359 0.0069 
Tooth fracture and pitting in the inner ring 0.0148 0.0069 0.0387 0.0057 0.0276 0.9572 

min 1
C  

Normal state 0.9537 0.0027 0.0074 0.0039 0.0756 0.0045 
Tooth fracture 0.0372 0.9840 0.0012 0.0008 0.0359 0.0249 

Crack in the outer ring of the bearing 0.0017 0.0001 0.9769 0.0248 0.0076 0.0642 
Pitting in the inner ring of the bearing 0.0021 0.0098 0.0102 0.9976 0.0327 0.0184 

Tooth fracture and crack in the outer ring 0.0357 0.0034 0.0508 0.0698 0.9746 0.0321 
Tooth fracture and pitting in the inner ring 0.0612 0.0076 0.0898 0.0872 0.0284 0.9653 

min 2
C  

Normal state 0.9879 0.0101 0.0206 0.0007 0.0479 0.0064 
Tooth fracture 0.0203 0.9899 0.0013 0.0309 0.0236 0.0352 

Crack in the outer ring of the bearing 0.0011 0.0052 0.9893 0.0741 0.0687 0.0649 
Pitting in the inner ring of the bearing 0.0052 0.0029 0.0263 0.9742 0.0436 0.0228 

Tooth fracture and crack in the outer ring 0.0178 0.0231 0.0049 0.1047 0.9947 0.0147 
Tooth fracture and pitting in the inner ring 0.0083 0.0062 0.1262 0.0784 0.0345 0.9538 

 

 
Fig. 5. Training error of 

min 1
C   

 

 
Fig. 6. Training error of 

min 2
C  

 
 
5. Conclusion 
 
This study was aimed toward the nonlinear and non-
stationary vibration signals of gearboxes. A feature set made 

up of energy values based on EMD was obtained to identify 
the initial characteristic parameters. An algorithm for 
attribute reduction based on conditional equivalence 
classifications was established to obtain all the minimal 
reduction sets. A neural network was employed to identify 
the feature sets before and after reduction, and the following 
results are obtained. 
 

(1) According to the indicators for measuring the 
characteristic parameters of failures, the experimental results 
show that an energy characteristic set is more sensitive to 
fault modes than an approximate entropy set. 

(2) The algorithm based on conditional equivalence 
classifications for attribute reduction obtains the minimal 
attribute reduction set rapidly, effectively lessens the number 
of input vectors in neural networks, and simplifies the 
structure. 

(3) The minimal attribute reduction set can recognize 
failure modes accurately and promote the efficiency of fault 
diagnosis. 

 A method combining rough sets with neural networks 
was constructed on the basis of EMD for the fault diagnosis 
of gearboxes. The proposed method offers many advantages, 
such as strong anti-interference ability, fast convergence, 
and high diagnostic accuracy. Thus, it is helpful for online 
fault diagnosis. If the actual conditions of gearboxes are 
processed with the proposed method in the future, some 
modifications should be executed, and the mode 
identification should be made accurate.  
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