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Abstract 
 

A brushless DC motor (BLDCM) is a kind of nonlinear system with multivariable coupling. Under certain conditions, 
chaos and other non-linear dynamic phenomena will occur and bring adverse effects to the motor itself and the drive 
system. However, in existing research on chaotic mechanism of BLDCM, the chaotic phenomena caused by the 
disturbance of load torques are seldom involved. However, in practical engineering applications, the disturbance in the 
load of the motor is extensive. To analyze the non-linear characteristics of the BLDCM caused by this disturbance, a 
disturbance variable was added to the d-q axis mathematical model of the BLDCM. Then, a non-autonomous system 
model of 5-D BLDCM was constructed by using time scale and linear affine transformations. First, the non-linear 
dynamic characteristics of the system caused by the torque disturbance were analyzed by calculating the dissipation and 
equilibrium points of the system. Second, the chaotic dynamic behavior of the system under load disturbance was 
discussed through Lyapunov exponent and bifurcation graph. Finally, the accuracy of the model and analysis was verified 
through experiments. Results show that when the frequency of the disturbance component of the load increases from 0 
Hz to 100 Hz, the system experiences various motions, such as stable, period doubling, paroxysmal chaos, and periodic. 
This study provides a theoretical reference for further exploring the engineering physical characteristics of the BLDCM 
under load disturbance and searching for an improved control method. 
 
Keywords: Brushless DC motor, Bifurcation, Chaos, Nonlinear, Vibration load 
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1. Introduction 
 
A brushless DC motor (BLDCM) has been extensively used 
in the fields of robotics, precision machine tool transmission, 
aerospace, and automobile drive given its advantages, such 
as simple structure, reliable operation, high efficiency, and 
low electromagnetic interference [1]. With the 
popularization of the BLDCM, high requirements are 
proposed for improved performance. Among these 
requirements, the control accuracy of speed and torque is an 
important index. Nonlinear characteristics of the BLDCM 
are the primary factors that affect the precise control of the 
speed and torque of this system [2-3] Chaos is a typical 
manifestation of the nonlinearity for BLDCM. The 
occurrence of chaotic phenomena in the motor causes 
violent oscillations of speed and torque, seriously affects the 
stability and reliability of the system, and even triggers 
unexpected accidents [4]. 

At present, research on the chaotic behavior of the 
BLDCM has primarily focused on the chaotic phenomenon 
caused by the parameter change in the motor itself or control 
input and has seldom involved the chaotic behavior caused 
by torque disturbance [5-7]. Therefore, exploring the 
mechanism of chaos caused by load disturbance and 
analyzing the conditions of chaos formation are theoretical 
innovations of the present study. At present, research on 

non-linear behavior of a BLDCM is mainly based on the 
theory analysis and simulation of a mathematical model; 
moreover, experimental verification is rarely applied[8-9], 
because the actual chaotic state is difficult to maintain and 
observe; furthermore, the conditions for entering the chaotic 
state are special. 

On the basis of the abovementioned reasons, the present 
study focuses on the nonlinear characteristics of the 
BLDCM caused by load torque vibration. The relationship 
between the frequency of torque vibration and the non-linear 
behavior of the motor is analyzed by solving the 
mathematical model of the motor and simulation. 
Simultaneously, the theoretical model and analysis are 
verified by experiments. 
 
 
2. State of the Art 
 
The BLDCM is a multivariable coupled nonlinear system. 
On certain conditions, the system will produce complex 
nonlinear dynamic behavior [10]. By analyzing a 
dimensionless BLDCM mathematical model, Hemati [11] 
initially found a chaotic motion in the system. Hemati’s 
research showed that, when the input of the system is 
constant and the viscosity coefficient is a certain value, the 
phase trajectory of the motor presents a singular attractor 
behavior. 

Zhang et al. [8] used Lyapunov stability theory to 
analyze a 3D autonomous system model of the BLDCM; 
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these authors verified that the chaotic motion of the system 
is bounded; they also calculated the switching rate of the 
system phase trajectory among different attractors. Farzaneh 
et al. [12] studied the chaos of the BLDCM model with a 
single time-scale transformation. System simulation showed 
that, when the system parameters enter a specific region, the 
BLDCM system enters into a chaotic motion and uses an 
inverse control to synchronize the chaos. Mousam et al. [13] 
analyzed the nonlinear characteristics of a permanent-
magnet BLDCM; these researchers discussed the chaos, 
bifurcation and other non-linear phenomena caused by slot 
structure and power transistor switching. Tahir et al. [14] 
discussed the nonlinear characteristics of a permanent-
magnet DC motor driven by PID control; these authors 
reported periodic, quasi-periodic, and chaotic behaviors in 
the motor and used a sliding mode method to control chaos. 
In accordance with the mathematical model of a permanent-
magnet brushless motor, Hu et al. [15] confirmed the 
existence of chaos in the system through an equilibrium 
point and phase plane analysis method; these researchers 
used a robust nonlinear control to achieve speed stability 
under torque disturbance. However, the chaos in the analysis 
was only caused by the internal characteristics of the motor 
and not by the load disturbance. The abovementioned study 
on the nonlinearity of the BLDCM primarily focused on the 
chaotic phenomenon caused by the parameter change in the 
motor itself or the controller. It also ignored the chaotic 
behavior caused by the vibration disturbance of the motor 
load. However, in practical engineering applications, 
vibration loads are ubiquitous; furthermore, the resulting 
nonlinear motion of the system has a general impact on the 
stability of the system. 
 Hemati et al. [16] established a mathematical model of 
the BLDCM considering a nonuniform air gap and magnetic 
saturation. Scholars have studied the nonlinear phenomenon 
of the BLDCM on the basis of this model. Sukanya [6] used 
a 3D mathematical model of the BLDCM to analyze the 
influence of controller gain, torque, and speed on the 
nonlinear characteristics of the motor, these researcher 
derived the corresponding domain of periodic and chaotic 
motions. Based on the 3-D d–q axis model of the BLDCM, 
Qian et al. [17] developed the torque ripple equation caused 
by switching action of power transistor using a 3-D BLDCM 
mathematical model. Yoni et al. [18] discussed the 
mathematical equation of torque ripple generated by the 
back EMF of the motor and used an adaptive internal model 
control to suppress the torque ripple. Tian et al. [19] used a 
3-D BLDCM mathematical model to analyze the nonlinear 
characteristics of the motor and used a feedback control to 
achieve global stability. Shahri et al. [20] analyzed the 
stability of a fractional order system and used state feedback 
to realize the stability of the system. The control method was 
applied to the BLDCM. However, the fractional order model 
only involves three parameters, namely, straight axis current, 
quadrature axis current, and angular velocity; this model 
does not involve the motor torque. On the basis of Hemati’s 
model of the 3-D BLDCM, Yilmaz et al. [21] proposed a 
sliding mode control method for realizing the chaotic control 
of motor. The abovementioned mathematical models used to 
analyze the chaotic behavior of the BLDCM are all 3D 
mathematical models that do not take load torque as one 
variable for establishing a high-dimensional motor 
mathematical model. 

On the basis of the abovementioned problems, the 
present study analyzed the nonlinear phenomena of the 
BLDCM, such as chaos caused by load vibration, and used a 

load torque as a variable. A 5-D dimensionless mathematical 
model based on 3-D d–q axis model was proposed to 
perform a theoretical analysis. To verify the accuracy of the 
theoretical model and simulation analysis, an experimental 
platform was built.  

The remainder of this study is organized as follows. 
Section 3 presents a 5-D BLDCM mathematical model with 
vibration load disturbance. The nonlinear characteristics of 
the model are analyzed theoretically, simulated, and verified. 
Section 4 analyzes the simulation and experimental results. 
Section 5 summarizes the conclusions drawn from this study. 
 
 
3. Methodology 
 
3.1 Mathematical model of the BLDCM under vibration 
load disturbance 
The BLDCM is a multivariable coupled nonlinear system. 
Through coordinate transformation, the mathematical model 
of this scheme in the d–q coordinate system can be described 
as [22]. 
                

	  

did

dt
=
1
Ld

(ud − Rid + np Lqω iq )

diq
dt

=
1
Lq

(uq − Riq − np Ldω id − npktω)

dω
dt

=
1
J

(npktω iq + np (Ld − Lq )idiq −βω −TL )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

          (1) 

 
where 

  
ud ,id ,uq and 

 
iq denote the direct axis voltage, direct 

axis current, quadrature axis voltage, and current of the 
motor, respectively.  Ld and

 
Lq represent the direct and 

quadrature axis inductance, correspondingly; R is the stator 
resistor.  ke is the permanent magnet flux linkage. 

	 kt = 3 2ke , ω ,
 
np  are the angular velocity and the pole 

pair number of the motor.  J and β are the moment of inertia 

and the viscosity coefficient of the motor.  TL is the load 
torque of the motor. 

In this study, we simulate the actual vibration load with 
sinusoidal function. The vibration load is expressed as  
 

	  TL = B+ Acos(ω t +ϕ0)                                   (2) 
 
where B is the constant component of load, A is the 
amplitude of vibration load, 	 ω =2π f , f is the frequency of 

the disturbance component of load torque, and 	ϕ0  is the 
initial phase of the disturbance component. 

According to Equations (1) and (2), when the BLDCM 
system is disturbed by the vibration load, the equation of the 
system contains the time variable  t . Thus, the system is a 
non-autonomous system. For the convenience of the 
nonlinear analysis of the system, we use 
 

	  u = cos(ω t +ϕ0)  and 	  v = sin(ω t +ϕ0)  
 
The system is then transformed into an autonomous 

system. To establish a dimensionless model of the BLDCM 
through linear affine and time scale transformations,  
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let   x =σ !x  and   t = τ !t , 
 
where 
 

	  x= x1,x2,x3,x4 ,x5⎡⎣ ⎤⎦
T
= id ,iq ,ω,u,v⎡⎣ ⎤⎦

T
, 

 

	   !x= !x1, !x2, !x3, !x4 , !x5⎡⎣ ⎤⎦
T
= !id , !iq , !ω, !u, !v⎡⎣ ⎤⎦

T
, 

 

 
τ =

Lq

R
,

	

σ =

σ 1 0 0 0 0
0 σ 2 0 0 0
0 0 σ 3 0 0
0 0 0 σ 4 0
0 0 0 0 σ 5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

 
and 
 

	σ 1 =δσ 2 ,
	 
σ 2 =

Jσ 2
3

δkt

,
	 
σ 3 =

1
npτ

,	σ 4 =σ 5 =1 ,
 
δ =

Lq

Ld

. 

 
After linear transformation, the dimensionless model of 

the BLDCM under the disturbance of vibration load is 
presented as follows: 
 

	   

!"x1 = −δ !x1 + !x2 !x3 + !ud

!"x2 = − !x2 − !x1 !x3 − ρ !x3 + !uq

!"x3 = !x2 /δ +η !x1 !x2 −γ !x3 −µA!x4
!"x4 = −ωBτ !x5
!"x5 =ωτ !x4

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

                 (3) 

 
 

where  
 

	  
!ud =

τ
σ 1Ld

ud ,
	  
!uq =

τ
σ 2Lq

uq ,
	 
ρ =

kt

σ 2Lq

, 

 

	  
η =

(Ld − Lq )σ 1σ 2

J
,
 
γ =

βτ
J

,
	 
µ =

τ
σ 3J

 

 
When the magnetic leakage effect of the air gap is 

ignored, the motor parameters are provided as follows: rated 
power pN =1.5 kw, rated speed nN =3000r/min, rated torque 

 TN =5N·m, inductance of d–q axis 
 
Ld = Lq =16.5mH, stator 

resistance R=0.37Ω, rotating inertia 	  J =0.0012kg ⋅m2 , 
viscosity coefficient 	 β =0.025 kg (m ⋅s),  permanent 

magnet flux 	  ke =0.031wb , and pole pair number of motor 

	 np = 4 . The parameters of vibration torque are provided as 

follows: A=1N·m, B=3N·m, by substituting the 
abovementioned parameters of the motor into Equation (3), 
we determine 
 

	   

!"x1 = − !x1 + !x2 !x3 + !ud

!"x2 = − !x2 − !x1 !x3 −2.362 !x3 + !uq

!"x3 = !x2 −0.938 !x3 −6.749 !x4
!"x4 = −0.045ω !x5
!"x5 =0.045ω !x4

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

                         (4) 

 
3.2 Dynamics analysis of the BLDCM under oscillating 
load 
To study the nonlinear dynamics of the BLDCM, the 
dissipation of the system must be analyzed. In accordance 
with Equation (4), the divergence of the system is 

 

	   

∇⋅ F =
∂ !"x1
!x1
+
∂ !"x2
!x2
+
∂ !"x3
!x3
+
∂ !"x4
!x4
+
∂ !"x5
!x5

       = −1−1−0.938+0+0= −2.938 <0
                   (5) 

 
The divergence of the system is less than zero. As such, 

the system is a negative source field. When t →∞ , each 
volume element that contains the phase trajectories of the 
system will shrink to zero at an exponential rate 	  e−2.938 , that 
is, all phase trajectories of the system are limited to a set of 
zero volume elements. Therefore, the system has the 
attractor. 
 
3.3 Stability analysis of equilibrium point 
The dynamic characteristics of the equilibrium point directly 
affect the dynamic characteristics of the system. In 
accordance with Equation (4), the nonlinear algebraic 
equation for calculating an equilibrium point can be written 
as 
 

	   

− !x1 + !x2 !x3 + !ud =0
− !x2 − !x1 !x3 −2.362 !x3 + !uq =0
!x2 −0.938 !x3 −6.749 !x4 =0
−0.045ω !x5 =0
0.045ω !x4 =0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

                           (6) 

 
By solving Equation (6), we can obtain two equilibrium 

points of the system as follows: 
 

 s1(p-1.65q+5.8,0.47q-1.65,0.5q-1.76,0,0)  

 

	  s2( p+1.65q+5.8,−0.47q−1.65,−0.5q−1.76)  
 
where 
 

  
p = !ud + !uq ,	   q = 4.264 !uq +12.377  

 
 The stability of the equilibrium point of the system is 
analyzed in two situations: 
 
1) 	  !ud = !uq =0  

 
This situation is equivalent to cutting off the external 

power supply when the motor is running, the motor is in an 
uncontrolled condition. Clearly, in this case, two equilibrium 
points of the system are 
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	  S1
0 = (0,0,0,0,0)  and	  S2

0 = (11.61,−3.3,−3.52,0,0) . 
 
 Using Equation (4), the Jacobian matrix of the system 
can be obtained as follows: 
 

	   

Jac =

−1 !x3 !x2 0 0
− !x3 −1 −2.362− !x1 0 0
0 1 −0.938 −6.749 0
0 0 0 0 −0.045ω
0 0 0 0.045ω 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

     (7) 

 
 Therefore, the eigenvalues that correspond to the two 
equilibrium points can be calculated. The eigenvalues that 
correspond to equilibrium point 	 s1

0  are 
 

	  

λ1 = −1
λ2,3 = −0.97±1.54i

λ4,5 =±0.045ωi

⎧

⎨
⎪⎪

⎩
⎪
⎪

                       (8) 

 
Then, the eigenvalues that correspond to equilibrium 

point 	 s2
0  are are shown in equation (9).  

The eigenvalues that correspond to the two equilibrium 
points all have a pair of conjugate pure imaginary root. The 
remaining eigenvalues all have negative real parts. Therefore, 
the two equilibrium points are called the center point. In this 
situation, the system is stable. However, non-asymptotic 
stability is observed at the equilibrium point. 
 

	  

λ1 = −1.41
λ2,3 =±0.045ωi

λ4,5 = −0.76±5.15i

⎧

⎨
⎪⎪

⎩
⎪
⎪

                          (9) 

 
2) 	   !ud ≠0, !uq ≠0  
 
 In this situation, the motor is under a normal working 
condition. The equilibrium points contain two variables p , 

 q .According to Equation (7), the order of Jacobian matrix is 
5. Thus, solving the eigenvalues that correspond to the 
equilibrium point is difficult. Nonetheless, two eigenvalues 
of the system can be solved by symbolic numerical solution 

	  λ1,2 =±0.045ω i. The remaining three eigenvalues are 
polynomial real numbers or complex roots with three 
variables   p,q,ω.   

The existence of a pair of pure imaginary eigenvalues is 
a necessary condition for Hopf bifurcation. The system has a 
pair of conjugate pure imaginary eigenvalues at the 
equilibrium point. Therefore, by adjusting the parameters of 
the three variables appropriately, the system can generate 
complex nonlinear dynamical behaviors near singularities, 
including bifurcation and chaos phenomena. 
 
3.4 Analysis of Lyapunov exponent and bifurcation 
diagram 
We use Lyapunov exponential and bifurcation trajectory 
varying with the frequency of oscillating load to describe the 

relationship between the dynamic characteristics of the 
system and the frequency of the oscillating load. On the 
basis of the stability analysis of the equilibrium point, 
complex non-linear phenomena will appear in the system if 
the relevant parameters are properly adjusted. We set the 
simulation parameters in accordance with the performance 
of the experimental motor. If the motor is controlled only by 
the q axis and the input is constant, then 	  !ud =35 ,	  !uq =35，

and the initial phase of the load vibration	ϕ0 =0° . 
When the frequency of the load vibration component 

varies from 0Hz to 100Hz, the Lyapunov exponent of the 
system that corresponds to Equation (4) is depicted in Fig. 1. 
In this figure, LE1, LE2, LE3, LE4, and LE5 represent five 
Lyapunov exponents of the system. LE4 and LE5 graphics 
overlap. Thus, only LE4 is labeled in the figure. To analyze 
the relationship between the non-linear dynamic 
characteristics of the system and the frequency of the 

vibration load further, we design the Poincar-section (	  !x1 =0) and draw the bifurcation diagram of the system, as 
demonstrated in Fig. 2.  

In accordance with the Lyapunov exponent method 
proposed by Chen et al., the dynamic characteristics of high-
dimensional systems can be judged [23]. By combining Fig. 
1 and Fig. 2, the system obtains the following dynamic 
behaviors: 

 
(1) When the frequency  f ∈ [0, 6.6] (In Hz, the 

following are the same), LE1,LE2,LE3,LE4<0. That is, the 
phase trajectory of  the system converges to a stable point. 

  
(2) When the frequency  f ∈ [6.7, 43.9],[52, 54.2] 
[58.9,65],[66.4,67.7],[71,78],[84.2,100], 

LE1,LE2,LE3<0, LE4=0.That is, the phase trajectory of the 
system runs in periodic orbits.  

(3) When the frequency  f ∈ [43.9,52],[54.2, 
58.9],[65,66.4],[67.7,71]�,78,84.2],LE1>0, LE2, LE3<0, 
LE4=0. That is, the system is in a chaotic state, and a strange 
attractor exists. That is, with the change in the vibration 
frequency of the load torque, the phase trajectory of the 
motor has the characteristics of limit cycle, periodic motion, 
double periodic motion, and chaotic motion. 
 

 
Fig. 1.  Lyapunov exponent of the BLDCM 
 
 
3.5 Simulation study 
To verify the non-linear characteristics of the BLDCM under 
vibration load disturbance, we conduct simulation research.  
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 For the system of Equation (4), the initial state of the 

system is set as follows: 	   
!id , !iq , !ω, !u, !v⎡⎣ ⎤⎦

T
= 0.1,0.1,0.1,1,0.1⎡⎣ ⎤⎦

T
.  

The controlled input is set as follows: 	   !ud =0, and 	   !uq =35.   

When the frequency of the disturbance component of the 
motor torque increases gradually from 0Hz to 100Hz, four 
motion modes appear in the system simulation (Fig. 3～Fig. 
6). 

 
Fig. 2. Bifurcation diagram of the BLDCM 
  
 
 When the load is constant, that is, the frequency of load 
vibration  f =0Hz, the waveforms of the variable 	   !x1,  	   !x2,  

and	  !x3，and the phase trajectory between the three variables 
are observed, as exhibited in Fig. 3. The system state tends 
to stabilize after starting oscillation in the absence of torque 
disturbance. The phase trajectory of the system converges to 
a stable point, while the system is in a stable state. 

When	  f =20Hz, the phase trajectory between the three 
variables and the power spectrum of the q-axis current are 
observed, as displayed in Fig. 4. The period doubling loop 
occurs on the phase plane. Moreover, peaks are observed at 
several frequencies in the power spectrum of the q-axis 
current of the system. Therefore, the system has a periodic 
motion at the corresponding frequencies. 

When	  f =70Hz, the phase plane diagram of the system 
and the power spectrum of q-axis current are observed, as 
presented in Fig. 5. Singular attractors appear on the phase 
plane. The phase trajectory seems random, but it has a self-
similar structure. Moreover, the power spectrum of the q-
axis current exhibits periodicity. Thus, the system is in a 
chaotic motion.  

When 	  f = 98Hz, the phase plane and power spectrum of 
the q-axis current are observed, as illustrated in Fig. 6. The 
limit cycle appears in the phase trajectories. Simultaneously, 
only one peak appears in the power spectrum of the q-axis 
current. Thus, the phase trajectories eventually tends to a 
stable limit cycle and enters the uniperiodic motion. 

 
Fig. 3.  	   !x1, !x2, !x3 and the phase trajectory (	 f =0Hz ) 

 

Fig. 4. Phase trajectory and power spectrum (	 f =20Hz ) 

 
Given that the frequency of the oscillating load varies, 

the BLDCM system presents complex non-linear dynamic 
characteristics, namely, equilibrium point, limit cycle, cycle 
motion, period doubling, and chaotic motion. By combining 
Fig. 1 and Fig. 2, we can conclude that, with the change in 
parameter, the systems generate period doubling motion ( f
∈[6.6, 43.9]Hz), paroxysmal chaos ( f ∈[43.9, 58.9] Hz), 
cycle motion ( f ∈[58.9, 65]Hz), paroxysmal chaos ( f ∈

[65, 84.2]), and cycle motion sequentially. 
 

 
Fig. 5. Phase trajectory and power spectrum(	 f =70Hz ) 
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Fig. 6. Phase trajectory and power spectrum(	 f = 98Hz ) 
 
 
3.6 Experimental studies 
In this study, the vibration load of the BLDCM is generated 
using a dynamometer. 
 

 
Fig. 7. Test platform of torque–current characteristic for an eddy current 
dynamometer 
 
 

Fan [24] demonstrated that, under certain conditions, the 
braking torque of an eddy current dynamometer has an 
approximate linear relationship with excitation current. The 
characteristics of the dynamometer used in the experiment 
are tested. The experimental device is depicted in Fig. 7. The 
type of eddy current dynamometer used in the experiment is 
THCG-1, which is manufactured by Zhejiang Tianhuang 
Science and Technology Industry Co., Ltd. (power range is 
0～1500W, torque range is 0～2 Nm , speed range is 1～
3000r/min). The model of torque and speed measuring 

instrument used in the experiment is JN338, which is 
manufactured by Beijing Sanjing Pioneer Technology Group 
Co., Ltd. 

After experimental testing, the relationship between 
braking torque and excitation current of the eddy current 
dynamometer is demonstrated in Fig. 8. When the speed of 
the dynamometer is between 1000 and 2000rpm and the 
excitation current varies between 0.4 and 0.7A, the braking 
torque varies approximately equally; that is, the braking 
torque is approximately proportional to the excitation current.  

To ensure that the rotational speed of the experimental 
platform is constant, the DC generator provides a large 
constant load torque in the experiment. Then, the eddy 
current dynamometer provides a small load disturbance 
torque. Thus, we can solve the problem in which the 
response speed of the BLDCM control system cannot keep 
up with the change in the torque when the load fluctuation is 
unreasonably large. We also achieve the purpose of the basic 
stability of the system speed. The torque of the DC generator 
is determined through its excitation voltage and armature 
load resistance. The related parameters can be calibrated 
through the torque and speed sensor in advance. The 
experimental platform is displayed in Fig. 9. The BLDCM 
drives the DC generator and eddy current dynamometer 
simultaneously through coupling. The parameters of the 
BLDCM are provided in Section 3.1. 

 

 
Fig. 8.  Torque–current characteristic of a dynamometer 
 

 

 
Fig. 9.  Experimental platform for the nonlinear characteristics of the BLDCM 
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In the experiment, the driving speed of the BLDCM is 
adjusted to 1500rpm. By adjusting the excitation voltage and 
armature load resistance, the DC generator generates 3.5Nm 
load torque. By applying the AC/DC hybrid excitation 
current 	  i f =0.6+0.5sin(ω t)A  to the dynamometer, as 

presented in Fig. 8, the braking torque is approximately 

	  TL =1+0.8sin(ω t)Nm .The superposition of the DC and AC 
power supplies is accomplished by a transformer and a 
capacitor. 

In the experiment, the working current, rotational speed, 
and excitation current of the BLDCM dynamometer are 
collected through data acquisition and analysis system 
(DH5902). Then, they are displayed through calculation and 
conversion. The computer is equipped with oscilloscope 
(TDS2024C) simulation software produced by the Tektronix 
Company. It can replace the oscilloscope to display part of 
the data in real time and simplify the interface for 
observation. The frequency of the excitation power supply of 
the dynamometer is gradually changed. The phase 
trajectories of the system, current waveform, and power 
spectrum waveform are observed in the computer screen and 
oscilloscope. The operation characteristics of the motor are 
analyzed and compared with the theoretical analysis. 
 
 
4 Result Analysis and Discussion 
 
When the frequency of load vibration 	  f =0Hz, the time 

domain waveform of the q-axis current 
 
iq  is illustrated in 

Fig. 10. In the interface of the oscilloscope, the longitudinal 
coordinate is the current amplitude, and the Abscissa  is time 
variable. After conversion, the scale of current is 0.5A/div, 
and the scale of time is 0.015s/div. This study primarily 
focuses on the shape and trend of the waveform. Thus, it 
ignores the measurement and display errors of the 
instrument. When the motor starts, the q-axis current 
oscillates, and the current amplitude gradually decreases and 
stabilizes. The plane phase trajectory of the d–q axis current 
of the motor is shown in Fig. 11. The phase trajectory 
converges slowly to the central stable point from the outer 
ring. It verifies that the system is in stable motion without 
the disturbance of load vibration. 
 

 
Fig. 10. Q-axis current 

 
iq  at start-up (	 f =0Hz ) 

 

 
Fig. 11.  Phase trajectory of 

 
id − iq  (	 f =0Hz ) 

 
When the vibration frequency of the torque equals 7.1 

Hz, the phase trajectory of the d–q axis current of the motor 
is observed, as depicted in Fig. 12. The graph exhibits many 
circular trajectories that do not converge to the central stable 
point. Thus, the system is in the state of doubling periodic 
motion. Fig. 13 demonstrates the q-axis current and its 
power spectrum. 

 

 
Fig.12.  Phase trajectory of 

 
id − iq  (	  f =7.1Hz ) 

 

 
Fig. 13. Q-axis current and its power spectrum (	  f =7.1Hz ) 

 
The power spectrum contains many peaks. Thus, the 

system is in the state of doubling periodic motion. When the 
frequency is increased to  f =44.7Hz, the approximate shape 
of the phase trajectory and current power spectrum remains 
unchanged. 

When the frequency of load vibration rises to 44.8Hz, 
the plane phase trajectory of the d–q axis current is observed, 
as displayed in Fig.14. 
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Fig.14.  Phase trajectory of 

 
id − iq  (	  f = 44.8Hz ) 

 
The phase plane trajectories are interlaced with each 

other. Moreover, no evident fixed orbit is observed. Fig.15 
illustrates the q-axis current and its power spectrum. The 
time domain waveform of the current presents no periodicity. 
Furthermore, the whole frequency domain of the power 
spectrum has numerous peaks, thereby indicating that the 
system has entered the chaotic state. By increasing the 
frequency of the vibration load, the approximate shape of the 
current and power spectrum is maintained at 52.2 Hz. 

 

 
Fig. 15. Q-axis current and its power spectrum (	  f = 44.8Hz ) 
 

Given that the frequency of load vibration continues to 
increase to 52.3Hz, the plane phase trajectory of the d–q axis 
current presents a limit cycle, as depicted in Fig. 16. Fig.17 
demonstrates the power spectrum of the d-axis current, 
which contains only one peak impact. Therefore, the system 
degenerates into a stable periodic one motion state. This 
state continues until the frequency rises to 54.5 Hz. 
 

 
Fig.16.  Phase trajectory of 

 
id − iq  (	  f =52.3Hz ) 

When the frequency rises to 54.6Hz, the waveforms of 
the phase plane and current power spectrum are similar to 
that in Fig.14 and Fig.15. Thus, the system is back to the 
chaotic state. The experimental results are consistent with 
the theoretical analysis results provided in Section 3. Several 
errors of frequency range between the experiment and the 
previous theoretical analysis are observed. These errors are 
mainly caused by the experimental errors and do not affect 
the experimental results.  
 

 
Fig. 17.  Q-axis current and power spectrum (	  f =52.3Hz ) 
 
 
5. Conclusions 
 
To explore the nonlinear dynamic characteristics of a 
BLDCM under load torque disturbance, we initially 
introduced the vibration load disturbance to build a 5-D 
mathematical model of the BLDCM by using time scale and 
linear affine transformations. Afterward, we analyzed and 
simulated the dynamic characteristics of the motor 
theoretically. Finally, we built the experimental platform to 
verify the results. Through theoretical analysis and 
experiments, the following conclusions were drawn. 
 

1) With the change in the frequency of load vibration 
component, the BLDCM system presents the stable point, 
limit cycle, period, period doubling, and chaotic motion. 
When the frequency is between 6.6 and 43.9Hz, the system 
is in the period doubling motion. When the frequency is 
between 43.9 and 58.9 Hz, the system enters the paroxysmal 
chaotic motion. When the frequency is between 58.9 and 65 
Hz, the system enters the periodic motion state. 

2) When the frequency of the load vibration component 
continuously increases and the frequency is between 65 and 
84.2Hz, the system enters the paroxysmal chaotic motion 
again. When the frequency continuously rises, the system 
enters the periodic motion state. 

 
This study is helpful in preventing the torque and speed 

oscillation of the BLDCM drive system caused by vibration 
load. It also provides the goal and direction for searching for 
the optimal control of the motor system under vibration load 
disturbance. Therefore, this study has strong theoretical and 
practical significance because it primarily focuses on the 
nonlinear phenomena caused by the frequency change in 
sinusoidal vibration. However, it does not discuss the 
nonlinear phenomena caused by other waveform vibrations. 
This lack of discussion is the major limitation of this study. 
The non-linear characteristics of the BLDCM under the 
interference of other vibration waveforms and the 
corresponding control methods must be further studied in the 
future. 
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