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Abstract 
 

Reliability redundancy allocation is a combinatorial optimization problem, and numerous intelligent evolutionary 
algorithms (e.g., genetic algorithm and ant colony optimization) have been proposed to solve it. However, various 
shortcomings, such as problem specificity and high complexity, hinder their applications. An integer encoding genetic 
algorithm, namely, integer matrix chromosome encoding scheme, was proposed to improve the effectiveness and 
computational efficiency of redundancy allocation for series-parallel systems and represent the component mixing in 
subsystems with integers. The related crossover with a binary window and mutation using a matrix with random float 
numbers was developed to perform combinatorial evolution. The adjusting operator was designed to guarantee the 
feasibility of chromosomes, combined with the non-dominated sorting genetic algorithm (NSGA-II) in which a constraint 
Pareto dominance was introduced to handle design constraints without external coefficients. Numerical and engineering 
examples of an agricultural Internet of Things for greenhouse planting were provided to illustrate the effectiveness of the 
proposed algorithm. Results show that the proposed novel algorithm can solve a typical model for reliability redundancy 
allocation, i.e., a non-maintained bi-state series-parallel system with active redundancy and component mixing strategy. 
The constraint Pareto dominance is introduced on the basis of the traditional NSGA-II to avoid the complexity and 
instability of penalty function approaches. The constructed three-objective redundancy allocation problem model can 
measure the trade-off relationship among three objectives, namely, system reliability, cost, and weight. The improved 
NSGA-II has the best stability when the optimized value for crossover probability is 0.98 and the mutation probability is 
set to a small value. Advantages of the presented model and method include its convenience and suitability for different 
genetic evolutionary platforms. 

 
Keywords: Reliability redundancy allocation, Series-parallel system, Combinatorial optimization, Integer encoding genetic algorithm,  
NSGA-II 
____________________________________________________________________________________________ 

 
1. Introduction 

 
With the increasing sophistication of today’s engineering 
systems, considerable concerns are being placed on system 
reliability; thus, redundancy allocation becomes an 
important aspect in system reliability design. Reliability 
redundancy allocation appoints the components’ redundancy 
strategies for subsystems to optimize the reliability of the 
entire system under the constraints of system cost and/or 
weight. On the basis of different system redundancy 
strategies and constraints, the redundancy allocation problem 
(RAP) for series-parallel systems may consider the 
following options [1]: (a) active or cold-standby redundancy, 
(b) component non-mixing or mixing schemes, (c) non-
maintained or maintained systems, and (d) bi- state or multi-
state systems. Reliability redundancy allocation is crucial in 
various types of mechanical and electrical systems. 

Generally, RAP is evaluated by formulating nonlinear 
integer optimization problems, which consider a single 
objective (e.g., maximizing system reliability). The single-
objective RAP is known as an NP-hard problem [2], which 

has been solved using a number of optimization approaches 
for different formulations, as summarized by Wang [3]. 
Ardakan [4] presented a problem formulation and solution 
methodology for the general single-objective RAP when the 
redundancy strategy of all subsystems is a cold standby. 
Teimouri [5] proposed two meta-heuristic methods to solve 
single-objective RAPs. Considering the conflicting 
objectives among system reliability, cost, and weight, multi-
objective RAP (MORAP) was recently solved with 
evolutionary algorithms. The encoding scheme of 
individuals is an important aspect for solving RAPs with 
evolutionary algorithms. As an integer combination problem, 
RAP differs from the traditional design optimization 
problems of discrete or continuous variables in a predefined 
range. Hence, the encoding scheme of chromosomes and 
related evolutionary operators become the key to redundancy 
allocation, which brings a considerable challenge to 
researchers. 

Numerous studies have been conducted on the MORAP 
evolutionary algorithm. Evolutionary algorithms include the 
genetic algorithm with dynamic penalty functions [6], ant 
colony optimization (ACO) [7], and penalty-guided bee 
search algorithms [8], in which specific chromosome 
encoding schemes and evolutionary operators must be 
developed. Unstable factors may be introduced with 
different penalty coefficient values. Moreover, comparisons 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr 

______________ 
*E-mail address: chengxueli2005@126.com 
ISSN: 1791-2377 © 2019 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.  
doi:10.25103/jestr.121.15 
 



Xueli Cheng, Linchao An and Zhenhua Zhang/Journal of Engineering Science and Technology Review 12 (1) (2019) 126 - 136 

 127 

among the three objectives, namely, maximized system 
reliability, max–min approach, and minimized standard 
deviation, are inadequate to guide the selection of the most 
appropriate reliability optimization objective for solving 
specific RAPs. Therefore, establishing a multi-objective 
optimization RAP model and developing an integer 
encoding genetic algorithm that optimizes the redundant 
allocation for series-parallel systems are urgent problems to 
be solved. 

On this basis, the present study explores an integer 
coding genetic algorithm to optimize the redundant 
allocation for series-parallel systems and develops the 
related integer crossover, mutation, and adjusting operators. 
Comparisons among three reliability objectives are also 
considered. This study aims to solve RAP for series-parallel 
systems accurately, thereby providing a reference for the 
redundant allocation of various types of electromechanical 
systems. 

 
 

2. State of the art 
 
At present, numerous studies have been conducted on multi-
objective algorithms for the redundant allocation of series-
parallel systems. Chambari [9] presented a bi-objective 
redundancy allocation model for maximizing reliability and 
minimizing cost, and the model was solved using non-
dominated sorting genetic algorithm II (NSGA-II) and multi-
objective particle swarm optimization. However, the 
multiple objectives lacked contrast. Yeh [10] presented a 
simplified swarm optimization for solving multi-level series-
parallel RAPs, but did not involve component mixing. Zio 
[11] proposed a multi-objective evolutionary algorithm for 
the RAP of multi-state systems to acquire the Pareto fronts 
with three objectives. However, the algorithm was 
unsuitable for parallel systems. Liang [12] developed a 
multi-objective variable neighborhood search algorithm for 
solving RAPs. However, the multiple objectives lacked 
contrast. Yeh [13] introduced an orthogonal simplified 
swarm optimization scheme that combined repetitive 
orthogonal array testing, population re-initialization, and 
simplified swarm optimization for solving the RAP of serial-
parallel systems with mixing components. This scheme was 
computationally efficient but did not involve active 
redundancy. Feizollahi [14] studied RAP in series-parallel 
systems with a cold standby strategy. The linear mixed-
integer programming and binary-equivalent models for the 
cold standby RAPs were proposed for the first time. 
However, they were only applicable to non-repairable 
systems. Ardakan [15] introduced a new redundancy 
strategy, namely, mixing redundancy, in multi-objective 
optimization RAPs, which could improve the reliability of 
any system with redundant components. However, this 
strategy was unsuitable for non-maintenance systems. To 
solve the bi-objective reliability RAP for series-parallel 
systems, Garg [16] developed a fuzzy model, which was 
converted into a crisp model by using the expected values of 
fuzzy numbers and considering the preference of the 
decision maker regarding cost and reliability objectives. 
Finally, the obtained crisp optimization problem was solved 
with particle swarm optimization. Their results were 
compared with those of genetic algorithms. However, the 
multiple objectives lacked contrast. Yeh [17] proposed a 
collaborative parallel simplified swarm algorithm to solve 
the RAP for smart sensor systems in the Internet of Things 
(IoT). This scheme could solve the RAP of serial-parallel 

systems with mixing components, but it did not involve 
active redundancy. Tavakkoli-Moghaddam [18] proposed a 
genetic algorithm for the RAP of series-parallel systems 
when the redundancy strategy could be selected for 
individual subsystems. However, this algorithm did not 
involve multi-objective optimization. To determine the 
optimal combination of the number of components for each 
subsystem that maximizes the system reliability under total 
fuzzy cost and weight constraints, Mousavi [19] proposed an 
improved fruit fly optimization algorithm to solve the RAP 
for series-parallel systems. However, the multiple objectives 
lacked contrast. Coit [6] proposed a single-objective 
redundancy allocation approach for the series-parallel 
system via genetic algorithm to fit the RAP with active 
redundancy and a bi-state system. Chambari [9] introduced a 
transformation mechanism to solve RAP with two objectives, 
in which the integers in a chromosome were mapped to float 
numbers in (0, 1) scale to suit the genetic algorithms. 
However, the premise was the none-mixing scheme for RAP. 
Integer encoding scheme and ACO [7] were proposed to 
solve MORAP. However, ACO evolutionary operators 
might be developed specifically, leading to the high 
complexity of the algorithm. Maciej [20] developed a 
modified selection operator combined with classical NSGA-
II and removed the crowded operator from NSGA-II. 
Combinations of multiple selection modifiers were 
investigated and the best configurations were identified. 
However, various modifications could result in the 
convergence, expansion, or uniformity of achieved Pareto 
fronts. He [21] analyzed a mixed redundancy strategy with 
instant switching for series-parallel systems and established 
the redundancy allocation model to minimize redundancy 
configuration costs under the transient availability and job 
completion rate constraints. However, the multiple 
objectives lacked contrast. Wang [22] applied the universal 
generating function method to calculate the system 
availability and combined the particle swarm and local 
search algorithms to solve the RAP for series-parallel 
systems. However, the multi-objective model was not 
established. 

In the aforementioned studies, specific chromosome 
encoding schemes and evolutionary operators may be 
developed, and a few unstable factors may be introduced 
with different penalty coefficient values. Moreover, 
comparisons among three objectives, namely, maximized 
system reliability, max–min approach, and minimized 
standard deviation, are inadequate to guide the selection of 
the most appropriate reliability optimization objective for 
solving specific RAP. In this study, the RAP was encoded 
with an integer matrix, in which the related integer crossover, 
mutation, and adjusting operators were developed. The 
integer encoding redundancy allocation model was solved 
with traditional NSGA-II, in which constraint Pareto 
dominance was introduced to avoid the complexity and 
instability in the penalty function approaches. The 
effectiveness of the algorithm was demonstrated on RAPs 
with one, two, and three objectives, and its robustness was 
proven with sensitivity analysis. Contributions of the method 
are as follows: the integer matrix encoding scheme, related 
integer crossover, mutation, and adjusting operators of 
chromosomes are simple to use, and the model can be 
transplanted conveniently in other multi-objective genetic 
algorithms to solve the MORAP for serial-parallel systems 
easily. Numerical and engineering examples of an 
agricultural IoT for greenhouse planting were provided to 
illustrate the effectiveness of the proposed algorithm. 
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The remainder of this study is organized as follows: 
Section 3 describes the RAP, which is followed by the 
chromosome encoding scheme and system performance 
formulations. The RAP optimization model is constructed, 
and the key evolutionary operators and computational 
framework of the algorithm is discussed. Section 4 presents 
the numerical examples and comparisons for single- and 
multiple-objective optimizations. Section 5 presents an 
engineering example of an agricultural IoT for greenhouse 
planting. Section 6 draws the conclusions. 

 
 

3. Methodology 
 
3.1 Mathematical model 
For a non-maintained bi-state series-parallel system with 
active redundancy and component mixing scheme, as shown 
in Fig. 1, each subsystem has jm  available components (j = 
1, 2, …, s, and s is the number of series subsystems), and 
different types of components can be paralleled in one 
subsystem. Supposing that the maximum number of parallel 
components in each subsystem is n and that the minimum 
number of components in subsystems is minn , the reliability 
allocation for acquiring the maximum system reliability 
under system cost and weight constraints is an NP-hard 
problem [23].  

The major assumptions or limitations of the 
mathematical model for non-maintained systems are as 
follows: 
• The component states and related system only have two 
options, namely, working and failure. 
• The component attributes (i.e., reliability, cost, and 
weight) are known and deterministic. 
• Only the active redundancy strategy is considered. 
• No component repair or preventive maintenance is 
available. 
• Failures of the components are independent events. 
• Components within the same subsystem can be different. 
 

 
Fig. 1. Series-parallel system 
 

An integer matrix encoding with n rows and s columns is 
proposed. The available components in each subsystem are 
coded as 1, 2, ···, jm , where jm  represents the number of 

available components in the thj  subsystem. The n elements 
in column j are random integers in 0, 1, 2, ···, jm , in which 

0 denotes that a component is not used in the position, and 
an integer in 1 to jm  exhibits that an available component is 
used in the position. Fig. 2 illustrates an encoding example 
of RAP with 14 subsystems, in which the maximum number 
of parallel components in each subsystem is n= 4. For 
example, subsystem 1 is parallel to components 1, 3, and 4. 
The encoding scheme introduces 0 to represent the empty 
redundancy position. 
 

 
Fig. 2. Solution encoding example 
 

Let a chromosome for RAP be represented with n sA × , 
and elements in the matrix are ,i ja  (i = 1, 2, …, n; j = 1, 
2, … , s). The mathematical model for RAP is described as 
follows: 

The number of active redundancy components ( jx ) used 
in subsystem j is as follows: 
 

,

, ,
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n
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where ,i ja  is an integer in the ith row and jth column in 

n sA ×  to represent a component used in subsystem j or an 
empty position without components and jx ≤n. 

The reliability for one subsystem is determined by 
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where 

, ,i ja jr  is the reliability of component ,i ja  in the jth 

subsystem. 
The reliability for the entire system is as follows: 
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where jR  is the reliability for the jth subsystem and sR  
indicates the system reliability. 

The cost of the entire system is as follows: 
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c ,,
 is the cost of component ,i ja  in the jth 

subsystem, jC  represents the cost of the jth subsystem, 
and sC  denotes the system cost. 

The weight of the entire system is expressed as 
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where 
, ,i ja jw  indicates the weight of component ,i ja  in 

subsystem j, jW  refers to the weight of the jth subsystem, 
and sW  is the system weight. 

A RAP optimization model with three objectives can be 
illustrated as 

 

max

max

min

Maxmize ,   Minimize ,   and Minimize 
Subject to:  
                   
                   

s s s

s

s

R C W
C C
W W
n n

≤

≤

≥

      (6) 

 
where maxC  and maxW  are the maximum allowed cost and 
weight of the system, respectively. minn  denotes the 
minimum number of components used in each subsystem, 
such as minn =1. 

RAP optimization also aims to maximize the minimum 
reliability in subsystems and minimize the standard 
deviation of reliabilities in subsystems as follows: 

 
Maximize  (Minimum , 1 2 )jR j  , , ,s= L          (7) 
 
Minimize  (Std Dev , 1 2 )jR j  , , ,s= L         (8) 
 
where jR  is the reliability of the jth subsystem. Minimum 

jR  represents the minimum reliability in all subsystems, and 
Std Dev refers to the standard deviation of reliabilities in all 
subsystems. Each parameter can be used to replace the 
maximized system reliability objective to acquire further 
balanced reliability values in the subsystems. 
 
3.2 Multi-objective genetic algorithm for RAP 
The genetic operators for RAP differ from the simulated 
binary crossover and polynomial mutation [24] for the 
multiple float variables in traditional genetic algorithms. 

Thus, special crossover and mutation operators should be 
developed to evolve the integers in each column with the 
available components in each subsystem. Given the 
populations’ random initialization, crossover, and 
mutation in genetic algorithms, the adjusting operator 
should be used prior to performance evaluation to 
guarantee the feasibility of the chromosomes for RAP. In 
this study, NSGA-II [7] is improved to solve the MORAP 
for series-parallel systems. 
 
3.2.1 Crossover 
The original tournament selection is used in the improved 
NSGA-II (INSGA-II) (NSGA-II with integer-matrix 
encoding) to form parents, and a crossover operator with a 
binary window is proposed. Let the two parent matrixes 
waiting to be crossed be 1n sP ×  and 2n sP × . A binary matrix 

n sB ×  with 0 or 1 element is randomly generated. For all 
elements in n sB × , if ,  i jb  =0, then elements in the ith row and 

jth column in child chromosomes 1n sC ×  and 2n sC ×  are 
equivalent to the corresponding elements in 1n sP ×  and 

2n sP × . If ,  i jb =1, then elements in the ith row and jth 

column in 1n sP × and 2n sP ×  are exchanged and assigned to 
the corresponding positions in 1n sC ×  and 2n sC × . A 
crossover probability cp  is used. cp  is generally set as a 
large value, e.g., 0.9≤ cp ≤1.0, to improve the global 
searching capability of the genetic algorithm. Fig. 3 shows a 
crossover example for integer-matrix encoding, in which the 
randomly generated binary window is 4 14B × . Given that 

2,1b =1, elements 2,1 01p =  and 2.12 3p =  are exchanged in 

the child chromosomes to be 2,1 31c =  and 2,1 02c = , 
respectively. Other elements in the child chromosomes obey 
the same theory. 

 

 
Fig. 3. Crossover example 
 
 
3.2.2 Mutation 
The mutation scheme for solving RAP is to mutate the 
chromosomes on the basis of a random float matrix. All 
chromosomes in the population should be mutated. For each 
chromosome n sA × , a matrix n sM ×  is generated, in which 
each element in the matrix is a random float number in (0, 1) 
scale. The mutation probability pm is commonly set as a 
small value, such as mp =1/(number of design variables). 

When ,  i jm < mp , an integer between 0 and jm  is randomly 

generated to replace the original ,  i ja . Fig. 4 presents an 

example of mutation. Let mp =0.1. When an element in the 
random matrix 3, 1 0.08m = < mp , element 3,  1a  is changed 
from 1 to 3. 
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Fig. 4. Mutation example 
 
3.2.3 Guaranteeing the feasibility of individuals 
The minimum number of paralleled components in each 
subsystem is set as an integer minn , and minn  ≥ 1. Situations 
(e.g., columns with all zero elements or smaller number of 
parallel components in subsystems than minn ) may be 
generated due to the populations’ random initialization, 
crossover, and mutation in genetic algorithms. Thus, before 
the performance measure for each chromosome, the 
adjusting operator should be introduced to guarantee the 
feasibility of each chromosome for RAP. The adjusting 
operator for one column includes the following steps: First, 
the number of active redundancy components jx  (j=1, 2, ···, 

s) in the subsystem is calculated. Second, if jx < minn , then 

minn – jx  zero elements will be selected randomly and 

replaced with random integers in 1 to jm , where jm  is the 

number of available components for subsystem j. If jx ≥

minn , then column j is feasible, and each column in the 
chromosome should be checked. 
 
3.2.4 INSGA-II framework 
Fig. 5 illustrates the INSGA-II workflow, and the main steps 
are described as follows: 
Step 1 The population with nump  random chromosomes is 
initialized. Each chromosome is an integer matrix with size 
n×s and the iteration counter t=1. 
Step 2 The feasibility of each chromosome or solution in the 
population is checked. The infeasible solutions are adjusted 
to be feasible in this step.  
Step 3 The performance of each chromosome is evaluated. 
The crowding distance of each chromosome is calculated, 
and the chromosomes are ranked with constraint Pareto 
dominance. 
Step 4 Tournament selections are performed to form a child 
population. 
Step 5 Integer matrix crossovers with binary windows are 
performed for the child population. 
Step 6 Mutations with probability pm are performed for the 
child population. 
Step 7 Adjusting operators are executed to check and 
modify the chromosomes to be feasible in the child 
population. 
Step 8 The performance of chromosomes in the child 
population is evaluated. 
Step 9 The parent and child populations are merged, and the 
crowding distance of chromosomes is calculated. Individuals 

in the temporary population are ranked with constraint 
Pareto dominance, and a new parent population is generated. 
Step 10 Assessment is performed to determine if the 
maximum number of iterations maxG  is satisfied. If t= maxG , 
the non-dominated solutions in the parent population are 
outputted as Pareto optimal solutions; otherwise, t=t+1. 
Return to Step 4 to continue the iteration. 
 

 
Fig. 5. INSGA-II flowchart for RAP 
 

The main differences between INSGA-II and NSGA-II 
with float design variables are illustrated in boxes with grey 
backgrounds in Fig. 5, including the population initialization, 
binary window crossover, float matrix mutation, and 
chromosomes’ feasibility adjusting operators. The adjusting 
operator is performed after the initialization and mutation of 
the population. 



Xueli Cheng, Linchao An and Zhenhua Zhang/Journal of Engineering Science and Technology Review 12 (1) (2019) 126 - 136 

 131 

The proposed chromosome encoding scheme, crossover, 
mutation, and adjusting operators can also be combined with 
other multi-objective genetic algorithms, such as strength 
Pareto evolutionary algorithm 2 (SPEA2) and Epsilon multi-
objective evolutionary algorithm [25]. The RAP model with 
integer matrix encoding has satisfactory suitability for 
different genetic platforms. 

 
 

4. Result analysis and discussion 
 

A standard RAP test originally proposed by Fyffle et al. was 
used to demonstrate INSGA-II. The problem is a RAP for a 
non-maintained bi-state series-parallel system with active 
redundancy and mixing scheme. Coit and Smith [6] solved 
this problem with a genetic algorithm without restricting the 
component mixing, and the maximum redundancy level n 
selected from available component types in the subsystem is 
8. 

This study assumes the minimum redundancy levels 

minn =2 and n=4 for all subsystems. Input data from 
document [7] of the component characteristics for this 
problem are summarized. INSGA-II is developed on the 
basis of standard NSGA-II in the Kanpur Genetic 
Algorithms Laboratory in C language and run on a desktop 
computer with a dual 2.4GHz CPU and 2GB RAM. The 
mathematical models with different objective numbers and 
evolutionary parameters are described as follows. 
 
4.1 Comparison of objectives for redundancy allocation 
To the compare different optimization objectives for RAP, 
three single-objective models were set up: maximizing the 
system reliability (Max sR ), maximizing the minimum 
reliability in subsystems (Max–min), and minimizing the 
standard deviation of reliabilities in subsystems (Min Std 
Dev). The design constraints were C≤ maxC , W≤ maxW , n=4, 
and minn =2. Two cases were evaluated to compare the 
optimization results for RAP under different constraints, 

where maxC =130. Through computational experiments, the 
evolutionary parameters of INSGA-II for the single-
objective RAP were population nump =300, maximum 
iterations maxG =500, crossover probability cp  =0.98, 
mutation probability mp =1/s, and s=14. 

Table 1 presents the performances of RAP solutions 
acquired by INSGA-II with three different objectives in the 
two cases, in which sR  is the system reliability, sub minR −  
denotes the minimum reliability in subsystems, and subD  
refers to the standard deviation of reliabilities in all 
subsystems. The data in Table 1 are graphically shown in 
Fig. 6 in that: 
(a) Max sR  acquired the maximum system reliability in Fig. 
6(a), and relatively good sub minR −  and subD  were achieved 
with Max sR  in Figs. 6(b) and (c). 
(b) The max–min approach acquired the maximum sub minR −  
as shown in Fig. 6(b), but caused the maximum subD  in Fig. 
6(c) and the relatively low system reliability in Fig. 6(a). 
(c)The Min Std Dev objective acquired the minimum Dsub 
in Fig. 6(c), but caused the lowest sR  and sub minR −  for 

maxW =191, as shown in Figs. 6(a) and (b). 
The results in maxW =191 had larger change rates than 

those in maxW =159 because the RAP flexibility was 
improved with a large system weight to achieve enhanced 
solutions for redundancy allocation. Table 1 and Fig. 6 show 
that the Max sR  objective achieved the maximum 
improvement in system reliability with relatively few 
sacrifices in the minimum and standard deviation of 
reliabilities in subsystems. These results prove that Max 
sR is the most suitable objective for RAP with INSGA-II. 

 

 
Table 1. Performance comparison among different objectives 

Performance 
Case 1: maxC =130, maxW =191 Case 2: maxC =130, maxW =159 

Max sR  Max–Min Min Std Dev Max sR  Max–Min Min Std Dev 

sR  0.9852 0.9799 0.9710 0.9519 0.9322 0.9373 

sub minR −  0.9971 0.9975 0.9964 0.9900 0.9900 0.9900 

subD  8.56E-04 8.59E-04 7.27E-04 27E-04 34E-04 25E-04 

 

 
 
Fig. 6. Comparison of performances using different objectives, (a) system reliability, (b) minimum reliability in subsystems, and (c) standard 
deviation of reliabilities in subsystems 

 
4.2 Optimization for RAP with Single Objective 
With the maximizing system reliability objective, single-
objective models were applied to test the effectiveness of 
INSGA-II. By setting the maximum cost maxC =130 and 

maximum weight from maxW =191 to 159, 33 single-
objective models were constructed with different design 
constraints. By using the same evolutionary parameters 
presented in Section 4.1, 10 runs were performed for each 
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model because of the random initialization in INSGA-II. The 
maximum (Max sR ), minimum (Min sR ), average (Avg 

sR ), and standard deviation of the 10 reliabilities (Std Dev) 
for each model were shown. The maximum possible index 
(%MPI) [7], [8] was introduced to compare the reliabilities 
with INSGA-II and GARAP [6]. Fig. 7 illustrates the results. 
(a) The main areas of the solid line in Fig. 7 were above y=0, 
which showed that the maximum reliabilities acquired by 
INSGA-II were larger than the correspondences with 
GARAP.  
(b) A few regions in the dot chain line were smaller than y=0, 
which showed that a minimum reliability with INSGA-II 
was worse than GARAP in a small degree. 
(c) The redundancy level n=4 for INSGA-II was smaller 
than that for GARAP in which n=8, and Max sR  values in 
INSGA-II were better than those in GARAP. From these 
comparisons, INSGA-II achieved similar RAP results with 
GARAP by using small iteration numbers. 
 

 
Fig. 7. Comparison of GARAP and INSGA-II RAPs 
 

Fig. 8 shows the standard deviation comparisons for all 
models, in which the solid line with INSGA-II had smaller 
fluctuations than the dotted line with GARAP. 
 

 
Fig. 8. Comparison of standard deviations between GARAP and 
INSGA-II RAPs 

Therefore, INSGA-II had better computational stability 
than GARAP. The performance comparisons proved the 
effectiveness and stability of INSGA-II for RAP with a 
single objective. 
 
4.3 Optimization for RAP with Multiple Objectives 
A two-objective model for the standard RAP was 
constructed as follows: 
 

min

Minimize  (- ),   Minimize ;
Subject to:  130;
                   191;
      Where:  2,  and 4

s s

s

s

R C
C
W
n n

≤

≤

= =

              (9) 

 
where the maximized reliability sR  is multiplied with (−1) 
to transform the model into a two-objective minimization 
problem. 

Fig. 9 shows the acquired Pareto front with the INSGA-
II platform in Section 3.2.4 and the evolutionary parameters 
in Section 4.1. Fuzzy set theory [26] was introduced to select 
a compromised best solution. The solution was commonly 
the “knee point” [27] in Pareto optimal solutions. Moreover, 
fuzzy set theory was only effective for Pareto fronts with 
two minimization or maximization objectives, but it was 
unsuitable for the Pareto front with one maximized and 
minimized objective. Table 2 presents the redundancy 
allocation schemes and related performances for the points 
of maxima of reliability only, minima of cost only, 
compromise best, and baseline design in Fig. 9. Fig.9 and 
Table 2 show that: (a) the Pareto front with relatively good 
boundary and diversity characteristics for RAP with two 
objectives could be acquired by INSGA-II. (b) Neither 
maxima of reliability only sR =0.9846 nor minima of cost 
only sC =87 was superior to the baseline design in view of 
both objectives. (c) Compromised solutions sR =0.9727 and 

sC =99 acquired a higher reliability and lower cost than the 
baseline designs sR =0.9708 and sC =120, in which the 
optimization amounts were 0.19% and 17.5%, respectively. 
 

 
Fig. 9. Pareto fronts acquired by INSGA-II for RAP with two objectives 
 

Thus, the compromised best solution for RAP with two 
objectives reduced the system cost by 17.5%, improved the 
system reliability by 0.19%, and increased the sacrifice on 
the system weight by 15.9%. Moreover, the Pareto front had 
good boundary and diversity characteristics. These results 
prove the effectiveness of INSGA-II for RAP with two 
objectives. The system cost sC =99 of the compromised best 
solution in Table 2 was small, the weight of the 
compromised best solution was sW =191 to attain the upper 
bound in the weight constraint in Formula (9). Thus, the 
system cost and weight were conflicting objectives, and the 
system weight should be substantial to achieve a small cost 
and large system reliability. The multi-objective 
optimization for RAP could exhibit the relationship between 
design objectives and constraints better than the single-
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objective optimization. This result will help the solution 
trade-off with preferences for decision makers. 

 
Table. 2. Results for redundancy allocation optimization 
with two objectives using INSGA-II 

Descr
iption 

Baseline  
design 

Compromise
d  

Best 

Minima 
of  

cost only 

Maxima of  
reliability only 

1 3330 1110 2220 3330 
2 1100 1100 2200 1100 
3 4440 1340 1300 4440 
4 3330 1110 1110 1333 
5 2220 2220 1100 2220 
6 2200 3400 3300 2200 
7 1300 3300 2200 3300 
8 1130 1111 1110 1111 
9 3300 1100 1100 1200 

10 2220 2220 2220 3330 
11 1100 1100 1100 3300 
12 1111 1111 1110 1111 
13 2200 1100 1100 1200 
14 3300 1400 2300 3400 

sR  0.9708 0.9727 0.9514 0.9846 

sC  120 99 87 128 

sW  170 191 186 190 
 
A three-objective RAP model with maximized system 

reliability, minimized cost, and minimized weight was 
solved by INSGA-II with the design constraints in Formula 
(9) and similar evolutionary parameters. The Pareto optimal 
solutions shown in Fig. 10 had relatively good boundary and 
diversity characteristics. As shown in Fig. 10, the system 
reliability was increased with the large system weight and 
cost. Considering the reliability and cost, the trend of Pareto 
optimal solutions was similar to that in Fig. 9. Given that 
fuzzy set theory [26] was only effective for fronts with two 
objectives, the “knee point” method [27] should be used in 
the design trade-off for Pareto fronts with three objectives. 
The compromised selection process and results from Fig. 10 
were not presented in this paper. 

 
4.4 Sensitivity analysis 
The sensitivity analysis optimized different values of the key 
parameters in INSGA-II to analyze the stability of the 
algorithm and acquire the suitable ranges for the parameters. 
The key parameters in INSGA-II were the crossover 
probability pc and mutation probability mp . 

Fig. 11 illustrates the Pareto fronts acquired with 
different cp  values with mp =1/s (s=14) by using the same 
two-objective model (Formula (9)), that is, population 
number nump  and maximum iteration maxG  in Section 4.3. 
The Pareto front with cp =0.90 was dominated by the fronts 
with cp =0.98 or cp =1.0. The boundary characteristic of the 
front with cp =0.98 was better than that with cp =1.0. Thus, 
the stability of INSGA-II with different crossover 
probabilities was proven, and the optimized value for the 
crossover probability was 0.98. These results show that 
sufficient crossover operators were necessary for an 
enhanced convergence of INSGA-II under the predefined 
number of iterations. 

 
 

 
Fig. 10. Pareto front acquired by INSGA-II for RAP with three 
objectives 
 

 
Fig. 11. Pareto fronts with different crossover probabilities cp  

 
The mutation probability was another important 

parameter that could affect the stability of INSGA-II. Fig. 12 
shows the Pareto fronts for different mutation rates with the 
same two-objective optimization model (Formula (10)) and 
cp =0.98. When mp =0.1 and 0.3, that is, mp  with a large 

value, the convergence and diversity of the Pareto fronts 
were considerably worse than mp =0. The convergence of 

mp =0 was similar to the convergence in mp =1/s, but the 
uniform distribution of mp =0 was slightly worse. Thus, the 
mutation probability should be set as a small value, e.g., 
mp =1/s, to avoid over-vibration in the evolutionary process 

caused by large mutation rates. 
 
 

5. Engineering example of an agricultural IoT 
 
To illustrate the rationality and validity of the proposed 
INSGA-II further, an engineering example of an agricultural 
IoT is presented in this section. The system application of 
IoT greatly improved labor productivity and product quality 
in agricultural facilities with high inputs and outputs. 
However, in practice, system failures caused by power 
failure, sensor failure, network failure, control equipment 
damage, and other factors often lead to production accidents. 
A reasonable reliability redundancy technology must be 
adopted to ensure the system reliability and stability of IoT 
in agricultural facilities. Therefore, the proposed scheme is 
used to solve the reliability RAP of an agricultural IoT, 
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which is established for greenhouse planting (Fig. 13). The 
system consists of sensors and actuators (e.g., air 
temperature and humidity sensor, light sensor, soil 
temperature and humidity sensor, CO2 sensor, ventilator, 
supplementary light lamp, and CO2 generator). Table 3 
shows the detailed component (functional unit) information. 

 

 
Fig. 12. Pareto fronts with different mutation probabilities mp  

 
 

 
Fig. 13. Agricultural IoT for greenhouse planting 
 

For the target IoT in agricultural facility, the maximum 
cost is maxC =140, maximum weight is maxW =200, n=4, and 

minn =2. Then, a two-objective model for the standard 
redundancy allocation test problem was constructed. 
 

min

Minimize  (- ),   Minimize ;
Subject to:  140;
                   200;
      Where:  1,  and 4.

s s

s

s

R C
C
W
n n

≤

≤

= =

                 (10) 

 
Table. 3. Numerical information for the reliability redundancy allocation model of the target agricultural IoT 

Functional unit Component 
(i) 

Design alternative (j) 

1 2 3 4 

R C W R C W R C W R C W 

Air temperature and 
humidity sensor 1 0.92 3 2 0.91 2 4 0.94 4 8 0.88 1 1 

Light sensor 2 0.85 1 3 0.87 2 7 0.91 2 4 0.95 4 9 
Soil temperature and 

humidity sensor 3 0.77 1 5 0.92 3 3 0.85 2 2 0.96 4 7 

CO2 sensor 4 0.90 3 4 0.98 4 7 0.78 1 2 0.84 2 5 

Ventilator 5 0.95 4 2 0.86 2 4 0.90 2 4 0.92 3 2 

Water machine 6 0.85 2 7 0.79 1 9 0.92 3 5 0.96 4 3 

Circulation machine 7 0.81 1 4 0.87 2 8 0.94 4 3 * * * 
Curtain rolling machine 8 0.90 2 6 0.99 4 3 0.82 1 7 0.88 2 5 

Sunscreen 9 0.88 2 5 0.91 3 4 0.95 4 7 0.82 1 9 

Supplementary  lamp 10 0.93 3 3 0.99 4 2 0.86 2 6 0.80 2 4 
Water pump with drip 

irrigation solenoid valve 11 0.99 4 5 0.92 3 3 0.85 1 8 * * * 

Water pump with micro-
injection solenoid valve 12 0.86 2 3 0.79 1 5 0.96 4 4 0.81 2 7 

CO2 generator 13 0.79 1 9 0.87 2 4 0.90 4 5 0.97 5 3 

 
 
On the basis of the sensitivity analysis in Section 4.4, 

crossover probability pc and mutation probability pm are 
determined as 0.98 and 1/s, respectively. In the target model 
for agricultural IoT, s=13. The other relevant INSGA-II 
parameters for the two-objective RAP are set on the basis of 
Section 4.1. 

The corresponding Pareto fronts acquired by INSGA-II 
for the target model for agricultural IoT can be obtained, as 
shown in Fig. 14. Table 4 presents the relevant results for the 
redundancy allocation optimization with two objectives 
using INSGA-II. Fig. 14 and Table 4 show that (a) the 
Pareto front with relatively good boundary and diversity 

characteristics for RAP with two objectives could be 
acquired by INSGA-II. (b) Neither the maxima of reliability 
only sR =0.9976 nor the minima of cost only sC =71 was 
superior to the baseline design in view of both objectives. (c) 
Compromised solutions sR =0.9833 and sC =107 acquired a 
higher reliability and lower cost than the baseline designs 
sR =0.9782 and sC =128 in which the optimization amounts 

were 0.52% and 16.4%, respectively. Therefore, the 
proposed INSGA-II is effective and reasonable in solving 
the reliability redundancy problem to ensure the system 
reliability and stability of IoT in agricultural facility. 
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Maxima of 
reliability 

only

Baseline 
design

Compromise best
Minima of 
cost only

C
os

t C
s

Reliability Rs
Fig. 14. Pareto fronts acquired by INSGA-II for RAP with two 
objectives of the IoT in agricultural facility. 

 
Table 4. Results for redundancy allocation optimization 
with two objectives using INSGA-II of the IoT in 
agricultural facility 

Description Baseline  
design 

Compromised  
Best 

Minima 
of  

cost only 

Maxima of  
reliability 

only 
1 4440 2220 2200 3300 
2 2330 1330 3100 3200 
3 4430 2230 3330 2200 
4 2440 3333 2300 1110 
5 3333 2200 4300 1130 
6 2220 1440 2430 3344 
7 2230 2110 3300 3330 
8 3044 4440 2222 1140 
9 4330 2233 1111 3300 

10 1112 2240 3320 4440 
11 3300 1300 2300 2200 
12 3344 2300 2444 4220 
13 1110 3200 3333 4330 
Rs 0.9782 0.9833 0.9622 0.9976 
Cs 128 107 71 139 
Ws 185 113 189 194 
 
 

5. Conclusions 
 
To explore the non-maintained bi-state series-parallel system 
with active redundancy and component mixing scheme and 

solve the RAP for series-parallel systems, a mathematical 
model for solving the redundant allocation of reliability was 
established. The RAP was encoded with the integer matrix. 
The related integer crossover, mutation, and adjusting 
operators were developed. Furthermore, an integer coding 
genetic algorithm was obtained to optimize the redundant 
allocation for series-parallel systems. The following 
conclusions could be drawn:  

(1) A novel integer coding genetic scheme was proposed, 
and related integer crossover, mutation, and adjusting 
operators were developed and implemented for the first time 
in NSGA-II to solve the RAP with active redundancy and 
component mixing. 

(2) The integer encoding redundancy allocation model 
was solved with traditional NSGA-II, in which constraint 
Pareto dominance was introduced to avoid the complexity 
and instability in penalty function approaches. 

(3) A three-objective RAP model with maximized 
system reliability, minimized cost, and minimized weight 
was constructed. The proposed method was applied to a 
standard redundancy allocation test problem to compare 
three reliability objectives and select the most suitable one.  

(4) INSGA-II had the best stability when the optimized 
value for the crossover probability was 0.98 and the 
mutation probability was set to a small value.  

The integer matrix encoding, crossover, mutation, and 
adjusting operators provided a computational model for RAP. 
This model could be transplanted conveniently into other 
multi-objective genetic algorithms to solve the MORAP for 
serial-parallel systems easily; it had good suitability for 
genetic evolution platforms. However, the computational 
efficiency should be further improved. Therefore, further 
efficient evolutionary algorithms should be developed to 
solve multi-state RAP, thereby allowing the selection of 
redundancy strategies in future studies, and the redundant 
allocation of series-parallel systems should be further 
accurate. 
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