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Abstract 
 

The present paper views the results related to the solution of a complicated problem in the area of measuring equipment. 
The proposed mathematical model makes possible the transfer of the measuring unit, the calibration and verification of 
measuring equipment operating in dynamic mode on the basis of an output measuring instrument calibrated in static 
mode. The measuring equipment under study is a stand-simulator based on a six-degree-of-freedom Stewart Platform for 
verifying and calibrating instruments measuring the parameters of a ship’s motion. The mathematical model is developed 
on the basis of the direct kinematics problem of parallel mechanisms. 
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1. Introduction 
 
The metrological theory related to dynamic measurement 
aims to achieve traceability at the accuracy level required by 
today‘s science. From this perspective dynamic 
measurements are distinguished for a number of specific 
features related to static measurements. For example, the 
investigation of the accuracy of instruments operating in 
dynamic mode is distinguished for the fact that it is 
necessary to define the error of the reading of not only the 
measured quantity but also of time [1, 2]. The methods for 
measuring time are known and accurate enough. Of course, 
the error component generated upon time fixing should be 
taken into consideration. The problem related to the 
definition of the reading error of the measured quantity is 
more complicated. If the measuring instrument allows 
measurement in static mode, then its error can be determined 
on the basis of the respective system of references ensuring 
the quantity in static mode. If the measuring devices cannot 
be graduated in static mode, it is necessary to develop the 
respective references and hierarchical diagrams. The output 
measuring instruments in those hierarchical diagrams should 
be calibrated with the help of the existing references in static 
mode [3, 4, 5, 6]. The solution of the problem on the basis of 
this approach has a number of difficulties mainly caused by 
the need for harmonizing the characteristics of the output 
measuring instruments to the dynamics of the quantity 
measured. Therefore, an appropriate mathematical model 
should be elaborated.  
 The nature of the problem related to the provision of the 
required accuracy to the stand equipment for calibrating and 
verifying the measuring instruments and systems that 
determine the parameters of a ship’s motion can be viewed 

in this sense. The purpose of the equipment is to reproduce 
in a reference format the ship’s motion with respect to its six 
degrees of freedom. On the ground of the characteristics of a 
ship’s motion with respect to its six degrees of freedom 
which must be reproduced by the equipment, we can specify 
that the most apt variant of its development is using parallel 
mechanisms (a hexapod of six degrees of freedom). The 
development of the equipment is considered in details in [7]. 
 To investigate the equipment accuracy and to develop a 
hierarchical diagram is a complicated task that requires the 
elaboration of an adequate mathematical model providing 
the respective procedures, which is actually the aim of the 
present paper. 

 
 

2. An analysis of the elements that build up the accuracy 
estimation system 
 
To achieve the above aim it is necessary to analyze the 
structure of the measuring equipment under estimation. This 
equipment is described in details in [7]. Its mechanical 
module is a hexapod which is actually a closed kinematic 
chain between the stationary base 1 and the motion platform 
2 having six degrees of freedom (fig.1). Unlike conventional 
manipulators, the ones based on the hexapod perceive 
loading as space trusses. The six degrees of freedom are 
provided by the six actuators 3, each of which consists of 
two elements and an active translational kinematic pair. The 
motion of the platform according to the respective law is 
guided by the current assignments of each actuator. 
Consequently the reference quantity defined in this case as a 
motion of the platform with respect to each degree of 
freedom is a function of the actual change of the lengths of 
the actuators according to the time coordinate. This principle 
is the core of the proposed accuracy estimation system of the 
measuring equipment because it relates the error ΔLi of the 
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current values of the actuator length to the accuracy upon 
reproducing the set motion of the platform. 
 The error ΔLi is determined by the difference 

 

 ΔLi = Li
d − Li

u  , i = 1, 2, ...,6,                                               (1) 
 

where d
iL  is the actual value of the length of the i-th 

actuator, u
iL  - the current assignment of the i-th actuator. 

 Formula (1) defines error ΔLi in static mode. Actually 
this error is dynamic because it is formed by the dynamically 
changing quantities, i.e.  

 
( ) ( ) ( )d u
i i iL t L t L tΔ = − ,  i = 1, 2, ...,6.                                  (2) 
 
It is necessary to mention that the values of error ΔLi, 

obtained according to formula (1) and (2), are close. 
However, formula (1) provides a little bit higher values with 
a difference not greater than 10%. 

To determine the values of error ΔLi, it is required to 
develop a measuring instrument which will function as an 
output device within the hierarchical diagram. The block 
diagram of the latter is shown in fig. 2 and the constructive 
model developed in SolidWorks is shown in fig. 3. It is 
developed as a stand measuring system which consists of a 
common base platform where a system for measuring the 
lengths of the actuators and a base holder are mounted. 
When mounting the actuator under verification 2 onto the 
base holder 3, its physical orientation and centring with 
respect to the coordinate axes of the base 1 are implemented 
(fig. 3). The carriage 4 moving along the cylindrical guides 
is attached to the movable element of the actuator. The 
sensor of the measuring system 5 is mounted on the carriage, 
which makes possible to measure the current length of the 
actuator. Measuring information is transferred by means of 
appropriate interface for connecting the measuring system to 
a computer where after processing in compliance with (1) or 
(2) the sought values of error ΔLi are obtained (fig.2). The 
signals controlling the actuator are fed by the computer 
interface. 
 
 2

3

1

 
Fig. 1. Model of the estimated measuring instruments  
 

 
The design of the equipment is relatively simple, which 

reduces the influence of the instrumental errors. A 
distinguishing feature of the proposed stand measuring 
system is that the transfer of the measuring unit from the 
referent elements could be done in static mode through 
direct methods. The same is true for calibration and 
verification.  

The measuring information obtained for error ΔLi makes 
possible to develop a procedure for calibration or estimation 
of the hexapod error. This procedure is based on the 
mathematical model defining the accuracy characteristics of 
the measuring equipment in a function of ΔLi. 

 
 

3. A mathematical model for determining the 
measurement equipment error 

 
The mathematical model is based on the kinematic problems 
of parallel mechanisms since the mechanical module of the 
equipment is built in the form of a hexapod. The kinematic 
problem provides a solution in relation to the dependences of 
the output coordinates of the motion platform on the lengths 
of the actuators. The problem can be divided into two parts – 
a forward problem and an inverse problem. The purpose of 
the inverse problem is to determine the change of the lengths 
when the output coordinates are set, which actually 
coincides with the problem related to the control of the 
actuators linked to the motion along the set trajectory of the 
motion platform. The forward problem aims to define the 
output coordinates when the lengths are known. The essence 
of this problem coincides with the above concept for 
determining the accuracy upon reproducing the set motion of 
the operating platform depending on errors ΔLi of the current 
values of the actuators lengths. 
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Fig. 2. Block diagram of the output measuring instrument 
 

One of the first studies where the inverse problem is 
formulated and solved as completely as possible is [8]. It has 
a unique and very simple solution. Unlike it the solution of 
the forward kinematic problem is very complicated and 
results in a number of different configurations of the 
operating platform for the set lengths of the actuators. In this 
respect in the late 1980s and early 1990s its solution played 
a key role in the theory studying the Stewart platform. 
Today, as it is stated in [9, 10] for example, the kinematic 
problem is solved for each possible configuration of the 
platform. However, some indirect problems remain 
unsolved. In particular, the problem in relation to finding a 
unique solution of the forward problem among the set of 
possible solutions defining the configuration of the platform 
[11, 12]. 
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Fig. 3. Constructive model of the referent measuring instrument  
 

The configuration space of the 6-degree-of-freedom 
Stewart platform is determined by the conditions of the 
closed-loop vector. The mathematical model is derived on 
the basis of the vector-projection equations defined by the 
closed kinematic chain shown in the kinematic diagram in 
fig. 4. It has the form [13] 

 

   
!
P+ !ri −

!
Ri −
!
Li = 0 ,                                                             (3) 

 
where 

  
!
P =OBOP

" !""""
 is the radius-vector to the beginning of the 

mobile coordinate system OPxyz. 
In the kinematic diagram it is assumed that the actuators 

are weightless rods denoted by BiPi, i = 1,2,...,6. Rods BiPi 
consist of two elements connected by a translational 
kinematic pair. Points Pi lie on the operating platform 
(fig.4). They are placed on a circle of a radius r and a centre 
OP, which coincides with the centre of mass of the operating 
platform. Points Bi, lying on a circle of a radius R and a 
centre OB, are placed on the base platform. The first element 
of each rod is connected to the base platform by a joint. 
There is a possibility for its angular displacement towards 
the base. The translational kinematic pair provides linear 
motion to the second element in the direction defined by the 
unit vectors ie

r connected to the respective rods BiPi. 
The immobile coordinate system OBXYZ is connected to 

the base. Its center coincides with point OB and axis OBZ is 
directed along the normal. The mobile coordinate system 
OPxyz is connected to the operating platform. The distance 
between point OB and point OP in initial position is H0.  

The following radius vectors defining the kinematics of 
the system are denoted in the kinematic model in fig. 4: 

• 
  
!
Ri  - a radius vector to points Bi, presented in the 

absolute coordinate system OBXYZ; 
• 

  
!ri  - a radius vector to points Pi of the platform, set in 

the immobile coordinate system OBXYZ; 
• 

  
!ei  - a unit radius vector connected to the actuators, 

   
!ei =1 ; 

• 
  
!
Li  - a radius vector of the i-th actuator, 

   
!
Li = Bi Pi

" !"""
= Li .
!ei; i =1,2,..., 6 . 
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Fig. 4. Kinematic chain of the hexapod 
 

 
The position of the platform in the immobile coordinate 

system is determined by a 6-dimensional column vector of 
the type  

 

  

!
RP = X P YP ZP α β γ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

.                          (4) 

 
The three-dimensional column vector 

  
!ri  can be 

presented by the vector relationship  
 

   
!ri = T⎡⎣ ⎤⎦.

!ri
P ,                                                                          (5) 

 
where 

  
!ri

P  is a three-dimensional column vector of the 
coordinates of the platform spherical joints; [T] is a square 
3×3 matrix transforming the orientation of the mobile 
coordinate system OPxyz with respect to the immobile one 
OBXYZ, and it is of the type 
 

  

T⎡⎣ ⎤⎦=

cα ⋅cβ cβ ⋅sβ ⋅sγ − sα ⋅cγ cα ⋅sβ ⋅cγ + sα ⋅sγ
sα ⋅cβ sα ⋅sβ ⋅sγ +cα ⋅cγ sα ⋅sβ ⋅cγ −cα ⋅sγ
−sβ cβ ⋅sγ cβ ⋅cγ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.   (6) 

 
where cα=cosα; sα=sinα; cβ=cosβ; sβ=sinβ; cγ=cosγ; 
sγ=sinγ. 

Raising the vector equation to the second power (3) and 
taking into consideration that 2 1e =

r , the following equation 
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in a scalar form is obtained: 
 

 

cα ⋅ cβ ⋅ rix
P + sγ ⋅ sβ ⋅ cα − sα ⋅ cγ( ) ⋅ riy

P + X P − Rix
⎡
⎣

⎤
⎦

2
+

+ cβ ⋅ sα ⋅ rix
P + sα ⋅ sβ ⋅ sγ + cα ⋅ cγ( ) ⋅ riy

P +YP − Riy
⎡
⎣

⎤
⎦

2
+

+ −sβ ⋅ rix
P + sγ ⋅ cβ ⋅ riy

P + ZP( )
2
− Li

2 = 0.

    (7) 

 
To work out the mathematical model, it is convenient to 

present (7) in the type 
 

 

cα ⋅ cβ ⋅ rix
P + sγ ⋅ sβ ⋅ cα − sα ⋅ cγ( ) ⋅ riy

P + X P − Rix
⎡
⎣

⎤
⎦

2
+

+ cβ ⋅ sα ⋅ rix
P + sα ⋅ sβ ⋅ sγ + cα ⋅ cγ( ) ⋅ riy

P +YP − Riy
⎡
⎣

⎤
⎦

2
+

+ −sβ ⋅ rix
P + sγ ⋅ cβ ⋅ riy

P + ZP( )
2
− Li = 0.

   (8) 

 
The left sides of the equations (8) are a system of 

functions   Ui(
!
RP ) ,   Ui(

!
RP )= 0 , i=1,2,...,6, of the vector 

argument 
  

!
RP = X P YP ZP α β γ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

. This 

function can be defined as a vector function   
!
Q(
!
RP )  of the 

same argument as well, i.e. 
 

  

!
Q
!
Rp( ) =

!
U1
⎡⎣

!
Rp( )
!

U2

!
Rp( )
!

U3

!
Rp( )

!
U4

!
Rp( )
!

U5

!
Rp( )
!

U6

!
Rp( )⎤⎦

T
.
                                 (9)  

 
Then the Jacobian matrix for the system of equations 

will be: 
 

  

J = ∂
!
Q(
!
RP )

∂
!
RP

T =

∂U1

∂X P

∂U1

∂YP

∂U1

∂ZP

∂U1

∂α

∂U1

∂β

∂U1

∂γ

∂U2

∂X P

∂U2

∂YP

∂U2

∂ZP

∂U2

∂α

∂U2

∂β

∂U2

∂γ

∂U3

∂X P

∂U3

∂YP

∂U3

∂ZP

∂U3

∂α

∂U3

∂β

∂U3

∂γ

∂U4

∂X P

∂U4

∂YP

∂U4

∂ZP

∂U4

∂α

∂U4

∂β

∂U4

∂γ

∂U5

∂X P

∂U5

∂YP

∂U5

∂ZP

∂U5

∂α

∂U5

∂β

∂U5

∂γ

∂U6

∂X P

∂U6

∂YP

∂U6

∂ZP

∂U6

∂α

∂U6

∂β

∂U6

∂γ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.(10) 

 
The system of scalar equations (8) and the Jacobian 

matrix entirely determine the geometric kinematics of the 6-
jack Stewart platform. 

However, on the other hand, the system of equations (8) 
is non-linear. Its solutions, which determine the motion 
coordinates of the operating platform, should be sought by 
numerical methods [14]. One of these methods is the 
Newton-Rafson method. According to it the vector of the 
output coordinates is defined by the iterative formula [15, 
16] 
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Fig. 5. Errors of the linear components of vector   
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(
!
RP )j+1 = (

!
RP )j −

∂
!
Q(
!
RP )j

∂(
!
RP

T
)j

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

.
!
Q(
!
RP )j .                         (11) 

 
In is assumed in (11) that the initial configuration of the 

platform is known. For each of the calculation steps the 
values of the components of the vector   

!
RP , obtained for the 

previous step, are accepted as initial approximations. 
This procedure can be used for defining the error of the 

operating platform upon its motion according to a set 
trajectory. Since the latter is determined by vector   

!
RP , then 

it follows that its errors defined by vector 

  
Δ
!
RP = ΔX P ΔYP ΔZP Δα Δβ Δγ⎡

⎣⎢
⎤
⎦⎥  are functions 

of the errors identified in the lengths of the actuators and set 
in (11) by the components of vector 

  
Δ
!
L = ΔL1 ΔL2 ΔL3 ΔL4 ΔL5 ΔL6

⎡
⎣⎢

⎤
⎦⎥ . To present the 

components of vector   Δ
!
L  in a clear form in the iterative 

formula (11), we designate the quantity under the radical 

sign from (8) with 
 

ai

w
, i=1,2,...,6. Then taking into 

account all the above mentioned specifications, we obtain 
the following final formula defining the procedure for 
determining the accuracy of motion of the motion platform 
according to the set trajectory.  

 

 

ΔX P

ΔYP

ΔZP

Δα
Δβ

Δγ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

j+1

=

X P

YP

ZP

α
β

γ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

j

− J
−1

.

a1

w
−ΔL1

a2

w
−ΔL2

a3

w
−ΔL3

a4

w
−ΔL4

a5

w
−ΔL5

a6

w
−ΔL6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.                   (12) 
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The iterative formula (12) for each initial platform 
configuration selected should result in a unique solution. To 
satisfy this condition, it is required that the determinant of 
the matrix (10) is not equal to zero for all possible values of 
vector PR

r
, forming upon the implementation of the set law 

of motion of the operating platform, i.e. 
 

 

  

det J = det ∂
!
Q(
!
RP )

∂
!
RP

T ≠ 0 [17, 18, 19]. 

 
The above described mathematical model, output 

measuring instrument and hierarchical diagram establish all 
required conditions that form reference qualities in 
measuring equipment. A significant advantage of the 
hierarchical diagram is that the output measuring tool is 
calibrated in static mode. 

 The software implementation of the mathematical model 
determining indirectly the accuracy of reproduction of the 
set motions of the operating platform is realized in Matlab. 
The results obtained from the investigation of the accuracy 
of the measuring equipment are visualized in fig. 5 and 6. 
The two figures illustrate the errors of, respectively, the 
linear and angular components of the vector defining the 
trajectory of the operating platform. The investigation is 
realized on the basis of three groups of experimental results 
obtained upon the accuracy analysis of each actuator for 
three different weight loads. 
 
 
4.Conclusions 
 
The above mathematical models and the output measuring 
device make possible the development of metrologically 

traceable calibration hierarchy from a measurement standard 
of a static quantity to equipment with reference qualities in 
dynamic measurement mode. This enables us to link the 
measurement result of dynamic quantities to a reference of a 
static quantity. In this case the reference of the static 
quantity is the definition of a measurement unit of length 
through its practical realization.  

In addition, by means of the proposed mathematical 
model, the referent measuring instrument and the 
hierarchical diagram the measuring equipment can not only 
be calibrated and verified but also its accuracy can be 
modeled at the stage of its development.  

This is due to the fact that the summarized mathematical 
model defines the positional input-output relation between 
the lengths of the actuators and the output coordinates of the 
motion platform. Taking into consideration that the actuators 
are the most important design elements in terms of the 
accuracy and dynamics of the Stewart platform, the 
efficiency of the proposed approach can be seen. The results 
from the experimental tests confirm the reliability of the 
mathematical model developed. 
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