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Abstract 
 

The modern power system is a centralized single-power supply system based on large power grids. However, with the 
popularity of new energy generation technologies, a distributed power generation technology based on new energy has 
the characteristics of high maintainability and flexible power generation mode. Thus, the mechanism of an analog mi-
crogrid control system based on Cortex-M4 controller with real-time measurement and tracking control function was 
proposed to solve the problems of unsatisfactory load in remote areas and the difficulty of power supply to satisfy the re-
liability, security, and diversity of power supply. The analog microgrid utilized the principle of three-phase analog mi-
crogrid interconnection composed of several grid-connected inverters. The three-phase analog micro-grid generated Al-
ternating Current (AC) signal and other inverters worked in the grid-connected mode and adopted many loop control 
technologies, such as Proportional-Integral (PI) voltage tracking, PI current tracking, phase-locked loop, and digital feed-
back (2P2Z) compensation, to operate the grid-connected system in a stable condition. The accuracy of selecting a con-
trol algorithm was verified using experimental data. Results demonstrate that the three-phase symmetrical AC generated 
by an inverter can output 50 Hz sinusoidal current, 24±0.2 V line voltage in load, and ≤0.03% total harmonic distortion. 
The adjustment rate when changing the current root mean square of the load is small. The analog microgrid improves the 
system’s instability caused by the complex operation of the microgrid system. The analog microgrid control system also 
enhances the requirements of hardware protection, such as overcurrent and overvoltage, and designs a software protection 
for islanding and circulation detections. This study provides references in the fields of system modeling, data processing, 
and control strategy, which can solve the contradiction between microgrid and power grid and satisfy the requirements of 
users for power supply. 
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1. Introduction 
 
Distribution networks are an essential part of a power system. 
In a distribution network, a microgrid system is a new type 
of power distribution scheme that can integrate distributed 
power generation, energy storage, load, and protection. This 
distribution system can work independently or run in a grid. 
Therefore, it is a practical way of satisfying future develop-
ments. 

Most of new energy generation forms, energy storage 
forms, and electronic loads are direct current (DC) or DC 
links. A DC power supply system will occupy a large pro-
portion in future power supply, and developing grid-
connected inverters will be promoted [1]. As a new energy 
generation technology, a grid-connected photovoltaic power 
generation system will influence the performances of public 
grids and their regulation ability. Thus, primary international 
energy and electrical institutions have formulated many 
technical specifications for this type of system; for example, 
the IEEE 1547 standards were compiled by the American 
Association of Electrical and Electronic Engineers in 1999, 

and the new grid-connected rules have been implemented in 
China since 2006. In 2010, the European Electrotechnical 
Standards Commission has promulgated EN50530 standards 
[1]. 

Scholars have conducted numerous studies on the steady 
operation, control, voltage output, and interference factors of 
analog microgrids. However, microgrid distributed systems 
are prone to power shortage in the action process, thereby 
reducing the efficiency of a grid-connected generation of 
microgrids. These systems demonstrate uncertainty and ex-
ternal interferences, which cause significant errors and de-
lays to the control of the systems, thus affecting the stability 
and accuracy of the system operation [2-4]. 

On the basis of the preceding analysis, a design method 
for analog microgrid based on Cortex-M4 controller is pro-
posed by studying the principle of three grid-connected in-
verters. When the grid is connected, the frequency is phase 
locked. A voltage regulator and a constant current loop are 
applied simultaneously. Moreover, three inverter technolo-
gies, a PI voltage, and the current tracking control system 
are designed to improve the load capacity of distributed grid-
connected power generation, thereby improving the mi-
crogrid. The stability of the grid output voltage is tested. To 
enhance the microgrid’s load capacity of the distributed 
grid-connected generation and the balance of the microgrid’s 
output voltage, the system runs in the grid-connected genera-
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tion through frequency phase-lock, voltage stabilization and 
current stabilization loop, three inverters, PI voltage, and 
current tracking control. 
 
 
2. State of the art 
 
A microgrid is a small-scale power generation, distribution, 
and utilization system, which is composed of a distributed 
power supply, an energy storage system, an energy conver-
sion device, monitoring and protection devices, and users’ 
loads. However, for micropower sources, such as photovol-
taics or wind power, the changes in external conditions may 
lead to changes in output power and cause problems, such as 
a drop in power quality. To solve the problems of instanta-
neous power outage, voltage surge, and sag caused by sys-
tem faults, the power quality control device of a microgrid 
uses an energy storage device to provide fast power buffer, 
absorb or supplement electric energy, and provide an active 
power support. The device also performs active or reactive 
power compensation to stabilize and smooth the fluctuation 
in a grid voltage. CARR J A, BALDA J C, and MAN-
TOOTH H A designed an energy storage system to improve 
power quality problems, such as voltage sags [6]. These 
scholars solved the effects of power quality problems and 
provided a reference for designing analog microgrids. How-
ever, stability was not mentioned in their research. When a 
microgrid works in a parallel operation with high-voltage 
grid networks, the microgrid is equivalent to an active power 
filter, which can compensate for harmonic currents and load 
spikes; when the micro-grid is disconnected from a large 
grid, the energy storage system can maintain voltage stabil-
ity. In most renewable energy sources, such as solar, wind, 
and tidal energy, the output power will be changed at any 
time given the inherent nonuniformity and uncontrollability 
of energy. When changes are caused by external light, tem-
perature, and wind, the output power of the microgrid power 
source will change correspondingly, thus confirming that the 
system requires an intermediate device to store energy [7] 
and effectively improving the stability of the microgrid; this 
feature has a certain reference value for selecting the design 
method. On the basis of the relationship between the mi-
crogrid and high-voltage grid networks, two modes of an 
isolated grid operation in the microgrid networks were se-
lected by ZHAO Bo et al. and LIU Mengxuan et al.; first, the 
microgrid that is not connected to the large external grid is 
mainly used to solve the decentralized power demand in 
remote areas, such as islands and mountainous with few 

people, (e.g., Kythnos Island in Greece and Dongfushan 
Mountain in Zhejiang Province, China) [8-9]; second, con-
sidering that power grid failure or power quality cannot sat-
isfy the requirements, YANG Xiangzhen et al. and SHI 
Shanshan et al. applied the principle of microgrid that was 
temporarily disconnected from the large external grid and 
entered the island operation mode [10-11], thus effectively 
improving the reliability and security of the load under their 
jurisdiction (e.g., the Bornholm microgrid in Denmark). In 
terms of stability, several experts have provided practical 
examples, which have certain practical project support and 
reference value for designing an analog microgrid. A differ-
ent analysis of microgrid application in different countries 
has also been conducted. In accordance with the energy in-
teraction between a microgrid and a large grid, ARU-
LAMPALAM A et al. and WANG He et al. devised two 
modes of parallel operation in a microgrid; first, a microgrid 
can absorb power from but cannot output power to large 
grids (e.g., the Hachinohe microgrid in Japan); second, the 
microgrid and large network can exchange power in two 
directions freely; for example, the Demotec microgrid in 
German provided a solution, which can solve the problem of 
switching power, for the application among large grids. Cur-
rently, various microgrid experimental systems and demon-
stration projects in developed countries and regions, such as 
the United States and the European Union, embody world-
wide research on different structures of a microgrid [14, 15-
16]. MIKEB, GIRIV, JUNJIK et al. proposed the design 
planning of a microgrid structural model to follow the prin-
ciple of adapting to local conditions, and determine the mi-
crogrid capacity, power supply system, and wiring; further-
more, the model aimed to complete the overall network 
structure model design of a microgrid model based on com-
prehensively analyzing a load classification under the juris-
diction; this analysis was conducted in accordance with the 
requirements of safety, reliability, economy, flexible opera-
tion and nearby configuration, power supply radius and vari-
ous local energy conditions (especially various renewable 
energy sources), and other relevant factors. In recent years, 
studying and applying the microgrid technology have devel-
oped rapidly in China, and several microgrid demonstration 
projects, such as the Dongfushan microgrid in Zhejiang 
Province and Dong’ao Island microgrid in Guangdong prov-
ince, have been established. Table 1 summarizes the typical 
characteristics and key technologies of typical microgrid 
systems worldwide [8, 17]. 
 

 
Table 1. Typical Characteristics and Key Technologies of Microgrid Systems 
Microgrid engineer-

ing 
Typical characteristics Key technology 

CERTS (1) Isolated and grid-connected operation modes; 
(2) Kilowatt capacity and low voltage level; 
(3) Three-phase AC microgrid structure and full discharge 

control 

(1) Dropping control method; 
(2) Safety control; 
(3) Energy dispatching management 

Demotec (1) Isolated and grid-connected operation modes; 
(2) Kilowatt capacity and low voltage level; 
(3) Complex three-phase AC microgrid structure and radial 

wiring 

(1) Energy dispatching management; 
(2) Dropping control method 

Kythnos (1) Islanding network operation mode only; 
(2) Kilowatt capacity and low voltage level; 
(3) Three-phase microgrid or single-phase AC microgrid 

structure and radiation wiring mode 

(1) Dropping control method; 
(2) Master–slave control mode; 
(3) Energy dispatching management 

Kyoto (1) Isolated and grid-connected operation modes; 
(2) Kilowatt capacity and low voltage level; 
(3) Three-phase AC microgrid structure and radial connection 

(1) Dropping control method; 
(2) Master–slave control mode; 
(3) Energy dispatching management 
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mode 
Tung Fu Shan class (1) Islanding network operation mode only; 

(2) Kilowatt capacity and low voltage level; 
(3) AC/DC hybrid microgrid structure and radiation connec-

tion mode 

(1) Dropping control method; 
(2) Master–slave control mode; 
(3) Energy dispatching management 

Dong’ao Island class (1) Islanding network operation mode only; 
(2) Megawatt capacity and low voltage level; 
(3) AC structure of three-phase microgrid and ring connection 

mode 

(1) Dropping control method; 
(2) Master–slave control mode; 
(3) Energy dispatching management; 
(4) Hierarchical control strategy 

 
On the basis of analyzing the above problems, a model-

independent PID controller is designed in this study to track 
the voltage and current of the analog microgrid in real time 
and realize the real-time monitoring of the stability of the 
analog microgrid operation, thereby effectively solving the 
problem of power shortage in the process of the microgrid 
distributed system and reducing the efficiency of the grid-
connected generation of microgrid. 

The remainder of this study is organized as follows. Sec-
tion 3 describes the principle and technology of an analog 
microgrid that runs in a grid connection; builds the control 
model of the analog microgrid, implements different loop 
control algorithms, such as voltage and current tracking and 
even PID control algorithm; and realizes the design of soft-
ware and hardware of the analog microgrid. Section 4 main-
ly measures the experimental data and analyzes the prelimi-
nary results. Section 5 summarizes this study and presents 
relevant conclusions. 
 
 
3. Methodology 
 

3.1 Principle and Technology of the Analog Microgrid 
Interconnection 
 
3.1.1 Structure and Function of a Microgrid 
An analog microgrid is mainly used to simulate a microgrid 
loop. A 24 V regulated voltage is selected as the  output line 
voltage of the inverters, and the generated inverters will not 
be too high. To complete the grid-connected function, a con-
troller is required to adjust the AC output phase at any time. 
Interconnection controllers of low-power alternators and 
photovoltaic DC generators must use DC–AC inverters, 
which is the most extensively used method for adjusting the 
phase [18]. 

In a grid-connected system, the system is mainly based 
on grid-connected inverters, and the tracking control in the 
maximum power point of photovoltaic power generation is 
disregarded. Therefore, the selected AC power generation 
equipment mainly focuses on wind power generation and 
low-power diesel generator. A typical model of grid-
connected direct-drive generators (power supply topology of 
wind power generation) is illustrated in Fig. 1, and a com-
mon-shot triode amplifier circuit of distributed wind power 
generation is depicted in Fig. 2 [1]. 
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Fig. 1.  Single-stage Photovoltaic Grid-connected System 
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Fig. 2.  Common-shot Triode Amplifier Circuit 
 

3.1.2 Three-phase Inverter Technology 
Three-phase inverters are the most critical part of the power 
output stage of the grid-connected microgrid power genera-
tion system. Their primary function is to convert DC recti-
fied by batteries or photovoltaic arrays or other alternators 
into AC power that can be synchronized with the grid net-
work [19]. 

The system uses a three-phase bridge inversion topology; 
only one half-bridge circuit is more than a single-phase to-
pology. However, three-phase inverters have fewer sinusoi-
dal modulation schemes than single-phase bridge inverters. 
Three-phase inverters are mainly bipolar BP modulation and 
vector control. Bipolar modulation produces an SPWM 
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pulse signal, whereas vector modulation produces SVPWM. 
Space vector pulse technology has the characteristics of a 
high utilization rate of DC voltage, but the control process is 
complex, thereby requiring a high operational performance 
of the control system. A bipolar modulation scheme is pro-

posed to simplify the grid-connected control system. A cir-
cuit diagram of the three-phase smooth inversion is demon-
strated in Fig. 3. 
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The voltage inverter (three-phase bridge-type inverter 
circuit) operates at a 180° conduction mode; three sets of 
bridge arms are available, in which each group of conductive 
bridge arm angle is 180°; two other complementary conduc-
tion bridge arms exist simultaneously, in which each phase 
begins at a conducting edge of 120° [20]. At any moment, 
the three bridge arms are operational. Each commutation is 
also conducted between the upper and lower arms of the 
same phase; this process is called longitudinal commutation. 
Only one capacitor is required in Fig. 3. Neutral point N is 
assumed between two capacitors in series to calculate the 
output voltage. 

The system analyzes the working process of the three-
phase bridge. For Phase U, when Bridge arm 1 operates, 

/ 2Uun dµ = , and when Arm 4 works, / 2Uun dµ = − . Thus, unµ  is 
the waveform, and / 2Ud−  is the amplitude. Phases V and W 
are the same as Phase U, and the shape of the waveform is 
the same as unµ ; however, the phase turns by 120°. The 
current exchange process between Arms 1 and 4 is similar to 
that of the half-bridge circuit. When V1 is in the upper 
bridge, Arm 1 is converted from “on state” to “off state” 
because the current in load inductance cannot be changed 
abruptly. VD4 in lower bridge arm 4 leads on and continues 
the current. When the load current drops to 0, and the current 
in upper bridge arm 4 is reversed, a commutation is com-
pleted. The load voltage equations for uvµ , wvµ , and wuµ  
are 

 
uv un vn
vw vn wn
wu wn un

µ µ µ

µ µ µ

µ µ µ

⎫= −
⎪

= − ⎬
⎪= − ⎭

                               (1) 

 
The equation of load phase voltage uµ , vµ , and wµ  is 

demonstrated. In the equation, the N’ is load neutral point, 
and nnµ  is the voltage between the load neutral point and 
the input reference neutral point N, as expressed as follows: 

 
=u un nn
v vn nn
w wn nn

µ µ µ

µ µ µ

µ µ µ

⎫−
⎪

= − ⎬
⎪= − ⎭

                              (2) 

 
Equation (2) can be rewritten as 
 
( ) / 3 ( ) / 3nn un vn wn u v wµ µ µ µ µ µ µ= + + − + +     (3) 

 
A three-phase load is assumed to be symmetric; thus, we 

obtain 0u v wµ µ µ+ + = , and the equation for N point is 
 
( ) / 3nn un vn wnµ µ µ µ= + +                    (4) 

 
3.1.3 Grid-connected Key Technology 
The DC inverter is converted into an AC that is suitable for 
connection to the grid using a power-switching device. 
Through a flat wave action of RC filtering, a high-voltage 
SPWM waveform output by an inverter bridge is converted 
by the flat wave into a small sine current of total harmonic 
distortion (THD). After conforming the requirements of 
power grid interconnection with the electricity grid control-
ler, grid voltage and the frequency and phase of the refer-
ence current with the given value of the difference are com-
pared. The real grid current instantaneous feedback value of 
the difference is size. Then, error values are inputted into the 
PI regulator output amplitude. The section on account of the 
output power level is smoothed to filter out a high-frequency 
harmonic wave filter after the same frequency and phase AC 
is positioned parallel to the grid network, thereby completing 
the process of interconnection. Fig. 4. exhibits a block dia-
gram of the grid-connected current control system. 

The grid-connected technology must determine the con-
trol of the frequency and phase of an inverter before it is 
reconnected. The inverter parallel links between the im-
portant parts are the current- and frequency-tracking control. 
When the inverter is connected to the power grid network, 
the inverter voltage is uncontrolled by the inverter, which is 
clamped to the network by a grid voltage and into the output 
current of an inverter automatic mode. The current tracking 
control is used to prevent the inverter power shortage of the 
current flow backward phenomenon. 
 
3.1.4 Design of the Phase-Locked Loop 
The phase-locked loop technology plays a key role in a pho-
tovoltaic grid-connected system. A synchronous phase-
locked loop generates the main reference current Iref  that is 
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synchronized with grid voltage Unet , which is used as the 
setting of the current tracking loop to realize the control goal 
of the same frequency and phase of the grid-connected cur-
rent and power grid voltage. 

Phase-locked control links of a photovoltaic grid control 
system consist of two parts of hardware and software syn-
theses. The grid voltage signal through the zero crossing 
detection circuit in the whole form and its synchronization 

TTL square wave signal are sent to a M451RG6AE capture 
port to capture its rising edge. The timer TIM to incremental 
counting mode is set to capture and trigger the signal inter-
ruption to reset the counting. The software phase-locked 
loop program flow of the grid-connected controller is dis-
played in Fig. 5. 
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Fig. 4.  Grid-connected Inverter Control Diagram 
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3.2 Microgrid Control Design 
The microgrid controller has three working states, namely, 
grid-connected, current-sharing parallel, and islanding. The 
grid-connected state is the most complex working state in 
the entire microgrid control link. The islanding state is a 
basic output state of microgrid controllers. Inverters work in 
the constant-frequency and stable-voltage output states. 
 
3.2.1 Software Phase Detection and Voltage Following 
Method of Phase 
Phase locked and voltage following are fundamental issues 
in the grid-connected generation of a microgrid. In this study, 
Phase U is a quasi-V phase, and Phase W is 120° backward 
at one time. The conversion frequency of an ADC device is 
10 KHz, and the result is read using a DMA transmission 
channel. A hardware comparator has been included in the 
hardware circuit. Nevertheless, in actual measurement, mul-

tiple approximations will occur near the zero point. Thus, the 
phase starting point is unable to determine accurately. No 
inversion phenomenon, that is, the software identifies 180 
degrees at zero point, will be considered to ensure the accu-
racy of the current at the zero point [21]. The algorithm is 
based on 0° after the phase of 30°. When the waveform volt-
age is positive, the zero identification is correct, and the 
phase information is transmitted to the SPWM phase con-
troller, thus completing the phase-locked function of the 
Phase-locked loop (PLL). When the load current is 0, the 
grid-connected inverters operate in the constant voltage state 
to prevent the voltage reversal. At this time, the output volt-
age of the inverter must be the same as the grid voltage, and 
the current loop still uses a PI regulator to limit the voltage 
of each circuit. 
 
3.2.2 Current-sharing Control 
When the load current works between 1 and 3 A, the current 
distribution ratio of the two grid-connected inverters is 1:2 
or 2:1. A dual-computer communication interface is added to 
the design to ensure that the inverters can work in 1-3 A. 
This interface is used to transmit the current distribution 
among the grid-connected computers under controllable 
conditions. 
 
3.2.3 Islanded Detection 
When the microgrid system runs in the grid-connected state, 
it can still encounter the problem of the sudden power out-
age. At this time, the microgrid will enter the island opera-
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tion state, but the grid and the microgrid lines maintain the 
electrical connection, which will cause the large grid to re-
main live during the grid maintenance, thus causing acci-
dental damage to maintenance personnel. Simultaneously, if 
the power grid is interrupted, then the phase shift between 
the power grid and the microgrid will occur seriously. The 
detection process is presented in Fig. 6. 
 
3.2.4 Mode and Process of Microgrid Control Network-
ing 
When no power supply exists or the quality is unfavorable, 
the system automatically cuts off the power supply access of 
the power grid and will supply power to the equipment on 
the microgrid through an inverted output alone. Isolated 
detection is the most basic state of generator operation in a 
microgrid; however, when connected to the network, anti-
islanding treatment is also required, that is, to prevent the 
operation in the islanded state when connected to the grid. 
The power flow of power generation energy flows from one 
side of the transformer to the outAC  direction, where the 
inverters work independently for the microgrid. 
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Fig. 6.  Isolation Characteristic Detection Flowchart 

 
When the microgrid is connected to the grid, the control-

ler requires voltage, phase, and frequency detections. After-
ward, islanding detection is required to prevent the inverter 
from disconnecting in the grid-connected state. The output 
current trend of the microgrid to grid is under a grid-
connected control; the direction is from one side of trans-
former 1AC  to outAC . In the grid-connected state, the inverter 
can output power to the large power grid. 

The current-sharing parallel state aims to combine sever-
al grid-connected inverters to supply power to the microgrid. 
The communication among the devices must be maintained, 
and the current must be managed. 

The choice of control strategy can be based on the prod-
uct design. Whether the system must switch from grid-
connected state to islanding state, such as when the quality 
of power grid is too low or current backflow occurs, the 
controller actively cuts off the connection of large power 
grid and stops the output of inverters. The switching circuit 
of the networking controller is illustrated in Fig. 7. 

 
3.2.5 Root Mean Square (RMS) Calculation of Voltage 
and Current 
RMS is the effective value of voltage. The most accurate 
method for calculating Vrms  is using RMS. The sinusoidal 
waveform is sampled through direct sampling method and 
DC coupling sampling with the ground voltage of 0 V as a 
reference point [22]. The RMS equation is 
 

2( )

1

X xi
RMS

n

−
=

−
                                 (5) 

 
where Xi and X are the mean values of the voltage in a dis-
crete sampling point and the voltage in a long period point, 
respectively. 

 
3.3 Implementation of Loop Control Algorithm 
 
3.3.1 PID Algorithm 
An analog PID algorithm is demonstrated in Fig. 8. The left 
side is the target value of voltage following, and the right 
side outputs the inverter voltage. 
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Fig. 7.  Switching Circuit of a Grid-connected Control 
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Fig. 8.  Schematic of the Simulated PID Algorithm 
 
3.3.2 Realization of Loop Compensation Algorithms and 
Parameter Adjustment 
The loop design of the microgrid control system is mainly 
the loop compensation part. This design is aimed at improv-
ing the stability of power supply control. The system mainly 
uses incremental digital PID algorithm to compensate for the 
control model and acquire the ideal voltage following model. 
The ADC converter collects the difference signals among 
the RMSs of the voltages. These difference values are set to 
the PID controller, and the output of the controller can be the 
pulse signals on the SPWM pulse generator module. 

Two PID algorithms are available; one is positional PID, 
as expressed in Equation (6), and the other is incremental 
PID, as defined in Equation (7). To adapt to the incremental 
PID derived from the control operation with improved ad-
justment performance, the incremental PID equation is writ-
ten in the difference equation, as presented in Equation (7). 
The incremental PID algorithm is realized using a computa-
tional program [23]. The positional PID control algorithm is 
expressed as 

 

( ) * ( ) * ( ) *[ ( ) ( 1)]
0

k
U k K e k K e j K e k e k Up i d oj

∑= + + − − +
=

    (6) 

 
where Uo  is the reference voltage of the control quantity, 

( )U k  is the output value of the Kth sampling, K p  is the pro-

portional coefficient, Ki  is the integral coefficient, and Kd  
is the differential coefficient. The incremental PID algorithm 
is 
 

 

   

△U (k ) =U (k ) −U (k −1)

= K p *[e(k ) − e(k −1)]+ Ki * e(k ) +

Kd *[e(k ) − 2 * e(k −1) + e(k − 2)]

                (7) 

 
where ( )e k , ( 1)e k − , and ( 2)e k −  are the Kth, (K−1)th, and 
(K−2)th error values of sampling, correspondingly; ( )U k  and 
( 1)U k −  are the kth and (k−1)th sampling output values, re-

spectively. K p  is the proportional coefficient, Ki  is the in-

tegral coefficient, and Kd  is the differential coefficient. 

 
3.3.3 Phase-Locked Loop Control Algorithms 
Phase-locked loop controller must control the frequency and 
phase of SPWM wave generator. The output register of 
PWM is rewritten at different timing frequencies in accord-
ance with the principle of the constant pulse output frequen-
cy of a single-chip microprocessor; that is, regardless of the 
frequencies that are refreshed with the same sinusoidal sig-
nal, only the writing frequency of the register is changed 
[24]. 

 

3.4 Hardware Design of the Analog Microgrid Control 
System 
 
3.4.1 Structure of the Microgrid Control System 
The hardware of three-phase grid-connected inverters is 
similar to that of DC-AC inverters. In accordance with the 
requirements of power supply, the hardware system is com-
posed of Cortex-M4 controller, auxiliary power supply cir-
cuit, sampling circuit of inverting voltage and current, three-
phase bridge inverting circuit, three-phase filter circuit, tran-
sistor isolation driving circuit, tube current sampling circuit, 
and overcurrent and overvoltage protection circuits [25]. 

Cortex-M4 MCU system is the control core of each de-
vice in the system. The core control circuit includes crystal 
oscillator circuit, reset circuit, power supply circuit, and 
simulation debugging interface. A circuit diagram of the 
core board is depicted in Fig. 9. 

 
3.4.2 Design of the Controller and Detection System 
The voltage of the system is in the low voltage range. The 
sensor detection circuit is exhibited in Fig. 10. The current-
limiting electrons at the input of the voltage transformer are 
reduced to 22 K, and the detection voltage range is reduced 
from 300 V to 30 V. 

The issue concerning the current sensor is that the phase 
will be offset slightly; this issue must be compensated for by 
an appropriate compensation circuit. Fig. 11 displays the 
design of the compensation circuit. Capacitance C and re-
sistance R are used to compensate for a phase shift. 

To reduce power consumption, the electronic conversion 
technology must make the power transistor work in the 
switching state, and the stable analog voltage can be ob-
tained after the filter screens the switching frequency. How-
ever, the principle of area equivalence is used in PWM tech-
nology. Similarly, the sinusoidal signal is divided into sever-
al small parts that correspond to the pulse signal of the same 
proportion in accordance with the same time width, thus 
constituting the SPWM signal. An SPWM wave filters 
switching frequency through the LC filter and acquires the 
smooth sinusoidal signal; thus, the LC filter is the key to 
reducing the THD. In Fig. 12, the controller sends out three 
SPWM switching signals, in which the switching frequency 
is 25 KHz. However, the LC filter does not decrease signifi-
cantly near the cutoff frequency. The cutoff frequency of the 
filter must be set at 10 KH. The system adopts a bipolar 
modulation mode (i.e., the upper and lower bridges are com-
plementary to each other) given the particularity of three-
phase inverters. When the inverters work in the normal con-
dition, the upper and lower tubes alternately output 50% 
square wave, and the output voltage of each phase is / 2Vd . 

 
3.4.3 Inverter Control Module 
A driving isolation circuit is a part of the power driver. Its 
main function is to amplify the power of the control signal 
and raise the level. Simultaneously, the circuit protects the 
control circuit from the accidental impact of high-current 
devices. The MOS driver circuit in the system must use 15 V 
to drive it completely. In Fig. 13, the driver circuit of 
IR2110 half-bridge MOS transistors is built. Therefore, three 
sets of MOS transistors are necessary to create the three sets 
of bridge arms, whereas three IR2110 chips are still required 
to drive the MOS bridge circuit. 
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Fig. 9.  Schematic of the Cortex-M4 Minimum System 
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Fig. 10. Voltage and Current Sensor Detection Circuit 
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Fig. 11.  Compensation Circuit for Current Sensor 

 
Fig. 12.  Control Waveform using Three SPWMs 

 
3.4.4 Voltage and Current Sampling Module 
The electric energy measurement module and the voltage 
and current sampling circuit use completely different sam-
pling methods. Voltage and current sensors use voltage and 
current transformers for sampling. In Fig. 14, the HLW8032 
chip is a nonisolated connection between the chip and Phase 
U voltage. In Fig. 15, the principle of sampling indicates that 
the repetitive part directly uses the modular design method. 

 
.
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Fig. 13.  Digram of an IR2110 Driver Board Circuit 
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Fig. 14.  Schematic of the Voltage and Current Sampling Circuit 
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Fig. 15.  Schematic of the HLW8032 Sampling Circuit 
 
3.4.5 Frequency Phase-locked Square Wave Generation 
Circuit 
To compare the accuracy of the phase-locked loop in soft-
ware, a hardware-phase judgment circuit is added to com-
pare the voltage signal from the sensor with the zero voltage 

after the rise. A square wave signal that corresponds to the 
frequency is the output. The signal detector circuit is pre-
sented in Fig. 16, and the physical object is demonstrated in 
Fig. 17. 
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Fig. 16.  Principle Diagram of the Signal Detector 

 

 
Fig. 17.  Physical Diagram of the System 
 
 

3.5 Software Design of the Analog Microgrid System 
3.5.1 Overall Framework 
The software system requires a complicated logic judgment 
and calculation to ensure the stable operation of the equip-
ment. This section is mainly based on microgrid control as 
the overall system process. A diagram of the overall process 
is illustrated in Fig.18. 
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Fig. 18. Overall Diagram of the System 
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3.5.2 Voltage Following Control Loop 
Voltage and current sensors are connected to six AD pins of 
Cortex-M4 controller, and the values obtained from the con-
troller are integrated into the deviation values after the filter-
ing algorithm. The deviations are calculated using the PID 
algorithm, and the SPWM can be controlled by the pulse 
width. The PWM of the control output must have upper and 
lower limits (where the upper and lower limits are integrated 
into a single function when the PID algorithm is implement-
ed); otherwise, a steering gear may work in a stalled state. 
The PWM will generate a large current and burn the steering 
gear in severe cases. 
 

4 Result Analysis and Discussion 
 
4.1 Single Operation of Inverters 
In Fig. 19, the switch S is closed, and only inverter 1 is sup-
plied with a three-phase symmetrical AC power to the load. 
When the RMS of the load line current Io  is 2 A, the RMS 

of Uo  and the frequency f of line voltage are obtained. The 
THD rate of AC bus voltage is less than 3%. The efficiency 
η  of inverter 1 is larger than 87%. When inverter 1 supplies 
power to the load, the result demonstrates that the RMS of 
the load line Io  changes from 0 A to 2 A, and the load ad-

justment rate is 0.3%1Sl ≤ . 

AC power supply 1

AC power supply 2 Inverter 2

Inverter 1

load

+

-

+

-

AC BUS

Switch S

 
Fig. 19. Diagram of the Microgrid Simulation System 

 
The results of the test show that the RMS of the current 

is 2 A, the RMS of the line voltage is 24 V, and the frequen-
cy is 50 Hz. When the input voltage is 41 V and the load is 7 
Ω, the RMS of the line current in the load is 2.01 A; moreo-
ver, the RMS of the line voltage is 24.1 V, and the frequency 
measured by an oscilloscope is 50 HZ. For the THD of volt-
age, the output waveform is measured by power analyzer, 
and the THD rate is 2.3%. The efficiency of inverter 1 can 
be measured with the input power of 52.7 W, the RMSs of 
current and voltage on the load are measured with 2.01I Ao =  

and 24.1U Vo = , and the efficiency is 92% in accordance with 
Equation (8). 

 
*
*

U Io o
U I

η =                                      (8) 

 
The adjustment rate of Inverter 1 in the load is expressed 

as follows: when 0I A= , the output line voltage is 1Uo ; 

when 2I A= , the output line voltage is 2Uo . The load ad-

justment rate is 2 1 0.25%1 1

U Uo oSl Uo

−
= = . The relationship be-

tween current and voltage is displayed in Table 2, and the 
image fitted using MATLAB data is presented in Fig. 20. 

 
Fig. 20.  Fitting Curve of Input Current and Output Voltage 

 
 
Table 2. Relations between input current and output voltage 

I(A) 0 0.1 0.2 0.3 0.4 0.5 

Uo(V) 24.100 24.102 24.106 24.108 24.111 24.115 

I(A) 0.6 0.7 0.8 0.9 1.0 1.1 
Uo(V) 24.118 24.121 24.124 24.127 24.130 24.133 
I(A) 1.2 1.3 1.4 1.5 1.6 1.7 

Uo(V) 24.135 24.138 24.142 24.144 24.149 24.151 
I(A) 1.8 1.9 2.0 2.1 2.2 2.3 

Uo(V) 24.154 24.157 24.160 24.163 24.166 24.170 
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4.2 Interaction Operation of Inverters 
Inverters 1 and 2 can output power collectively to the load; 
thus, the RMS of the load line current Io  reaches 3 A, and 

the frequency fo  is 50 Hz±0.2 Hz. When the RMS of the 

load line current Io  varies from 1 A to 3 A, the output pow-
er of inverters 1 and 2 is kept at 1:1 distribution, and the 
absolute value of the difference between the output current 
of the two inverters is less than 0.1 A. The load adjustment 
rate satisfies 0.3%2Sl ≤ . With the same condition, when the 

RMS of the load line current Io  varies from 1 A to 3 A, the 
output power of Inverters 1 and 2 can be automatically allo-
cated within a specified range (ratio K alters 1:2 to 2:1). The 
absolute difference between the converted current of the 
output lines of the two inverters is less than 0.1 A. 

The experimental data show that, when the system runs 
at the parallel power supply, the RMS of the current is 3 A, 
and the frequency is 50 Hz. Parallel inverter 1 and normal 
inverter 2 adjust the load size. Accordingly, the RMS of the 
load line current is 3 A, and the RMS of the line voltage is 
24.1 V. Furthermore, the frequency measured by the digital 
oscilloscope is 50 Hz. The output power of inverters 1 and 2 
is maintained at 1:1. The output power ratio is equal to the 
ratio of output current given two parallel power supplies. 
The two output currents of 1 , 2 ,3I A A Ao =  are measured, and 

the corresponding output voltage Uo  is recorded. The load 
adjustment rate is approximately 2 1 0.27%2 1

U Uo oSl Uo

−
= = , and the 

line current difference between two inverters is less than 
0.05 A. The relationship between the three currents and volt-
age is summarized in Table 3. 

The output power ratio of Inverters 1 and 2 is adjustable. 
When the ratio of the output power of inverters 1 and 2 is set 
to 1:2 and 2:1, the data are obtained, as listed in Table 4.  

 
Table 3. Relationship between three-phase current and 
voltage 

Io(A) I1(A) I2(A) U0 (V) 
0.98 0.49 0.50 24.01 
2.01 0.98 1.03 24.0 
2.98 1.49 1.48 24.98 

 
Table 4. Effect of input current and output voltage caused 
by different K ratios 

K 
ratio 

Io(A) I1(A) I2(A) Current 
error 

Measured voltage 
(V) 

1:2 3.06 1.06 2.00 0.06 24.07 
2:1 3.03 2.05 0.97 0.08 24.06 

 
5 Conclusion 
 
To solve the problem of power supply and power resource 
allocations in the microgrid system, this study focused on 
the most critical problem that grid-connected inverters in the 
microgrid control system use DC as the input. A microgrid 
control system based on the Cortex-M4 controller was pro-
posed to simulate the grid connection process. The loop 
compensation algorithms for the steady voltage and steady 
current and the grid-connected phase-locked loop algorithm 
were used to build and test the measurement model of elec-
trical parameters. The algorithm for improving and operating 
the stability of the loop compensation in the microgrid net-
working process was analyzed. An experimental study was 
conducted. The following conclusions were drawn from this 
study: 
 

1)The three symmetrical ACs generated by the system’s 
inverters can output three 50 Hz sinusoidal currents. 

2)The efficiency of the inverters in this system is high. 
The voltage of the load line is 24±0.2 V, and THD≤0.03%, 
thereby fully satisfying the requirements. 

3)A change in the current RMS of the load makes the load 
adjustment rate small and satisfies the requirements of users. 

4)The purpose of automatic power distribution is achieved 
by adjusting the proportional coefficient K value. 

 
This study combined experimental data with professional 

theory and proposed the idea of the system’s design and the 
implementation process of the analog microgrid system. The 
designed loop compensation algorithm and PID control algo-
rithm are useful and practical, thus providing a reference for 
the study and the development of analog microgrids. The 
power for hardware platform is 60 V, which will be life 
threatening for DC contacts that exceed 400 V. Thus, no 
conclusion has been drawn from experiments that use high 
voltage. In the future study, the system will be combined 
with an inverter model in a 380 V AC network and will be 
revised to provide data support for applying a microgrid in 
high-voltage. 
 
This is an Open Access article distributed under the terms of the Crea-
tive Commons Attribution License  
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