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Abstract 
 

The internal forces of primary support obtained by theoretical analysis and numerical simulation often differ significantly 
from actual data due to the uncertainty of parameters of the surrounding rock and the field construction conditions in 
tunnels. This study proposed a novel back-analysis method to accurately evaluate the internal forces of the primary 
support on the basis of radial displacement and contact stress. According to the geometric characteristics and mechanical 
properties of the primary support in deep tunnels, a mechanical model was established based on theory of circular curved 
beam. The analytical solutions of these internal forces were then deduced. A case study was conducted to analyze the 
internal forces of the primary support obtained using the proposed method. Results demonstrate that the internal forces of 
the primary support of symmetrically loaded tunnels can be directly evaluated by radial displacement and contact stress. 
The peak-values of internal forces appear in vault, arch springing and the section with a θ angle of 60°. This study 
provides reference for the dynamic design and optimization of construction for the primary support in tunnels. 
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1. Introduction 
 
Composite lining systems are extensively used in tunnel 
engineering. According to the load-carrying mechanism of 
the composite lining, the primary support is a major load-
carrying structure. Studying the internal forces of the 
primary support of tunnels is important to provide reference 
for analyzing safety in tunnel construction and basis for 
feedback evaluation of the rationality of the tunnel design. 
However, the internal forces of primary supports obtained by 
theoretical analysis and numerical simulation often differ 
significantly from the actual data due to the uncertainty of 
the parameters of the surrounding rock and the field 
construction conditions in tunnels. Therefore, the calculated 
results cannot provide reliable criteria for tunnel design and 
construction [1]. Evaluating the stress states of the structures 
and the stability of surrounding rocks by using monitoring 
data has become an important method for ensuring safety in 
tunnel construction [2–6]. In this regard, quantitative and 
objective back analyses of the stress conditions of the 
surrounding rocks and the supporting structures should be 
conducted based on monitoring data. 

Numerous studies have reported on back analysis for 
tunnel engineering based on monitoring and measurement 
data [7–10]. However, existing literature mainly focuses on 
the back analysis of the mechanical parameters of 
surrounding rocks and lacks efficient direct calculation 
methods for the internal forces of supporting structures. 
Moreover, differences exist between mechanical 

assumptions of the primary support and actual working 
conditions. Therefore, accurately calculating the internal 
forces of the primary support by using monitoring data 
remains a problem and demands prompt solutions. 

This study extensively analyzed the mechanics of 
primary support in tunnels. The analytic expressions for the 
internal forces of the primary support in the detachment and 
in the elastic resistance zones were deduced from the theory 
of circular curved beam. The distribution characteristics of 
the internal forces were analyzed to quickly and accurately 
evaluate the stress states of the primary support and provide 
references for the dynamic design and optimization of 
construction in tunnel engineering. 
 
 
2. State of the art 
 
Numerous works have been conducted on monitoring 
measurements and back analysis of underground structures. 
Moreira et al. [11] developed an evolution strategy (ES) in 
the back analysis of geomechanical parameters in 
underground structures based on an evolutionary 
computation approach. ES showed satisfactory performance 
in terms of robustness and efficiency in most of the tested 
synthetic problem cases even for highly complex error 
functions. However, this method did not thoroughly analyze 
the stress characteristics of the support structures. Dehghan 
et al. [12] proposed an economic and time-saving univariate 
back-analysis method based on convergence data; however, 
the gained parameters were higher than those in the soil 
mechanical test. Zhang et al. [13] discussed the recognition 
of linear elastic transverse isotropy rock parameters, the 
optimized layout of measuring points, and the optimization 
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algorithm by analytic method; this analytical method was 
only applicable to round tunnels. Deng et al. [14] 
constructed a parameter recognition method based on a 
fluid–solid coupling model by combining the finite element 
method and the adaptive genetic algorithm. However, the 
stress condition of the support structure has not been 
thoroughly studied. Zhu et al. [15] proposed a displacement 
back-analysis method based on the artificial bee colony 
algorithm and the least square method. However, this 
method was time-consuming for problems without analytical 
solutions. Miranda et al. [16-17] proposed an inverse 
algorithm of the mechanical parameters of rock mass by 
combining the optimization algorithm and a 3D model, 
which proposed high requirements on observation data. 
Yazdani et al. [18] constructed the back-analysis method 
based on continuous and intermittent numerical simulations 
of the displacement to recognize geomechanical properties, 
stress ratios, and the joint parameters of rocks. Based on 
deformation analysis data, Kodama et al. [19] proposed a 
back-analysis method, which estimated regional geostress, 
and Young’s modulus, determining that back analysis based 
on the changing distances of measuring points was more 
reliable than back analysis based on direct relative 
displacement. Janin et al. [20-21] simulated the complicated 
3D effect involving the interaction of the excavation process, 
the reinforcement, the tunnel-supporting load, and the 
foundation counterforce utilizing the 3D numerical inversion 
method. Sun et al. [22] proposed a dynamic back-prediction 
model to predict the deformations and the failure modes of 
surrounding rocks in tunnels and to evaluate the stability of 
surrounding rocks during construction.. All the 
aforementioned studies focused on the back analysis of the 
mechanical parameters of the surrounding rock. The 
theoretical back-analysis methods based on theory of beam 
on elastic foundation provided a new approach for 
evaluating the mechanical properties of tunnel support. 
Based on contact and steel arch stresses, Wen et al. [23-24] 
deduced the analytic formula for the back analysis of the 
internal force of the primary support in tunnels utilizing 
theory of circular curved beam on elastic foundation. Wang 
et al. [25] presented the inversion-analysis method of the 
internal force of the primary support in the horseshoe-shaped 
tunnel. Cheng et al. [26] proposed an inversion calculation 
method of the internal forces of support structures in multi-
arc tunnels. However, the three aforementioned theoretical 
back-analysis methods were all based on theory of beam on 
elastic foundation, which is not applicable for tunnel support. 

The results of the aforementioned research were mainly 
gained from the back analysis of the mechanical parameters 
of rocks. However, limited studies have been conducted 
directly on the back analysis of the stress characteristics of 
the primary support. The limited back-analysis studies 
concerning the mechanical properties of the primary support 
based on analytical methods all hypothesize that the primary 
support is a beam on elastic foundation. This hypothesis 
differs significantly with the actual stress state of a tunnel. 
The calculation method derived by the hypothesis reveals 
considerable errors. In the present study, the stress 
characteristics of the primary support of the tunnel were 
analyzed extensively. The expressions of the internal forces 
of the primary support in detachment and elastic resistance 
zones were deduced from theory of circular curved beam. 
Moreover, the internal force distribution of the primary 
support and its time-variant characteristics were discussed. 
The proposed theoretical method considered the load-
distribution characteristic of primary support. The research 

conclusions conformed to the actual stress of the tunnel and 
provided references for the optimization of the primary 
support design and construction in tunnels. 

The remainder of this study is organized as follows: 
Section 3 establishes the mechanical model and proposes the 
back-analysis method for the internal force of the primary 
support in deep tunnels; Section 4 discusses the applicability 
of the method through case studies and Section 5 
summarizes the conclusions. 
 
 
3. Methodology 
 
3.1 Shortcomings of existing back-analysis theories based 
on elastic foundation beam method 
In existing back-analysis methods based on theory of beam 
on elastic foundation [23–26], the contact stresses between 
the shotcrete and the surrounding rocks were viewed as the 
elastic resistance of the foundation. However, this 
assumption is not accurate because the primary support 
bears active and passive loads (elastic resistance of 
surrounding rocks), and the contact stress between the 
shotcrete and the surrounding rocks may be caused by active 
loads rather than solely by the elastic resistance of the 
surrounding rocks. At positions near the vault, the shotcrete 
deforms toward the tunnel under the active loads, thus 
forming the detachment zone. Under this circumstance, the 
primary support only bears active loads and no elastic 
resistance of the surrounding rocks. At the positions where 
the structure deforms toward the surrounding rock, the 
surrounding rocks produce a passive elastic resistance to the 
primary support, forming the resistance zone. The 
deformation curve of the surrounding rocks is presented in 
Fig.1. In this case, the primary support in the resistance zone 
bears active loads and the elastic resistance of the 
surrounding rocks. In fact, the primary support in a tunnel in 
benching construction develops free deformation, and the 
surrounding rocks produce no elastic resistance after the 
excavation of the upper benching and before the excavation 
of the surrounding rocks in the lower benching. Therefore, 
the internal forces of the primary support cannot be 
calculated according to theory of beam on elastic foundation, 
and the calculation model should be reconstructed according 
to the mechanical mechanism of the support structure. 

 

 
 
Fig. 1.  Deformation curve of surrounding rocks 
 
3.2 The improved governing differential equation for 
primary support according to shortcomings 
The section forms of highway tunnels are generally multi-
centered circle.The primary support is viewed as a circular 
curved beam, and the geometric shape is presented in Fig. 2. 
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The inner and outer radius of the circular curved beam are 

0r  and 1r , respectively, and the central radius of the section 
is ( )0 1 / 2r r r= + . To construct the differential equations of 
the entire circular curved beam range, the ( )δ ω  function is 
introduced. Let 
 

1 0
( )

0 0
ω

δ ω
ω

<⎧
= ⎨

≥⎩
 

 
where ω  is the radial displacement. The radial displacement 
pointing to the center of a circle is positive. 

Micro unit rdθ  is selected. According to the stress 
condition (Fig. 3), the equilibrium equations of force and the 
bending moment are established 
 

[
] 1

( ) ( ) ( ) ( )

+ ( ) 0

dQ N d K

p rd

θ θ θ δ ω ω θ

θ θ

+ +

=
                            (1) 

 
( ) ( ) 0Q d dNθ θ θ− =                                             (2) 

 
( ) ( ) 0dM rdNθ θ− =                                             (3) 

 
where ( )ω θ  is the radial displacement, K  is the coefficient 
of the elastic resistance of surrounding rocks, A  is the 
sectional area, I  is the moment of inertia of the section, 
( )p θ  is the radial force produced by the active loads, 
( )M θ  is the bending moment, ( )Q θ  is the shear force, and 
( )N θ  is the axial force. The directions of all the forces in 

Fig. 3 are positive. 
 

1r
0r

r

o  
Fig. 2.  Geometric appearance of primary support 
 

( )N θ

( )M θ

( )Q θ

( ) ( )N dNθ θ+

( ) ( )M dMθ θ+

( ) ( )Q dQθ θ+

o

( ) ( ) ( )K pδ θ ω θ θ+

dθ

 
Fig. 3.  Stress sketch of micro unit 
 

According to the mechanics of the structure, there is a 
relationship between the radial displacement ( ( )ω θ ) and the 
internal forces of the circular curved beam. 
 

22

2

( )( ) ( )( )
c c

M rd N r
d E I E A

θω θ θ
ω θ

θ
+ = +                     (4) 

 
where cE  is the elasticity modulus of the primary support. 
By utilizing the steel arch and the shotcrete combined 
support, cE is the equivalent elasticity modulus. 

After the first and third derivations of θ  in Eq. (4), the 
following equations can be obtained: 

 
23

3

( )( ) ( ) ( )

c c

r dMd d rdN
d d E Id E Ad

θω θ ω θ θ
θ θ θ θ

+ = +                        (5) 

 
2 35 3 3

5 3 3 3

( )( ) ( ) ( )

c c

r d Md d rd N
d d E Id E Ad

θω θ ω θ θ
θ θ θ θ

+ = +                   (6) 

 
 Substituting Eq. (5) into Eq. (6), the following equation 
can be obtained: 

 
5 3 2 3 3

5 3 3 3

( ) ( ) ( ) ( ) ( )2
c c

d d d r d M rd N
d d d E Id E Ad
ω θ ω θ ω θ θ θ
θ θ θ θ θ

+ + = +     (7) 

 
 The following five-order ordinary radial displacement 
differential equation can be derived by substituting Eqs. (1)–
(3) into Eq. (7): 

 
5 3

2
5 3

( ) ( ) ( ) ( )2d d d dpm F
d d d d
ω θ ω θ ω θ θ
θ θ θ θ

+ + =                (8) 

 

where 2 1 ( )m KFδ ω= −  and 
3

1( )

c

r A rI rF
E IA
+

= − . 

 In the deep tunnel, the radial component of the 
surrounding rock pressure can be expressed as follows: 
 
( )= cos( ) sin( )p p pθ θ λ θ+                                            (9) 

 
where p  is the vertical component of active loads and λ  is 
the lateral pressure coefficient. The section where the 
vertical axis of the tunnel lies is utilized as the initial section. 
For this section, it is regulated that =0θ . The clockwise 
direction is positive and the counterclockwise direction is 
negative. The sign of λ  is the same as that of θ . p , and λ  
can be calculated from the measurement data. 

The following governing differential equation can be 
derived by substituting Eq. (9) into Eq. (8): 

 

( )

5 3
2

5 3

( ) ( ) ( )2

sin cos

d d dm
d d d
F p p

ω θ ω θ ω θ
θ θ θ

θ λ θ

+ + =

− +

                              (10) 

 
 In the detachment zone, the elastic resistance of the 
surrounding rocks is neglected. Thus, ( )=0δ ω , and Eq. (10) 
can be expressed as follows: 
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( )

5 3

5 3

( ) ( ) ( )2

sin cos

d d d
d d d
F p p

ω θ ω θ ω θ
θ θ θ

θ λ θ

+ + =

− +

                                   (11) 

 
 The governing differential equation can be solved in two 
different cases. 

 
3.2.1 Solving the governing differential equation with 
considerations to elastic resistance 
In the resistance zone, ( )=1δ ω  and 2m  is greater than 1. 
The governing equation of the circular curved beam is a 
five-order ordinary nonhomogeneous differential equation 
(Eq. [10]). The complete solution ( ( )ω θ ) can be expressed 
as the sum of the general solution of the homogeneous 
differential equation ( 0( )ω θ ) and the particular solution of 
the nonhomogeneous differential equation ( *( )ω θ ), as 
follows: 
 

0( )= ( )+ *( )ω θ ω θ ω θ                                                    (12) 
 

 According to theory of differential equations, the general 
solution of the homogeneous equation ( 0( )ω θ ) can be 
expressed as follows: 

 
0 1 2

3 4 5

( ) + cos
cos sin sin
C C ch

C sh C ch C sh
ω θ αθ βθ

αθ βθ αθ βθ αθ βθ

= +

+ +
       (13) 

 

where 1
2
m

α
−

= , 1
2
m

β
+

= , and 1C – 5C  are 

integration constants. The particular solution of the 
nonhomogeneous differential equation can be calculated by 
the undetermined coefficient method: 
 

2 2*( )= cos + sin
1 1

Fp Fp
m m

λ
ω θ θ θ

− −
                               (14) 

 
 Substituting Eqs. (13)–(14) into Eq. (12), the following 
complete solution of the governing differential equation can 
be obtained: 

 
1 2 3

4 5

2 2

( ) cos cos
sin sin

+ cos + sin
1 1

C C ch C sh
C ch C sh
Fp Fp
m m

ω θ αθ βθ αθ βθ

αθ βθ αθ βθ

λ
θ θ

= + +

+ +

− −

              (15) 

 
 For a symmetrically loaded tunnel, ( ) ( )ω θ ω θ− =  due to 
the symmetry of geometry and loads. Substituting 
( ) ( )ω θ ω θ− =  into Eq. (15), 3 4= =0C C  can be derived. 

 Therefore, Eq. (15) can be simplified as follows: 
 

1 2

3 2 2

( ) cos

sin + cos + sin
1 1

C C ch
Fp FpC sh
m m

ω θ αθ βθ

λ
αθ βθ θ θ

= + +

− −

                  (16) 

 
3.2.2 Solving the governing differential equation without 
consideration to elastic resistance 
The primary support in the detachment zone only bears 
active loads. In this case, ( )=0δ ω , thus 2 1m = . The general 

solution of governing equation (Eq. [11]) can be expressed 
as follows: 

 

0 1 2 3 4 5( ) + sin cos sin cosC C C C Cω θ θ θ θ θ θ θ= + + +  (17) 
 

 The particular solution of the nonhomogeneous 
differential equation can be gained by utilizing the constant 
variation method. 

 

( )
( )

2*( )= 6cos +4 sin cos
8

26sin 4 cos sin
8

Fp

Fp

ω θ θ θ θ θ θ

λ
θ θ θ θ θ

−

+ − −

                      (18) 

 
The following complete solution can be derived by 

substituting Eqs. (17)–(18) into Eq. (12): 
 

( )

( )

1 2 3 4

2
5

2

( ) + sin cos sin

cos + 6cos +4 sin cos
8

6sin 4 cos sin
8

C C C C
FpC

Fp

ω θ θ θ θ θ

θ θ θ θ θ θ θ

λ
θ θ θ θ θ

= + + +

−

+ − −

                (19) 

 
 Similarly, according to the symmetry, the Eq. (19) can 
be simplified as follows: 

 

( )

( )

1 2 3

2

2

( ) + cos sin

6cos +4 sin cos
8

6sin 4 cos sin
8

C C C
Fp

Fp

ω θ θ θ θ

θ θ θ θ θ

λ
θ θ θ θ θ

= + +

− +

− −

                             (20) 

 
3.3 Internal force analysis of primary support 
The following expression of the shear force can be derived 
by substituting Eqs. (2)–(3) into Eq. (5): 
 

13 3

3

( ) ( )( )
c c

r r d dQ
E I E A d d

ω θ ω θ
θ

θ θ

−
⎛ ⎞ ⎡ ⎤

= + +⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

                  (21) 

 
 The following expression of the axial force can be 
obtained by substituting Eq. (1) into Eq. (21): 

 
13 4 2

4 2

1 1 1

( ) ( )( )=

( ) ( ) cos sin
c c

r r d dN
E I E A d d

Kr pr pr

ω θ ω θ
θ

θ θ

δ ω ω θ θ λ θ

−
⎛ ⎞ ⎡ ⎤

− + +⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

− − −

                 (22) 

 
 The expression of the bending moment can be expressed 
by substituting Eq. (4) into Eq. (22), as follows: 

 

( )

2

12 2

12 4 2

4 2

1 1

( )( )= ( ) +1 ( )+

( ) ( )+1

cos + sin

c

c

c

E I d rM K r
r d E A

Ar d d
I d d

r pr pr
E A

ω θ
θ δ ω ω θ

θ

ω θ ω θ
θ θ

θ λ θ

−

⎧ ⎛ ⎞⎪
+⎨ ⎜ ⎟

⎪ ⎝ ⎠⎩

⎛ ⎞ ⎡ ⎤
+ +⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦

⎫
⎬
⎭

        (23) 
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3.3.1 Internal force analysis of primary support in the 
resistance zone 
In the resistance zone, the expressions of the internal forces 
can be derived by substituting Eq. (16) into Eqs. (21)–(23): 

 
( )

( )
2 1 3 2

2 2 3 1

( ) cos

+ sin

Q T C A C A sh

C A C A ch

θ αθ βθ

αθ βθ

= − +⎡⎣

⎤⎦
                         (24) 

 
where ααβα +−= 23

1 3A , 3 2
2 3A β α β β= − − , and 

13 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

AE
r

IE
r

T
c

i

c

i . 

 
( )

( )
2 1 3 2 1 2

2 2 3 1 1 3

1 12 2

1 1

( )= ( ) cos +

( ) sin

( ) cos ( ) sin
1 1

cos sin

N TC B TC B Kr C ch

TC B TC B Kr C sh

Fp FpKr Kr
m m

pr pr

θ δ ω αθ βθ

δ ω αθ βθ

λ
δ ω θ δ ω θ

θ λ θ

− + −⎡⎣

− − − −⎤⎦

− −
− −

−

      (25) 

 
where 4 2 2 4 2 2

1 6 +B α α β β α β= − + −  and 
3 3

2 4 4 -2B α β αβ αβ= − + . 
 

{

( )

( )

12

1 2 2 3 2 1 3 2 2

1 3 2 2 3 1 2 2 3

1 1

( )=

+ cos

+ sin

+ cos + + sin

c

c c

E IM CG
r

BC D B C D C E C E C G ch

BC D B C D C E C E C G sh

prr prrDFp DFp
E A E A

θ

αθ βθ

αθ βθ

θ λ θ

−

− − + +⎡⎣

+ + + +⎤⎦

⎫⎛ ⎞ ⎛ ⎞ ⎪
⎬⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎭

            (26) 

 
 

where  
 

12

+1ArD
I

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 , 
1+1

c

rG Kr
E A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 2 2
1E α β= −    

and   
 

2 2E αβ= − . 
 
3.3.2 Internal force analysis of primary support in the 
detachment zone 
In the detachment zone, without consideration to the elastic 
resistance of the surrounding rocks, the expressions of the 
internal forces can be derived by substituting Eq. (20) into 
Eqs. (21)–(23): 

 

3( ) 2 sin + cos
4 4

sin + cos
2 2

Fp FpQ T C

Fp Fp

λ
θ θ θ

λ
θ θ θ θ

⎡⎛ ⎞= − − +⎜ ⎟⎢
⎝ ⎠⎣

⎤
⎥⎦

                   (27) 

 

1

1
3

( )= sin +
4

2 cos sin + cos
4 2 2

Fp prN T
T

Fp pr Fp FpC
T

λ λ
θ θ

λ
θ θ θ θ θ

⎡⎛ ⎞− +⎜ ⎟⎢
⎝ ⎠⎣

⎛ ⎞ ⎤− + + −⎜ ⎟ ⎥⎝ ⎠ ⎦

    (28) 

 

1
12

1
3 3

3( )= + sin +
4 4

32 2 + cos
4 4

sin + cos
2 2 2 2

c

c

c

E I D Fp Fp prrM C
r E A

DFp Fp prrC D C
E A

DFp Fp D Fp Fp

λ λ λ
θ θ

θ

λ λ
θ θ θ θ

⎡ ⎛ ⎞
+ +⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

⎛ ⎞
− + + + +⎜ ⎟
⎝ ⎠

⎤⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟ ⎥
⎝ ⎠ ⎝ ⎠ ⎦

    (29) 

 
3.4 Solving integration constant by measurement data 
To solve the integration constants, the vertical component 
p  and lateral pressure coefficient λ  should be first 

calculated by the measured contact stress between the 
surrounding rocks and the shotcrete. For a symmetrically 
loaded tunnel, p  and λ  can be obtained by the stress data 
of two different measuring points. By combining the 
measured data of the radial displacement of the three 
measuring points on the section, the three unknown 
integration constants can be calculated. The layout of the 
measuring points is presented in Fig. 4. 
 

3θ
2θ

1 0θ =

 
 

Fig. 4.  Layout of the measuring points of the displacement and contact 
stress 
 
 The following equations are obtained by substituting the 
measured contact stress data into Eq. (9): 
 

1 1 1( )= cos sinp p pθ θ λ θ+                                        (30) 
 

2 2 2( )= cos sinp p pθ θ λ θ+                                            (31) 
 

 The following expressions can be derived according to 
Eqs. (30) and (31) 

 
2 1 1 2

2 1 1 2

( )cos ( )cos=
( )sin ( )sin
p p
p p
θ θ θ θ

λ
θ θ θ θ

−
−

−
                                   (32) 

 
2 1 1 2

2 1 1 2

( )sin ( )sin=
cos sin cos sin
p pp θ θ θ θ
θ θ θ θ

−

−
                                        (33) 

 
 Currently, the non-contact measurement method has 
been extensively utilized in monitoring tunnel 
measurements. This method can accomplish measurement 
tasks effectively and accurately. The total station instrument 
can be employed to measure horizontal and vertical 
displacement at the different section measuring points in 
tunnels. The following expressions can be derived utilizing 
the rotary formula of the coordinate system: 
 
( )= cos( ) sin( )x yφ θ θ θΔ + Δ                                         (34) 

 
( )= sin( ) cos( )x yω θ θ θ− Δ + Δ                                    (35) 
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where xΔ  and yΔ  are the horizontal and the vertical 
displacements gained by the total station instrument, ( )ω θ  
is the radial displacement, and ( )φ θ  is the tangential 
displacement. The positive direction of the displacement is 
presented in Fig. 5.  
 

 
Fig. 5. Transformation of the coordinate system 
 
 The integration constants 1C – 3C  can be solved by radial 
displacement at different measuring points of the section. 
Three measuring points of the radial displacement are set on 
the symmetrically loaded tunnel (Fig. 4). The angles 
between these measuring points and the vertical axis of the 
tunnel are 1θ – 3θ . The clockwise direction is positive. The 
three-order linear equation set can be derived by substituting 
the measurement data into the expression of the radial 
displacement. 
 

1 1 1 1

2 2 2 2

3 3 3 3

1
1
1

a b C J
a b C J
a b C J

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                          (36) 

 
 In the resistance zone, the parameters of Eq. (36) can be 
expressed as follows: 

 
cosi i ia chαθ βθ=  , sini i ib shαθ βθ=   and  

 

( ) 2 2cos sin
1 1i i i i

Fp FpJ
m m

λω θ θ θ− −
− −

= . 

 
 In the detachment zone, the parameters of Eq. (36) can 
be expressed as follows: 

 
cosi ia θ= , sini i ib θ θ=  and 

 

( ) ( )

( )

2

2

6cos +4 sin cos
8

6sin 4 cos sin
8

i i i i i i i

i i i i i

FpJ

Fp

θ

λ
θ

ω θ θ θ θ θ

θ θ θ θ

− − −

− −

=
. 

 
 Substitute the measured radial displacement data into Eq. 
(36), and the following expressions can be derived: 
 

1
1 1 1 1

2 2 2 2

3 3 3 3

1
1
1

C a b J
C a b J
C a b J

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                        (37) 

 

The internal forces of the primary structure can be 
obtained by substituting the integration constants 1C – 3C  
into Eqs. (24)–(26). 

 
 

4 Analysis Results and Discussion 
 

4.1 Monitoring data of the Lvjialiang tunnel 
The Lujialiang tunnel (Fig. 6) is located in Chadiping, 
Zhong County, Chongqing City, China. This section of the 
tunnel is three-centered circle with an arch radius of 5.5 m. 
The tunnel was excavated by step method. The central angle 
of the upper bench is / 2π . The primary support with the 
longitudinal unit length is taken as the calculation object. 
The geometric parameters of the upper benching section of 
the primary support are listed in Table 1. The material 
parameters are listed in Table 2. 
 

 
Fig. 6. Photo of the Lujialiang tunnel 
 
Table 1. Geometric parameters of the upper bench section 

Thickness of 
the shotcrete 

( )h m  

Excavation 
radius 
( )1r m  

Inner 
radius 
( )0r m  

Sectional 
area 
( )2A m  

Central 
angle 
( )radθ  

0.20 5.60 5.40 0.2 / 2π  
 

Table 2. Material parameters 
Elasticity modulus of the 

primary support 
( )cE Gpa  

Coefficient of the elastic resistance of 
surrounding rocks 

( )/K Mpa m  

20 400 
 
 The contact stress between the shotcrete and the 
surrounding rocks in the tunnel was measured by TXR-2020 
buried stress meters, and displacement was measured by the 
Leica TS-30 high-precision total station instrument. The 
measured displacement became stable after 24 days of 
excavation. The measurement data of the ZK23+590 section 
at 24 days of excavation are chosen. The contact stresses 
between the surrounding rocks and the shotcrete as well as 
displacement at the measuring points are presented in Table 
3 and in Table 4. The variation curves of the radial 
displacements and the contact stress are presented in Fig. 7 
and in Fig. 8. 

 
Table 3. Contact stress 
Number of  the Measuring  

points 
θ  Angle ( )rad  Contact stress 

( )p kPa  

1 0 42.3 
3 / 2π  17.8 
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Table. 4. Vertical and horizontal displacements 
Number of  the 

Measuring 
points 

θ  Angle 
( )rad  

Horizontal 
displacement 

( )x mmΔ  

Vertical  
displacement 

( )y mmΔ  

1 0 0.2 25.1 
2 / 3π  8.7 1.7 
3 / 2π  8.3 0.3 

 
 

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

R
ad

ia
l d

is
pl

ac
em

en
t(m

m
)

Time(day)

 θ1

 θ2

 θ3

 
Fig. 7.  Variation curve of radial displacement with time 
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Fig. 8.  Variation curve of contact stress with time 

 
4.2 Internal force analysis of primary support 
Internal forces during the excavation of the tunnel are 
calculated based on the model, which is constructed in 
Section 3.3. The sign of measured radial displacement is 
positive, indicating that the upper bench of the primary 
support developed free deformation in this stage. 
Meanwhile, the supporting structure does not bear the elastic 
resistance. The internal forces of the primary support should 
be calculated according to Eqs. (27)–(29). The vertical load 
component and the lateral pressure coefficient at this 
moment can be calculated by substituting the data in Table 3 
into Eqs. (32)–(33). The data in Table 4 are substituted into 
Eq. (37) so that the integration constants can be calculated. 
Next, the integration constants and the load parameters ( p  
and λ ) are brought into the deduced internal force 
expressions (Eqs. [27]–[29]) to calculate the internal forces. 

The internal forces are illustrated in the diagrams (Figs. 9–
11). 
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Fig. 9.  Shear force of the primary support 
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Fig. 10.  Axial force of the primary support 
 
 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

400

300

200

100

0

-100

-200

-300

-400

Be
nd

in
g 

m
om

en
t(k

N
.m

)

θ (rad)

 
Fig. 11.  Bending moment of the primary support 

 
The variation curves of the internal force with time 

(Figs.12–14) can be obtained by substituting the 
measurement data in Fig. 7 and in Fig. 8 into Eqs. (27)–(29). 
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Fig. 12.  Variation curve of shear force with time 
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Fig. 13.  Variation curve of axial force with time 
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Fig. 14.  Variation curve of bending moment with time 

 
It can be observed from Figs.12–14 that with the 

continuous release of surrounding rock loads, the internal 
forces of the primary support in the tunnel increases 
continuously over time and becomes stable after 24 days. 

In Figs. 10–12, the shear force of the primary support 
presents an inverted V-shaped variation with the increase of 
the θ angle, reaching the maximum at the position near 60°. 
The axial force is positively related with the θ angle and 
reached the maximum (260 kN) at the arch springing. The 
bending moment decreased continuously with the increase of 
the θ angle. The maximum and the negative bending 
moments are at the vault and at the arch springing. There is a 
positive bending moment near the vault in the θ angle range 
of about ±45°; however, the bending moment in the rest 
position is negative. According to internal force distribution 

characteristics, the arch springing section undertook a large 
bending moment and axial force, which deserve strong 
support and monitoring. The material mechanics formula 
can transform internal force to stress, thus allowing for the 
assessment of the cracking behavior of the support. 

The proposed method is also applicable to the full-
section excavation tunnel. Appropriate displacement 
measuring points will be added in the process of monitoring. 
The range of the detachment and the resistance zones could 
be judged according to the sign of the radial displacement. 
Later, the internal forces can be calculated utilizing the 
proposed methods. 
 
 
5. Conclusions 
 
To evaluate the internal forces accurately, a novel back-
analysis method based on radial displacement and contact 
stress was developed to estimate the internal forces of the 
primary support in deep symmetrically loaded tunnel. A case 
study was conducted to analyze the mechanical 
characteristics of the primary support obtained utilizing the 
proposed methods. The following conclusions could be 
drawn: 

(1) While constructing a symmetrically loaded tunnel, 
the internal forces of the primary support can be directly 
evaluated by radial displacement and contact stress. 

(2) The axial force is positively correlated with cross-
section angle,and the maximum axial force appears near the 
vault. The shear force presents an inverted V-shape variation 
with the cross-section angle, and the maximum shear force 
appears in a 60° position near the upper arch. The bending 
moment is negatively correlated with the cross-section 
angle. The maximum and minimum bending moments 
appear in the vault and in the arch springing, respectively. 
The maximum and minimum bending moment values of 
have opposite signs. 

(3) The arch springing is the weak section and should 
be strengthened by applying a secondary spraying of 
concrete or by adding a feet-lock bolt. Moreover, the lower 
benching and the inverted arch should be constructed as 
soon as possible.  

Thus, the back-analysis model based on theory of 
circular curved beam on elastic foundation was corrected in 
the proposed method to accurately evaluate the internal 
forces of the primary support in deep tunnels. However, the 
proposed method is limited to considering the effect of the 
symmetrical load. Further study should be conducted to 
evaluate the internal forces of shallow unsymmetrically-
loaded tunnels. 
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