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Abstract 
 

Lane departure collisions have contributed into the traffic accidents that cause millions of injuries and tens of thousands 
of casualties per year worldwide. Hence, a vision-based lane detection framework (VBLD) is proposed to detect lane 
markings on the road for unindented lane departure. The proposed VBLD framework is composed of colour space 
conversion, region of interest, lane marking segmentation, Hough transformation and peak detection, reverse Hough 
transformation, and draw detected lines on original image. Besides, finite impulse response saturation autothreshold 
(FIRSA) lane marking segmentation method is also proposed for lane edges extraction. For performance evaluation on 
the proposed VBLD framework and proposed FIRSA lane markings segmentation method, real-life datasets of road 
footages are collected using an instrumented vehicle. The outputs of lane detection frames from Clip #1, #2, #3, and #4 
involving variety of road conditions are evaluated using detection rate, false positive rate, and false negative rate 
assessment metrics where the number of frames are manually counted using visual inspection. Experimental results have 
shown the evidences of the proposed VBLD framework using proposed FIRSA lane markings segmentation method 
obtained satisfactory lane detection results compared to benchmark lane marking segmentation methods. 
 
Keywords: Lane Boundary Detection; Lane Markings Segmentation; False Positive Rate; False Negative Rate. 
 

 
1. Introduction 

 
Lane departure crashes count for the majority of highway 
fatalities and caused hundreds of human deaths, thousands 
of injuries, and billions of dollars in a loss every year. It is 
reported in [1], [2] that Malaysia had been ranked as the 
country with the highest fatality risk death per 100,000 
population, in the world since 1996. Based on World Health 
Organisation (WHO) statistics for 2013 as per reported in 
[3],[4] that Malaysia was among the emerging countries 
with the hazardous roads after Thailand and South Africa. 
This statistical data agreed with the general road accident 
statistics in Malaysia for 2013 [5].  
 In global point of view, the regional distribution of 
750,000 fatalities with almost half of all fatalities are coming 
from Asia in year 1999 [1], [2]. A similar trend of road 
fatalities as seen in year 1999, where the Asia continent 
holds more than half of all fatalities in year 2014 [6]. In 
between time period of 1999-2006, the worldwide average 
road traffic fatalities among motorised-four wheelers are 
estimated to be almost half of total fatalities at 45%, 
followed by pedestrians, motorcyclists, and bicyclists user 
groups at 31%, 18%, and 7%, respectively [7]. A similar 
order of distributed road traffic deaths by road user type in 
year 2013 was found in [8], where the 4-wheeled vehicles 
attained 35%, followed by pedestrians, motorized 2- or 3-
wheelers, cyclists and other road users at 31%, 22%, 11%, 

and 1%, respectively. Many related studies found in [9]–[11] 
had shown that single vehicle lane departure crashes 
accounted largely in road traffic deaths that results from 
drifting out of the roadway into oncoming traffic, into 
adjacent traffic or off the roadway. 
 Furthermore, the road fatalities statistical data found in 
[1], [6] had shown an incline trend in worldwide traffic 
fatalities compared to the previous years, which agrees with 
the predicted future development of road fatalities in 
different regions of the world [12], [13]. Particularly in the 
region of South Asia, the predicted number of road fatalities 
in year 2020 is more than 3.5 times higher of the total road 
fatalities recorded in year 1990.     
 In response to such stern problems, Lane Keeping 
Assistance (LKA) [14]; Lane Departure Warning (LDW) 
[15]–[17]; Lane Following (LF) [18], [19]; Lateral Control 
(LC); Intelligent Cruise Control (ICC); Collision Warning 
(CW) [20]; and Autonomous Vehicle Guidance [21] are 
called for by vehicle manufacturer industries to enhance the 
vehicle safety. 
 In general, research works on lane detection can be 
divided into two types. The first system is those without 
units of controllers, like LDW, Collision Warning (CW). 
This passive safety system only detects information and 
sends warning or reminding message if necessary. These 
systems are usually implemented in Driving Assistant 
System (DAS), instead of impacting on vehicles in 
autonomous vehicle guidance. The second type of system is 
designed with feedback namely active safety system, and 
with the aim of impacting on vehicle behaviour, which 
functions the way as a controller. In this paper, a passive 
type of lane detection framework is implemented.   
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 In this paper, a vision-based lane detection framework 
(VBLD) framework is proposed. The proposed VBLD 
framework is essentially consists of pre-processing stage and 
followed by detection stage. The pre-processing stage of 
VBLD framework is made up of colour space conversion, 
region-of-interest, and lane marking segmentation. The 
proposed finite impulse response saturation autothreshold 
(FIRSA) lane marking segmentation method used in this 
paper is represented by 2D-Finite impulse response (2D-FIR) 
filter followed by a saturation function and autothreshold. 
Whereas, the detection stage of VBLD framework is formed 
by Hough transformation and peak detection, reverse Hough 
transformation, and draw detected lines on original image. 
For the proposed VBLD framework performance evaluation, 
previous lane markings segmentation methods are used for 
comparative analysis. 
 The rest of this paper is organized as follows. Section II 
begins with the methodology of proposed VBLD framework, 
which contains pre-processing stage in subsection II-A and 
detection stage in subsection II-B. Section III contains the 
experimental results and discussion on the proposed VBLD 
framework. The experimental test bed is elaborated in 
subsection III-A, where the camera used in this paper is 
introduced in subsection III-B and description of real-life 
datasets in subsection III-C. The experimental results and 
discussion are detailed in subsection III-D. The paper is 
concluded and presented future work in section IV. 
 
 
2. Materials and Methods 
 
The VBLD framework is developed by using MATLAB 
Simulink software. Basically, the VBLD framework consists 
of two essential stages, which is pre-processing stage and 
followed by detection stage. Figure Fig. 1 shows an overall 
flow chart involving the proposed VBLD framework. In this 
section, the pre-processing stage of VBLD framework is 
introduced first in subsection II.A and followed by detection 
stage of VBLD framework in subsection II.B. 
 
2.1 Pre-processing Stage 
The pre-processing stage mainly consists of three main 
components, which is colour space conversion, a Region of 
Interest, and FIRSA lane marking segmentation method in 
the sequence order. The pre-processing stage depends on the 
input image (step 1. in Figure Fig. 1) from a Logitech C525 
camera [22], which is fixed at the centre of front windscreen 
to capture the road footages [23], [24]. To simplify the 
problem, the camera is assumed that it is setup to make the 
baseline horizontal, which assures the horizon in the image 
(parallel to the X-axis of image plane). In this paper, it is 
assumed that the input image resolution to the pre-
processing stage is a 320 x 180 Red, Green, Blue (RGB) 
colour image. 
 As an initial step, the input RGB colour image is 
converted into grayscale to obtain the grayscale image (step 
2. in Figure Fig. 1). The captured colour image in RGB 
colour space is converted to grayscale colour space so that to 
reduce the processing time, less computational, and less 
sensitive to scene condition. Equation (1 represents the 
function which is to be applied on RGB image for 
converting the original image to grayscale image. The 
original image from frame 1 of Clip #1 is shown in Figure 
Fig. 2, while Figure Fig. 3 shows the grayscale conversion of 
the original image. 
 

 
Fig. 1. Flow chart of vision-based lane detection and vision-based lane 
departure warning frameworks. 
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where 
 ʹR    - Red component of the image 
 ʹG   - Green component of the image 
 ʹB   - Blue component of the image 
 
 The reason for employing a pre-processing stage is 
because the frame images in video taken in real world 
contain significant outliers other than actual lane markings. 
Images need to be properly prepared with outliers filtered 
out, depending on the requirements of different computer 
vision systems. It can be realized by finding a Region of 
Interest (ROI) and then followed by applying lane marking 
segmentation. Figure Fig. 6a shows the grayscale image after 
applying ROI onto the original frame image, and apparently 
the bottom half region of the image is selected as ROI [16] 
(step 3. in Figure Fig. 1). Commonly, the upper region of the 
frame image is considered as outliers due to unwanted 
features such as vehicles, road sign, and roadside trees. The 
image resolution of ROI image is reduced to 320 x 90. 
 The flow chart of FIRSA lane marking segmentation 
method as highlighted in red colour (step 4. in Figure Fig. 1) 
is mainly consist of three important blocks, which is a 2-
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Dimensional Finite Impulse Response (2-D FIR) filter block, 
followed by a Saturation block, and an Autothreshold block 
as illustrated in Figure Fig. 4. The FIRSA lane marking 
segmentation method is applied in step 4. of VBLD 
framework as shown in Figure Fig. 1. The 2-D FIR filter is a 
basic filter for image processing, which used to support in 
edge extraction [25] and noise removal [26]. Edge extraction 
is essential in image processing because edges represent a 
significant portion of characteristics contained in an image, 
for example the printed lane markings on road surface for 
lane detection application. In this paper, 2-D FIR filter [27] 
is used to extract the lane markings printed on the road 
surface for lane detection application. The 2-D FIR edge 
extraction is designed for the regions where light intensity 
changes slowly. It can differentiate the edge and to smooth 
the noise in a nosy image simultaneously. It is also 
computationally more efficient than the popular Laplacian of 
Gaussian method [26]. 
 
 

 
Fig. 2. Original frame 1 image from Clip #1. 
 

 
Fig. 3. RGB to gray-scale conversion of the original frame 1 image 
from Clip #1. 
 
 In [27], 2-D FIR filtering operation in spatial 
convolution may be achieved using a neighbourhood 
averaging method, where the H(i,j) pixel value is changed to 
the C(i,j) pixel value as shown in Equation     (2. In 
Equation     (2, A denote the filter kernel and * 
denotes the convolution operation. The edge detection filter 
kernel in this case is 1 x 3 and each pixel in the filter kernel 

is as shown in Equation   
A = −1 0 1⎡

⎣
⎤
⎦

  
    (3. 
 

 
Fig. 4. Flow chart of Finite Impulse Response Saturation Autothreshold 
lane marking segmentation method as highlighted in red colour. 
 

  
C i, j( ) = A m, n( )

n=0

Na−1( )

∑
m=0

Ma−1( )

∑ * H i − m, j − n( )      (2) 

 

  
A = −1 0 1⎡

⎣
⎤
⎦       (3) 

 
where   0 ≤ i < Ma + Mh −1  and   0 ≤ j < Na + Nh −1  for full output 
size and replicate padding is applied for the pixels reference 
outside the image boundary. C(i,j) is the filtered image, H(i,j) 
is the ROI grayscale image,  A  is the filter kernel, m, n are 
the discrete spatial coordinates of the filter kernel, Ma, Na 
are the original image dimensions, and Mh, Nh are the filter 
kernel dimensions. Suppose that the filter kernel pixels are 
given as shown in the Figure Fig. 5 and every pixel of the 
filter kernel is considered by   −1 ≤ m ≤ 1  only. Since the filter 

kernel in Equation   
A = −1 0 1⎡

⎣
⎤
⎦

      (3 
is a single row filter kernel, Equation     (2 can be reduce to 
Equation   (4. 
 

  
C i, j( ) = A m, n( )

m=−1

m=1

∑ * H i − m, j( )    (4) 

 
Fig. 5. Discrete spatial coordinates of the filter kernel. 
 
 Figures Fig. 6a-Fig. 6b show the input ROI grayscale 
image and the surface plot of input ROI grayscale image for 
frame 1 image of Clip #1, respectively. The irregularity is 
observed in the input ROI grayscale image surface plot as 
shown in Figure Fig. 6b due to unwanted noises appear on 
the road surface and side road. Still, the lane markings 
appeared as white pixels in Figure Fig. 6a are able translated 
as the peaks in Z-axis of surface plot in Figure Fig. 6b. In 
order to remove unwanted noise pixels appeared in the input 
ROI grayscale image and distinctly extract the lane markings 
from the input ROI grayscale image, 2-D FIR filter is then 
applied onto the input ROI grayscale image. Figures Fig. 6c-
Fig. 6d show the filtered image and the surface plot of 
filtered image for frame 1 image of Clip #1, respectively. 
From the filtered image and surface plot of filter image, it is 
noticed that the lane markings white pixels in Figure Fig. 6c 
are clearly stand out from the rest of the image pixels, which 
translated into distinct peaks with flat reference surface at 
zero intensity in Figure Fig. 6d. Still, non-positive distinct 
peaks are observed in the surface plot of filtered image in 
Figure Fig. 6d due to  [ −1 0 1 ]  filter kernel used in 2-D 
FIR. Hence, in order to remove non-positive distinct peaks 
appeared in Figure Fig. 6d, a saturation is applied to the 
filtered image as shown in the flow chart of FIRSA lane 
marking segmentation method in Figure Fig. 4. 

The output signal of 2-D FIR is connected to a saturation 
block as shown in Figure Fig. 4, which produces an output 
signal that is the value of the input signal bounded to the 
upper saturation value of (1) and lower saturation value of 
(0). The specified upper and lower limits are used to saturate 
the unwanted range of signals (C(i,j) < 0). Figures Fig. 6e-
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Fig. 6f show the saturated image and the surface plot of 
saturated image for frame 1 image of Clip #1, respectively. 
It is observed that the non-positive distinct peaks have been 
saturated to a reference intensity value of (0). The saturated 
signals are then connected to the autothreshold block as 
shown in Figure Fig. 4. 

 
(a) Input Region on Interest 
grayscale image  

(b) Surface plot of grayscale 
image 

 
(c) Filtered image  

(d) Surface plot of filtered 
image 

 
(e) Saturated image  

(f) Surface plot of saturated 
image 

Fig. 6. Images (a), (c), and (e) represent the input Region of Interest 
grayscale image, filtered image, and saturated image for frame 1 of Clip 
#1 original image, respectively. Images (b), (d), and (f) represent the 
surface plot of grayscale image, surface plot of filtered image, and 
surface plot of saturated image for the frame 1 of Clip #1 original image, 
respectively. 
 
 Autothreshold block in the flow chart of FIRSA lane 
marking segmentation method as shown in Figure Fig. 4 is a 
binarization step, which required to highlight the lane 
marking of the filtering images. The core problem of 
binarization is how to determine the optimal threshold; if the 
threshold is excessively large, then a lane edge point will be 
missed or some redundant information will be detected. The 
FIRSA lane marking segmentation method employed Otsu 
thresholding method to perform binarization [28]. 
 In this Otsu thresholding method, the histogram of image 
pixel values is examined for choosing a threshold 
automatically. The idea of this Otsu thresholding method is 
to search for two peaks, one representing foreground pixel 
value and one representing background pixel value, and 
choose a point in between the two peaks as the threshold 
value. The frame 1 of Clip #1 filtering image is chosen and 
applied Otsu thresholding method to get a normalised 
threshold value. Then, the normalized threshold value 
(highlighted in red solid line) is plotted together with the 
histogram for the frame 1 of Clip #1 filtering image as 
shown in Figure Fig. 7. The thresholded image based on 
Otsu thresholding method for frame 1 of Clip #1 filtering 
image is as shown in Figure Fig. 8. 
 The threshold selection work is based on entirely on the 
set of histogram counts. To show the Otsu thresholding 
computation, pixels can take on the set of values   i = 1,2,…, L , 
where L represents the gray levels of the pixels for frame 1 
of Clip #1 filtering image. The histogram count for pixel 
value i is  ni , and the associated probability is   pi = ni / N , 
where N is the number of image pixels. The thresholding 

task is formulated as the problem of dividing image pixels 
into two classes.   C0  is the set of pixels with values   1,…, k[ ] , 

and   C1  is the set of pixels with values in the range 

  k +1,…, L[ ] , where k is the level of threshold value. The 

overall class probabilities,  ω0  and  ω1 , are shown in 
Equations  (5 and   (6, respectively. 
 

 
Fig. 7. Histogram and a normalized threshold (highlighted in red solid 
line) for the frame 1 of Clip #1 filtering image. 

 

 
Fig. 8. Thresholded image for the frame 1 of Clip #1 filtering image. 

 

  
ω0 = pi = ω k( )

i=1

k

∑     (5) 

 

  
ω1 = pi

i=k+1

L

∑ = 1−ω0 k( )      (6) 

 
 The class means,  µ0  and  µ1 , are the mean values of the 

pixels in   C0  and   C1 . They are given by Equations  (7 and   
(8 [29]–[32],    
 

  
µ0 = ipi / ω0 = µ k( ) / ω k( )

i=1

k

∑   (7) 

 

  
µ1 = ipi / ω1 =

µT − µ k( )
1−ω k( )

i=k+1

L

∑    (8) 

 
where 

  
µ k( ) = ipi

i−1

k

∑      (9) 

and  µT , the mean pixel value for the total image is shown in 
Equation     (10. 
 

  
µT = ipi

i=1

L

∑
    

(10) 
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 The class variances,  σ 0
2  and  σ 1

2 , are shown in Equations  
(11 and     (12, respectively. 

 

  
σ 0

2
= i − µ0( )2

pi / ω0

i=1

k

∑   (11) 

 

  
σ 1

2
= i − µ1( )2

pi / ω1

i=k+1

L

∑
    

(12) 

 
[28] mentioned three measures of goodness class 
separability namely within-class variance ( λ ), between-
class variance ( κ ), and total variance (η ). These are given 
by Equations (13, (14, and (15, respectively, 

 

  λ = σ B
2  (13) 

 

  κ = σ T
2 / σW

2  (14) 
 

  η =σ B
2 /σ T

2  (15) 
 
where  
 

  σW
2
= ω0σ 0

2
+ω1σ 1

2

   (16) 
 

  σ B
2
= ω0 µ0 − µT( )2

+ω1 µ1 − µT( )2
= ω0ω1 µ1 − µ0( )2

  (17) 
 
[28] went on to point out that maximizing any of these 

criteria is equivalent to maximizing the others. Further, 
maximizing η  is the same as maximizing   σ B

2 , which can be 
rewritten in terms of the selected threshold,  k  as shown in 
Equation    (18. 

 

  
σ B

2 k( ) =
µTω k( ) − µ k( )[ ]2

ω k( ) 1−ω k( )[ ]
   (18) 

The Equation    (18 is the essence of 
the algorithm.   σ B

2  is computed for all possible threshold 

values, and the threshold value that maximises   σ B
2  is chosen. 

Figure Fig. 9 illustrated the plot of histogram and   σ B
2  with 

the Otsu thresholding method choosing the place, where   σ B
2  

is the highest as the threshold (highlighted in red colour 
dashed line) for frame 1 of Clip #1 filtering image. 

 
Fig. 9. Plot of histogram and   σ B

2  with the peak of   σ B

2  chosen as the 

threshold for the frame 1 of Clip #1 filtering image. 
 
2.2 Detection Stage 
The Hough transform (HT) [33] is a technique that 
recognizes specific configuration of points in an image, such 
as lane segments, curves, or other patterns. The fundamental 
principle is that the form sought may be expressed via a 
known function depending on a set of parameters. A 
particular instance of the form sought is therefore entirely 
specified by the values taken by such a set of parameters. 
 For example, by taking as a representation of straight 
lanes, the Equation (19, any straight lane is entirely specified 
by the value of the parameters (a,b). Equivalently, if one 
takes a different type of representation, as in Equation  
  (20, the straight lane is completely specified by the 
pair  (ρ,θ ) . 
 
 Y = aX + b  (19) 
 

  ρ = X cos θ( ) +Y sin θ( )    (20) 
 
 To illustrate on how the detection stage operated, the 
edge detection is performed on the frame 1 image of Clip #1 
as shown in Figure Fig. 8 so that to find the left and right 
lane edges of the segmented lane markings in the binary 
image. In this paper, a standard Hough transformation is 
used to perform edge detection to the lane markings (step 5. 
in Figure Fig. 1). Figure Fig. 10 shows the result of Hough 
transformation in parameter plane for the frame 1 of Clip #1 
image with theta, θ , resolution configured to  π / 180  
radians and rho, ρ , resolution is configured to 1. The range 
of theta, θ , is configured within the range of -1.2217 radians 
to 1.1868 radians. Local maxima detection is applied onto 
the parameter plane to extract the peaks that correspond to 
the left and right lane boundaries (step 5. in Figure Fig. 1). 
Figure Fig. 10 shows the results of local maxima detection 
with the highlighted two red squares to indicate right and left 
lane boundaries at (-0.8901,120) and (1.1,58), respectively. 
The local maxima is configured with two maxima number of 
local maxima, neighbourhood size at [319~89], and 
threshold equals to 1. 
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Fig. 10. Hough transformation and hough peaks (two red squares) in 
parameter plane for the frame 1 of Clip #1 image. 
 

 A reserve Hough transformation is carried out on the 
hough peaks in order to display the detected lane boundaries 
for the frame 1 of Clip #1 image (step 6. in Figure Fig. 1). A 
reserve Hough transformation's step involved the 
identification of the Cartesian coordinates of intersection 
between the reference image boundary lines and the lines 
described by  (ρ,θ )  pairs. Figure Fig. 11 shows the example 
of Line 1 intersecting the boundaries of the reference image 
at   [( X11,Y11) ( X12 ,Y12 )]  and Line 2 interesting the boundaries at 

  [( X 21,Y21) ( X 22 ,Y22 )] . The Cartesian coordinates of   ( X11,Y11) , 

  ( X12 ,Y12 ) ,   ( X 21,Y21) , and   ( X 22 ,Y22 )  can be calculated from the 
Equation 20. Whereas, Figure Fig. 12 shows the results of 
reverse Hough transformation with the ROI grayscale image 
for frame 1 image of Clip #1 as the ground truth. The image 
boundary intersection points are highlighted using black 
colour "X-mark" marker with the black colour solid lines 
represent Hough lines as shown in Figure Fig. 12. Both of 
the Hough lines are inline with the ground truth left and 
right lane boundaries. The (-0.8901, 120) Hough peak 
indicates left lane boundary and (1.1, 58) Hough peak 
indicates right lane boundary. 

 
Fig. 11. Example illustration of Hough lines intersection. 
 

 
Fig. 12. Hough lines on the Region of Interest grayscale image for 
frame 1 of Clip #1. 
 
 The Cartesian coordinates for   (Y11) ,   (Y12 ) ,   (Y21) ,  and 

  (Y22 )  are required to be extended for another 90 pixels 
vertically due to the selection of bottom half of image as 

ROI. The Cartesian coordinates for   ( X11,Y11)  and   ( X12 ,Y12 )  
are linked with an overlay red line that correspond to the left 
lane boundary (step 7. in Figure Fig. 1). Whereas, the 
Cartesian coordinates for   ( X 21,Y21)  and   ( X 22 ,Y22 )  are linked 
with an overlay red line that correspond to the right lane 
boundary (step 7. in Figure Fig. 1). Both overlaid red lines 
show correct lane detection in original image for frame 1 of 
Clip #1 as shown in Figure 13. 

 
Fig. 13.Correct lane detection for the frame 1 image of Clip #1. 
 
 
3. Results and discussion 
 
This section is organized into 4 subsections, which covers 
the experimental test bed, camera setup, description of real-
life datasets, and experimental results and discussion in 
sequence order. Emphasis will be laid in subsection III-D for 
presenting the lane detection performance evaluation on the 
proposed FIRSA and benchmark lane marking segmentation 
methods using the proposed VBLD framework. 
 
3.1 Experimental Test Bed 
The proposed VBLD framework is implemented with 
MATLAB and Simulink, under the operating system of 
Windows 10, using Intel core i5 8250U processor and 4 GB 
RAM. Figure Fig. 14 shows how the video clip footages are 
acquired off-line so that trimming can be done on the video 
clip footages before running the proposed VBLD simulation. 
The experimental test bed setup used for the experimentation 
is shown in Figure Fig. 15. The instrumented vehicle used in 
the experimentation is Perodua Kancil 660 EX [34]. 
 
3.2 Camera Setup 
The video sensing device that used to collect video footages 
is a Logitech C525 [22]. The camera is attached to the front 
windscreen at a height of 1.045 m above the ground and 
located at the centre of windscreen as shown in Figure Fig. 
16. The frame rate of the video is 30 frame per second (FPS). 
Since the frame size has an enormous impact on the total 
speed of the system, the images resolution are reduced to 
320 x 180 after being captured from camera, for real-time 
image processing. 

 
Fig. 14. Experimental test bed for acquiring real-life datasets for the 
vision-based lane detection framework. 
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Fig. 15. The experiment test bed setup in Perodua Kancil 660 EX. 
 
3.3 Real-life Datasets 
For the proposed VBLD framework, sunny, cloundy, light 
rain, and heavy rain driving environments were considered 
for lane detection performance evaluation. Clip #1, #2, #3, 
and #4 were acquired off-line from highway and urban roads 
in Malacca City during the sunny, cloundy, light rain, and 
heavy rain driving environments. These video clips represent 
common scenarios with different weathers, road surfaces, 
illumination conditions, and traffic density, which drivers 
might encountered in real-life. The details of real-life 
datasets for respective road footages are tabulated in Table 1. 

 
Fig. 16. The schematic diagram of camera position on section view. 

 
 

Table 1. Real-life Datasets of Acquired Road Footages 
Parameters Clip #1 Clip #2 Clip #3 Clip #4 
Weather Sunny Cloudy Light rain Heavy 

rain 
Location Highway Urban Urban Urban 

Traffic condition Medium Heeavy Light Medium 
Road surface Smooth Rough Flat Rough 
Frame no. 1946 3296 4496 1556 
Frame speed 30 FPS 30 FPS 30 FPS 30 FPS 
Frame resolution 320 x 180 320 x 

180 320 x 180 320 x 
180 

Lane 
marking/frame 4 4 3 3 

Lane colour White  White  White White 
Dash lane  Yes Yes Yes Yes 
Solid lane Yes Yes Yes Yes 
 
3.4 Experimental Results and Discussion 
In this subsection, tabularly comparative experiments are 
performed to evaluate the efficiency and accuracy of the 
proposed FIRSA lane marking segmentation method using 
the proposed VBLD framework.  
 

 
(a) Urban area: lane marking 
occluded with vehicles, heavy 
rain 

 
(b) Urban area: wet and 
reflective road surface, heavy rain 

 
(c) Urban area: printed road-sign 
with curvy lane markings, light 
rain 

 
(d) Urban area: road signboard, 
light rain 

 
(e) Urban area: heavy traffic with 
multiple lane markings, cloudy 
weather 

 
(f) Urban area: blurry lane 
markings in front traffic light, 
cloudy weather 

 
(g) Highway: multiple lane 
markings with medium traffic, 
sunny 

 
(h) Highway: crossing lane with 
medium traffic, sunny 

Fig. 17. Correct lane detection using the proposed FIRSA lane marking 
segmentation method in the proposed VBLD framework. 
 

 Figure Fig. 17 shows some frame images with 
correct detection of lane markings. These pictures show that 
the proposed FIRSA lane marking segmentation method 
performs well in variety of real world scenarios. The 
proposed FIRSA and benchmark lane marking segmentation 
methods are implemented and included in Tables Table 2. I, 
 In Clip #1, the proposed FIRSA lane marking 
segmentation method increases the detection rate from 43.63 
% of Canny method to 96.45 %, which dramatically 
decreases the FPR from 54.73 % to 3.44 %. Furthermore, the 
proposed FIRSA lane marking segmentation method 
decreases FPR and FNR compared to the benchmark lane 
marking segmentation methods (Canny, Sobel, Prewitt, and 
Roberts). 
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T, T, and Table for comparative performance evaluation. In 
benchmark lane markings segmentation methods, Canny 
method uses lane marking segmentation founded on the 
Canny algorithm [35], followed by Hough transformation to 
detect lane markings. The Sobel method uses lane marking 
segmentation founded on Sobel algorithm [36], followed by 
Hough transformation to detect lane markings. The Prewitt 
method uses lane marking segmentation founded on Prewitt 
algorithm [37], followed by Hough transformation to detect 
lane markings. Whereas the Roberts method uses lane 
marking segmentation founded on Roberts algorithm [38], 
followed by Hough transformation to detect lane markings. 
The reason behind this choice is to show the precision and 
effectiveness of the proposed FIRSA lane marking 
segmentation method against benchmark lane marking 
segmentation methods. Admitting the drawbacks of the 
proposed FIRSA lane marking segmentation method, some 
images with lane detection failure have been illustrated in 
Figure Fig. 18, also served as a demonstration about the false 
positive and false negative results. 
 The evaluation of each lane marking segmentation 
method is performed by using some performance assessment 
metrics. The total number of all frame images formula is 
given in Equation 21. The formula used to calculate 
detection rate (DR) metric is shown in Equation 22. Two 
additional metrics are used, which are false positive rate 
(FPR) and false negative rate (FNR). False positive and false 
negative are considered the presence or absence of lane 
markings, respectively. FPR refers to the probability of 
falsely selecting a given object or contours such as vehicles, 
curbs of road, trees or electric poles, as a lane marking. The 
formula used to calculate FPR is shown in  Equation 23. On 
the other hand, FNR refers to the situation when a lane 
marking is falsely rejected by the lane detection scheme. The 
formula used to calculate FNR is shown in Equation 24. 
 

 
N

Total
= N

DR
+ N

FPR
+ N

FNR
   (21) 

 

  
DR =

N
DR

N
Total

×100%    (22) 

  
FPR =

N
FPR

N
Total

×100%    (23) 

 

  
FNR =

N
FNR

N
Total

×100%  (24) 

 
where  
 

 
N

Total
 - Total number of all frame images 

 N DR  - Total number of correctly detected frame images 

 N FPR  - Total number of false positive frame images 

 N FNR  - Total number of false negative frame images 
 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
(g)  

 
(h)  

Fig. 18. Example of false positive and false negative results of the 
proposed FIRSA lane marking segmentation method: images (a) and (e) 
show the false positive results as well as correct detection; images (b), 
(c), (f), (h)  show the false positive results for one lane marking while 
the other one being correctly detected; images (d) and (g) show the false 
negative results for right lane marking while the left lane marking is 
being correctly detected. 
 
 
 Different experimental results are presented in Tables 2, 
3, 4, and 5 for sunny, cloudy, light rain, and heavy rain 
weather, respectively. Table 2shows that the proposed 
FIRSA lane marking segmentation method performs better 
than the benchmark lane marking segmentation methods for 
Clip #1, which represents a common situations in the 
highway.  
 
Table 2. IComparison of lane marking segmentation 
methods for Clip #1 

Methods Detection 
Rate 

False 
Positive 
Rate 

False 
Negative 
Rate 

Proposed 
FIRSA 96.45 % 3.44 % 0.10 % 

Canny 43.63 % 54.73 %  1.64 % 
Sobel 74.20 % 25.64 % 0.15 % 
Prewitt 72.61 % 27.29 % 0.10 % 
Roberts 76.57 % 23.07 % 0.36 % 
 
 In Clip #1, the proposed FIRSA lane marking 
segmentation method increases the detection rate from 43.63 
% of Canny method to 96.45 %, which dramatically 
decreases the FPR from 54.73 % to 3.44 %. Furthermore, the 
proposed FIRSA lane marking segmentation method 
decreases FPR and FNR compared to the benchmark lane 
marking segmentation methods (Canny, Sobel, Prewitt, and 
Roberts). 
 
Table 3. Comparison of lane marking segmentation methods 
for Clip #2 

Methods Detection 
Rate 

False 
Positive 
Rate 

False 
Negative 
Rate 

Proposed 
FIRSA 86.17 % 13.83 % 0.00 % 

Canny 64.08 % 35.62 %  0.30 % 
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Sobel 90.66 % 9.34 % 0.00 % 
Prewitt 89.96 % 10.04 % 0.00 % 
Roberts 91.66 % 8.34 % 0.00 % 
 
 It is shown in Table 3, in spite of highest detection rate 
and false positive rate in Clip #1, the proposed FIRSA lane 
marking segmentation method possesses some instability 
when it comes to Clip #2, which having detection rate of 
86.17 % and false positive rate of 13.83 %. The proposed 
FIRSA lane marking segmentation method encountered 
slightly higher false positive rate mainly due to the incorrect 
lane marking detection, particularly the one on the right lane 
marking as illustrated in Figure Fig. 18e. Instead of detecting 
the right lane marking for driving direction, the proposed 
FIRSA lane marking segmentation method detected the right 
lane marking for oncoming driving direction as well, hence, 
the false positive detection result. Benchmark lane marking 
segmentation methods have much higher detection rate 
(91.66 % for Roberts method, 90.66 % for Sobel method, 
and 89.96 % for Prewitt method) and lower fals positive rate 
(only 8.34 % for Roberts method, 9.34 % for Sobel method, 
and 10.04 % for Prewitt method) except Canny method. This 
fact is mainly because poor illumination during cloudy 
weather makes the noisy edges less visible. It is also worth 
to take note that the Canny method performs adequately 
better in Clip #2 compared to Clip #1, #3, and #4, in spite of 
lower detection rate, and higher false positive rate and false 
negative rate in most cases. 
 Table T shows that the proposed FIRSA lane marking 
segmentation method in Clip #3 achieved highest detection 
rate of 97.53 % and lowest false positive rate of 2.45 %. The 
proposed FIRSA lane marking segmentation method 
increases the detection rate by 0.82 %, 1.67 %, 1.78 %, and 
65.59 %, compared to Roberts, Sobel, Prewitt, and Canny 
methods, respectively. To eliminate the instability of Canny 
method, the proposed FIRSA lane marking segmentation 
method can be used to enhance the false positive rate result 
effectively. Besides false positive rate, the proposed FIRSA 
lane marking segmentation method performs significantly 
better than the benchmarks lane marking segmentation 
methods during light rain weather condition. This 
phenomenon can be related to the evidence on the proposed 
FIRSA lane marking segmentation method works better than 
the benchmark lane marking segmentation methods for lane 
detection. 
 
Table 4.Comparison of lane marking segmentation methods 
for Clip #3 

Methods Detection 
Rate 

False 
Positive 
Rate 

False 
Negative 
Rate 

Proposed 
FIRSA 97.53 % 2.45 % 0.02 % 

Canny 31.94 % 66.05 %  2.02 % 
Sobel 95.86 % 4.11 % 0.02 % 
Prewitt 95.75 % 4.23 % 0.02 % 
Roberts 96.71 % 3.29 % 0.00 % 

 
 Table Table shows the proposed FIRSA lane marking 
segmentation method attained 91.20 % of detection rate and 
8.80 % of false positive rate in Clip #4. As seen from Table 
Table, detection rate from the Canny method is mostly lower 
than those of the proposed FIRSA, Sobel, Prewitt, and 
Roberts lane marking segmentation methods. Also, Clip #4 
only brings a slight advantage in favour of Roberts method 
(only 1.09 % greater than the proposed FIRSA lane marking 

segmentation method), while in other two scenarios (Clip #1 
and Clip #3), the proposed FIRSA lane marking 
segmentation method seems to have better performance than 
Roberts method. This situation can be related to the 
agreement on the proposed FIRSA lane marking 
segmentation method works better than the benchmark lane 
marking segmentation methods for lane detection. Also, it is 
noticeable that, as a result of poor illumination during heavy 
rain weather and unpredictable illumination interference of 
vehicles, the  proposed VBLD framework may perform 
worse than it does during sunny weather, which is reflected 
experimentally in Table Table, Figures Fig. 18a, and Fig. 18b 
of Clip #4.  
Table 5.Comparison of lane marking segmentation methods 
for Clip #4 

Methods Detection 
Rate 

False 
Positive 
Rate 

False 
Negative 
Rate 

Proposed 
FIRSA 91.20 % 8.80 % 0.00 % 

Canny 24.87 % 72.62 %  2.51 % 
Sobel 90.49 % 9.51 % 0.00 % 
Prewitt 89.65 % 10.35 % 0.00 % 
Roberts 92.29 % 7.71 % 0.00 % 
 
 It is concluded that, during rainy weather, the 
successfulness of the proposed VBLD framework using the 
proposed FIRSA lane marking segmentation method mainly 
depends on clarity of the printed lane markings on road 
surface and sometimes on illumination availability on the 
road. 
 
Table 6.Comparison of lane detection results 

Algorithm 
Average 
Detection 
rate, % 

Average 
False 
Detection, 
% 

Missed 
detection 
rate, % 

Sukriti et al. 
(2014)[39]  99.97 2.18 - 

Gaikwad 
and 
Lokhande 
(2015) [40] 

97.29 2.86 3.79 

Bhujbal and 
Narote 
(2015) [41] 

98.90 1.64 -  

Proposed 
VBLD 92.84 7.16 0 

 
 Table T compares the lane detections of the existing lane 
detection algorithms found in the literature with the 
proposed VBLD framework. Based on this comparison, the 
straight and curved lanes were considered in [39], [40] for 
the average detection rate, average false detection rate, and 
missed detection rate analysis, where the early stage of the 
development of lane detection algorithms was focused on 
detecting straight and curved lanes. Due to advances in DAS 
and awareness of vehicle safety, daytime and night-time 
driving environments were considered in the recent 
developments of lane detection algorithms [41]. Although 
the proposed VBLD framework uses sunny, cloudy, light 
rain, and heavy rain driving environment groupings in the 
lane detection and false detection analysis, straight and 
curved lanes are also considered in road footage Clips #1-#4. 
Based on the comparison in Table T, VBLD uses less 
computational time per frame at 6.7 ms than the existing 
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lane detection algorithm [39], [40] at 80 ms and 35 ms, 
respectively. It can be seen in Table T that the existing 
studies of lane detection algorithms in the literature use only 
a small number of image frames to evaluate their 
performance, which hardly validates their lane detection 
performance under varied road conditions. The proposed 
VBLD used 11,294 frames of road footage for its lane 
detection analysis with a zero missed detection rate for all 
Clips. 
 
 
4. Conclusions 

 
In this paper, a vision-based lane detection (VBLD) 
framework and finite impulse response saturation 
autothreshold (FIRSA) lane marking segmentation method 
have been proposed. The vision-based lane detection 
framework composed of colour space conversion, region of 
interest, and FIRSA lane marking segmentation method for 
pre-processing stage. In the detection stage, the Hough 
transformation and peak detection, reverse Hough 
transformation, and the drawing of the detected lines in the 
original image are implemented. Road footage from 
highway and urban roads in the city of Malacca were 
collected for evaluating the performance in lane detection. 
The detection rate and the false positive rate were studied. 

Lane detection rates of 96.45 %, 86.17 %, 97.53 %, and 
91.20 % were achieved on Clip #1, #2, #3, and #4, 
respectively. The corresponding false positive detection 
rates were 3.44 %, 13.83 %, 2.45 %, and 8.80 %. 
Experimental results have shown the evidences of proposed 
VBLD framework using the proposed FIRSA lane markings 
segmentation method obtained satisfactory detection rate 
and false positive rate results compared to benchmark lane 
markings segmentation methods. The future work includes 
mainly the coverage of all-weather test environments. As a 
part of the intelligent transportation system, lane detection 
performance can be further enhanced with inclusion of 
tracking element for smoother lane detection results. 
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