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Abstract 
 

Accumulative errors can be retained all the time when classical Kalman filtering is adopted for odometer-based dead 
reckoning, thereby affecting self-localization accuracy of the robot. A mobile robot self-localization method based on 
limited memory Kalman filtering (LMKF) with exponential fading factor was proposed to reduce accumulative errors of 
the odometer and improve localization accuracy of the mobile robot. The self-localization system of mobile robot was 
built. A mathematical model was established based on LMKF with exponential fading factor. A dead reckoning method 
fusing multi-sensor information was proposed. The model accuracy was verified through simulation and test. Results 
indicate that the LMKF method with exponential fading factor positively affects the tracking of high-speed maneuvering 
dynamic targets, and its localization error is reduced by 42.5% compared with the odometer-based dead reckoning. The 
tracking accuracy of the mobile robot is stable at 0.5 m. This study can provide references for mobile robot self-
localization using multi-sensor. 
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1. Introduction 
 
The self-localization system acquires position, posture, 
velocity, and external environmental information of the 
mobile robot through multiple sensors to realize its real time, 
reliable, and accurate localization, it is one of the key 
technologies of mobile robots. In recent years, with the rapid 
development of mobile robot technology, the application 
requirements of self-localization systems have also 
presented gradual growth trend. Relevant technical studies 
have achieved great progress, and increasing number of units 
has participated in the study, design, production and 
application of the mobile robot self-localization system. The 
traditional self-localization system uses a single sensor to 
acquire information with large errors and uncertainties. 
Mobile robots cannot easily adapt to the complex 
environment. Therefore, multi-sensor data acquisition is a 
reliable scheme for mobile robot self-localization. 
Application of the multi-sensor information fusion 
technology to mobile robots can provide accurate decisions 
on the behavior of robots and improve the accuracy of 
mobile robot self-localization. Thus, the combination of 
mobile robot and the multi-sensor information fusion 
technology has become a research hotspot. Information 
fusion technology is widely used in the mobile robot self-
localization. Multi-sensor information is integrated based on 
fuzzy logic algorithm. The collision-free mobile robot 
navigation system is designed, and intelligent obstacle 
avoidance of mobile robots is successfully realized [1]. In 
addition, the multi-information fusion technology based on 

wireless sensor network [2] has also improved self-
localization accuracy of mobile robot. 

However, with the high intelligence of mobile robots, the 
pose information required by robots become increasingly 
complex, and uncertain and external interference factors are 
increasingly found. Effectively processing multi-sensor 
measurement data in real time has become a key issue to 
achieve multi-sensor information fusion. To solve this 
problem, improve the system localization accuracy, and 
eliminate the information fusion cumulative errors, a multi-
sensor data fusion algorithm based on the physical model is 
generally adopted to eliminate or reduce interference signals 
and extract useful signals. The most effective among the 
methods is the Kalman filtering algorithm. When the number 
of measurements continuously increases in the classical 
Kalman filtering process, the mean square error of state 
estimation tends to be stable, but the deviation of the state 
estimation value from the actual value tends to increase, and 
the filter divergence phenomenon appears, greatly 
challenging the study of self-localization systems. 

Scholars conducted substantial studies on the 
information fusion Kalman filter algorithm in the mobile 
robot self-localization system [3-4]. However, the system 
mathematical model and noise model of the information 
fusion are extremely coarse or distorted. Thus, the actual 
physical process of the self-localization system cannot be 
reflected. Therefore, establishing a Kalman filter fusion 
algorithm with accurate mathematical model can accurately 
fuse multi-sensor information in real time and then 
accurately calculate the stable and reliable track of mobile 
robots, an urgent problem to be solved. 

A mathematical model of limited memory Kalman 
filtering (LMKF) with exponential fading factor was 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr 

______________ 
*E-mail address: chengxueli2005@126.com 
ISSN: 1791-2377 © 2018 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.  

doi:10.25103/jestr.116.24 
 



Xueli Cheng, Wanli Liu, Meng Guo and Zhenhua Zhang/Journal of Engineering Science and Technology Review 11 (6) (2018) 187 - 196 

 188 

established by improving the LMKF, and the multi-sensor 
information of digital gyroscope, odometer, and other 
sensors were fused into the dead reckoning method to 
improve the mobile robot self-localization accuracy, thereby 
providing a reference for the development and optimization 
of mobile robot. 
 
 
2. State of the art 
 
At present, studies on information fusion algorithms in the 
mobile robot self-localization system have been performed. 
Klančar [3] used extended Kalman filter to carry out 
synchronous localization and mapping (SLAM) of mobile 
robots and improved the SLAM algorithm convergence 
estimated by the noise covariance matrix. However, he 
failed to analyze the influence of prediction mean square 
error on the algorithm. Alatise [4] designed an extended 
Kalman filter, which combines inertia data and visual data to 
amend each sensor linkage, and acquired accurate direction 
and position of the mobile robot. In addition, his method is 
unsuitable in a broad environment. Simanek [5] designed a 
multi-mode data fusion algorithm based on the extended 
Kalman filter. The algorithm could accurately identify 
abnormal data and realize standard statistical test of filter 
residual, but the influence of the filter gain matrix on the 
algorithm was neglected. Lee [6] introduced an algorithm 
detecting and eliminating magnetic disturbance in the 
geomagnetic field. The algorithm was implemented in a mini 
type microprocessor and sensor module with relatively low 
costs by combining the extended Kalman filter, but it is 
unsuitable for robot localization in the area without magnetic 
disturbance. Jiang [7] put forward a new kinematical 
calibration method based on extended Kalman filter and 
particle filter algorithms. This method could remarkably 
improve the localization accuracy of the robot, but did not 
involve the influence of fading factors on filtering. Yu [8] 
proposed a generalized full Kalman filter algorithm based on 
Gaussian–Newton method, which could process all random 
errors in various equations of the nonlinear dynamic errors-
in-variables model, and improved the state estimation errors. 
However, the prediction mean square error was not studied. 
Gualda [9] studied the application of the extended Kalman 
filter in indoor navigation of mobile robot, combined the 
relative localization obtained by robot odometer 
measurement with the absolute localization measured by a 
group of ultrasonic local localization systems, but did not 
analyze the influence on estimated mean square error. Qian 
[10] fused data of Kinect visual sensor and four wheel-type 
encoders, used the extended Kalman filter with specific 
processing to localize the mobile robot, but did not further 
study the dead reckoning method after the fusion. Pak [11] 
proposed a new intelligent filtering algorithm, namely, self-
healing extended Kalman filter, which was only restricted to 
fault diagnosis. Luo [12] put forward a multi-information 
fusion model applied to the localization and navigation 
system of the wheel-type mobile robot. Mr Luo used 
Kalman filtering to realize data layer fusion of quantitative 
information of the system and artificial neural network to 
realize decision-making layer fusion of qualitative 
information of the system. However, separating quantitative 
information from qualitative information was ineffective in 
information integration. Zhang [13] put forward a navigation 
control method based on multi-sensor information fusion of 
charge-coupled device imaging sensor, electronic compass, 
accelerometer, and ultrasonic, which realized navigation 

control of car path tracking. However, only the sensor 
information in front of the car were fused. Zhang [14] fused 
ultrasonic sensor information, laser ranging information, and 
map information through particle filtering to realize accurate 
dynamic tracking and localization of indoor robots. However, 
this method was inapplicable to outdoor robots. Li [15] 
fused analog input data acquired by sensors and conversion 
data displayed on the upper computer into the improved 
particle swarm filter localization model. The model 
improved the localization accuracy of mobile robots indoors 
by a large margin, but only front-end sensor information of 
robot was acquired and fused. Mao [16] used particle 
filtering dynamic tracking and localization method to realize 
the self-localization of the microrobot, but it was only 
suitable for places with map information. Wang [17] used 
the extended Kalman filter algorithm to fuse binocular 
stereoscopic vision and odometer information, and realized 
real time localization of mobile robot’s travel direction. 
However, directional angle was not involved. Qin [18] used 
the traditional Kalman filtering to fuse measurement data by 
odometer and ultrasonic sensor, amended the positions of 
mobile robots during motion, but did not consider the 
filtering divergence problem. Xie [19] introduced the driving 
force of mobile robots and the frictional force with the 
ground as correction factor for prediction errors of the 
filtering algorithm. Mr Xie combined the input of multi-
model with output of filtering results during the non-uniform 
motion process to form multi-mode Kalman filter. This 
filtering method greatly improved the real time tracking 
performance of non-uniform motion of mobile robots, but 
the influences of dynamic noise and observation noise model 
on the filtering performance were not taken into account. 
Gao [20] proposed a method, which used estimated mean 
square error and innovation covariance estimator to calculate 
multiple fading factors, which were introduced to realize 
weighed correction to each channel. Thus, the overall 
performance of the adaptive Kalman filter was improved, 
but the channel information was not fused. Xue [21] 
designed a new adaptive Kalman filtering with multiple 
fading factors, calculated innovation covariance estimator 
based on fading memory exponential weights and introduced 
multiple fading factors to adjust the prediction error 
covariance matrix. Therefore, each filtering channel had 
different adjustment capabilities, which improved the 
precision and robustness of the filtering algorithm. However, 
the estimated mean square error was not analyzed. 

A variety of information fusion algorithms for robot’s 
self-localization were proposed based on this analysis, 
thereby improving the accuracy and adaptability of the 
mobile robot’s self-localization to some degree. However, 
few algorithms have considered using the LMKF method 
with exponential fading factor to control multi-sensor fusion 
errors and the work on reducing cumulative error of 
localization by combining attenuation memory filter and 
limited memory filter. LMKF with exponential fading factor 
was designed. This filter was used to fuse multi-sensor 
information into the dead reckoning method, and the 
simulation analysis and experimental study on the 
localization method after information fusion were carried out. 
The effectiveness of this self-localization method was 
verified.  

The remainder of this study is organized as follows. 
Section 3 constructs an LMKF physical model with 
exponential fading factor based on the LMKF, and proposes 
a dead reckoning method fusing multi-sensor information. 
Section 4 conducts a simulation analysis of the LMKF with 
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exponential fading factor, and analyzes the experimental 
results of dead reckoning based on multi-sensor information 
fusion. Section 5 summarizes the conclusions. 

 
 

3. Methodology 
 

3.1 Self-localization system of mobile robot 
The self-localization system of mobile robot consists of two 
components, namely, hardware and software.   

The hardware part, which is the foundation of realizing 
self-localization of mobile robot, consists of localization 
sensors. A single sensor can only acquire local information 
of the environment or measured object, but multi-sensor can 
comprehensively restore features of the ambient 
environment or measured object and can enhance the 
robustness of the localization system. In the comprehensive 

comparison of typical sensor performances, HMC5883L 3D 
magnetic resistance-type electronic compass, ADXL345 
three-axis acceleration sensor, L3G4200D three-axis digital 
gyroscope, and odometer (WTK-10 sensor) are selected as 
the hardware foundation of the self-localization system.  

The software part uses the LMKF method with 
exponential fading factor as the control strategy of the 
system, as shown in Fig. 1. The hardware part collects the 
pose information and environmental information of mobile 
robots. The software part uses the geometric method and the 
LMKF method with exponential fading factor to realize 
fusion calculation, coordinate transformation on the 
information, reduce accumulative errors caused by dead 
reckoning, and reliably output position and pose information 
of mobile robots in real time. 

 

 
The unit of self-localization 
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Fig. 1.  Self-localization system of mobile robot 
 
 
3.2 Design of LMKF with exponential fading factor 
 
3.2.1 Mathematical model 
The method using a single sensor to calculate robot poses 
divergently has poor accuracy. Thus, improving the self-
localization accuracy using a filtering algorithm is necessary. 
When the classical Kalman filtering is used for multi-sensor 
information fusion, the system mathematical model and 
noise model are extremely coarse or distorted. Thus, they 
cannot reflect the actual physical process of the self-
localization system, thereby generating filtering divergence 
phenomenon. The LMKF method with exponential fading 
factor is used to control fusion errors of multi-sensor.  

The limited memory filter with exponential fading factor 
only retains measured values of the N times closest to the 
time k and abandons measured values before k-N+1 time 
[22], meanwhile, the exponential fading factor is introduced, 
further increasing the weight of the measured value close to 
the current moment, thereby combining the fading memory 
filtering and limited memory filter to reduce the cumulative 
error.  

The derivation is as follows: k-time measurement is 
performed on 

kX , and its previous discrete values and 

measured values are the following: 
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meantime, scalar exponential fading factor kλ  is introduced 
into the estimated mean square error in the mean square 
error equation of one-step prediction, and the limited 

memory filter equation with exponential fading factor of 
kX  

is finally obtained, as follows: 
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In Equations (5)–(8), *ˆ N

kX  is state estimation, *N
kP  is the 

estimated mean square error, *
1/

N
kkP −  is the mean square error 

of one-step prediction, *
kK  and *

kK  are filter gain matrixes, 

kλ  is the fading factor of fading memory filter and defined 
as exponential function, N is limited memory length, asterisk 
* represents the addition of an exponential fading factor.  

When k is smaller than or equal to memory length N at 
the measuring time. The LMKF with exponential fading 
factor cannot be implemented, but the traditional fading 
memory Kalman filtering can be performed by calculating 
the initial values ][ˆ

00 XEX =  and ][ 00 XVarP =  to *ˆ
NX  and 

*
NP . However, in 1+= Nk , if ** ˆˆ
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considered, **
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N PP =  will be considered as the initial value 

for limited memory filter, and then the follow-up filtering 
value *ˆ N

kX  will always be affected by 
0X̂  and 0P , thereby 

not satisfying the requirements of limited memory filter. To 
eliminate the influence of initial values on the limited 
memory filter, the initial values are considered according to 
the following equations [23]: 
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The variance matrix kQ  of the system noise sequence 

and variance matrix kR  of the measured noise sequence on 
the filtering are indirectly affected by the gain matrixes. 
Therefore, under the condition that the system equation is 
inaccurate or unknown, the filter gains *

kK  and *
kK  can be 

directly estimated without estimating kQ  and kR . At the 
time, kλ  has an important influence on the filtering. The 
exponential fading factor kλ  is defined as follows: 
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Fig. 2 shows the flowchart of the LMKF with 

exponential fading factor. When ka  is equal to 1, the 

obtained filtering result is the most ideal; when ka  is greater 
or smaller than 1, fading factor kλ  is determined by the 
exponential function with e as the base, which indirectly 
affects the gain matrixes *

kK and *
kK , and improvs the 

inaccuracy of system modeling and the unknown influence 
of noise characteristics on the filtering, and increasing the 
system’s flexibility and robustness. 

 
3.2.2 Simulation experiment 
Simulation 1: α-β-γ filtering method [24] is used. The carrier 
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Due to the inaccuracy of the system equations, when the classical Kalman filter is adopted, the state noise and  

 
Fig. 2. Program flowchart of the LMKF with exponential fading factor 
 
measured noise will cause the filter to diverge. To facilitate 
the comparison of the LMKF and the LMKF with 
exponential fading factor, each filter curve is enlarged. 

Simulation 2: assuming that a two-coordinate radar 
observes a moving target on the plane, the target is under 
uniform linear motion along the y axis at t=0–400s, and the 
motion velocity and initial coordinates of the target are 
15m/s and (2000, 10000), respectively. The target high-
speed maneuvering at t=400s has an initial velocity of 10m/s 
and an acceleration of 24.975 2/m s  along the direction of 
the x axis. At t=430s, the acceleration in the direction of x 
axis turns into 0.975 2/m s  until t=530s. Subsequently, the 
acceleration declines to zero, and the target maintains a 
uniform motion until the observation ends. The observation 
period is T=1s. The observation is carried out independently 
along the x and y axes, and the standard deviations of 
observed noises are 100 m. 

 
3.3 Dead reckoning method based on multi-sensor 
information fusion 

 
3.3.1 Dead reckoning based on odometer 
Dead reckoning principle based on odometer is shown in 
Fig.3. The robot is assumed to move on a 2D plane, and its 
coordinates at time t are ),,( θyx . x and y are the coordinate 
values of the robot on the rectangular coordinate system, and  
 

 
θ is the heading angle of the robot. The time interval tΔ  is 
the period for the odometer count and the heading angle 
reading, 

Lv  and 
Rv  are the traveling linear velocities of the 

left and right driving wheels, respectively. 
 

 
Fig. 3 Principle diagram of dead reckoning based on odometer 

 
The arc tracks of left and right driving wheels within one 

period can be approximated as a segment of straight line 
because the sampling frequency of a single-chip micro-
computer is usually very high. The length of this straight line 
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is equal to the radius of the arc multiplied by the 
corresponding angle of the center of the circle. The 
displacement increment of the robot obtained by the dead 
reckoning is as follows: 
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where rt represents the two-wheel spacing; v and dω  are the 
velocity and angular velocity of heading change measured 
by the odometer, respectively.  

The coordinate reckoning formula of the mobile robot 
can be obtained as follows: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

Δ+=+

Δ++=+

Δ++=+

tdkk

tkvkyky

tkvkxkx

ωθθ

θ

θ

1

)1sin(1

)1cos(1
             (13) 

 
where kx  and ky  are the coordinate positions of the robot 
center. kθ  is the heading angle of the robot, indicating the 
angle between the heading of the robot and the positive 
direction of x axis of the coordinate system. It can be 
converted from the angle of the actual north direction 
measured by the electronic compass. The method that 
calculates the position and pose of the robot through the 
above formula is called odometer dead reckoning algorithm. 

Theoretically, the odometer dead reckoning algorithm 
can calculate the arbitrary length walking path of the robot, 
but each reckoning has an error because the straight line is 
used instead of the arc in the reckoning process. Moreover, 
the coded disc and odometer itself have systematic errors. 
Thus, the error of the dead reckoning presents infinite 
accumulation trend as the robot stroke increases. Therefore, 
relying solely on odometer and dead reckoning cannot 
estimate the pose of the mobile robot, and optimizing the 
dead reckoning method is necessary. 

 
3.3.2 Dead reckoning based on multi-sensor information 
fusion 
The accuracy of the robot pose cannot be estimated 
effectively only by relying on single sensors. To improve the 
self-localization accuracy, improved Kalman filtering 
algorithm is used to fuse the odometer and gyroscope data, 
and the state variable is considered as follows [25]: 
 

T
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where gω  is the angular velocity of the gyroscope, and the 
state equation of the system is as follows:  
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where 1, −Φ kk  is the one-step state transition matrix from 
time 1−kt  to time kt . The expression is shown in Equation 
(16), where rt  is the two-wheel spacing; W is the system 
noise matrix with covariance of Q ; 1−Γk  is the driving 
matrix of the system noise matrix and the unit matrix I in 
this system. 
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 The measuring equation of the system is as follows: 
 

k k k kZ H X V= +                                (17) 
 
where kH  is the system measurement matrix and the unit 
matrix I in the system; kV  is the measurement noise matrix 
with covariance of R. 

These parameters are brought into the LMKF with 
exponential fading factor Equations (5)–(8). The estimated 
values of the system variables are calculated, and the 
estimated values are substituted into Equations (12) and (13). 
The reckoning value of odometer after fusion of the 
gyroscope and the odometer can be obtained. The reckoning 
values of the odometer refer to dead reckoning values after 
the fusion.  

The cumulative error of the three-axis digital gyroscope 
gradually increases with time, which reduces the reckoning 
accuracy of the odometer. This study uses the 3D magneto-
resistive electronic compass to compensate the dead 
reckoning value of odometer. The selected 3D electronic 
compass has high measurement accuracy. Prior to fusion, the 
data of the electronic compass should be pretreated with 
time and coordinate system alignment. A three-axis 
accelerometer should be used for inclination compensation. 
The heading angle refers to the heading angles after fusion. 
The system state variable is obtained as follows:  
 

T
d aX ][ ωωθ=                                (18) 

 
where θ is the heading angle of the robot; ωa  is the angular 
acceleration of the heading angle change of the robot.  

The rotational motion of the motor can be the uniform 
angular velocity motion because the mobile robot moves 
slowly, and the state variable of the system is simplified as 
follows:  

 
T

dX ][ ωθ=                                          (19) 
 

The state equation of the system is as follows:  
 

1111, −−−− Γ+Φ= kkkkkk WXX                     (20) 
 

where ⎥
⎦

⎤
⎢
⎣

⎡
=Φ − 10
1

1,
T

kk , and T is the time interval of the 

system sampling. The measuring equation of the 
system is as follows:  

 

kkkk VXHZ +=                           (21) 
 

Similarly, these parameters are substituted into the 
LMKF with exponential fading factor Equations (5)–(8) to 
calculate the heading estimate. Then, the heading estimate is 
used to compensate for the cumulative errors of the 
odometer heading, and the dead reckoning simulation result 
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by using the limited memory filtering method with 
exponential fading factor is obtained.  

The simulation results obtained by the odometer-based 
dead reckoning method and the limited memory filtering 
reckoning algorithm with exponential fading factor are 
shown in Fig. 4. Fig. 4(a) shows the actual track curve of the 
mobile robot, estimated track of the odometer dead 
reckoning, and the estimated track of the filter dead 

reckoning. Fig. 4(b) shows the localization error curves of 
the odometer dead reckoning and filter dead reckoning 
during the simulation, thereby indicating that errors 
continuously increase. Fig. 4 shows that the error obtained 
by the optimized filtering dead reckoning method is smaller 
than that by the odometer dead reckoning error, and the 
minimization control of the odometer error is realized. 

 

             
(a) Track curves                                                                                                                   (b) Localization error curves   
Fig. 4 Filtering method-based dead reckoning simulation diagram 
 
3.3.3 Track test with multi-sensor information fusion 
The initial position of the mobile robot is selected as the 
coordinate origin. The telerobot moves along the track a-b0-
c0-d0-e0-f0-g0-h0, which is the actual track of the mobile 
robot. a-b1-c1-d1-e1-f1-g1-h1 is the track reckoned by the 
mobile robot using electronic compass and odometer; a-b2-
c2-d2-e2-f2-g2-h2 is the mobile robot track obtained by the 
limited memory filtering with exponential fading factor and 
multi-sensor information fusion method. The test 
comparison of odometer dead reckoning tracks before and 
after fusion is carried out, and the coordinate values of all 
tracks are obtained, as shown in Table 1. 
 

 
4 Result Analysis and Discussion 

 
4.1 Simulation result analysis of the LMKF with 
exponential fading factor 
Using the Simulation 1 method stated in 3.2.2, the filter 
curves and error curves obtained are shown in Fig. 5 and 6, 
respectively. 

Fig. 5 and 6 show that the classical Kalman filter is 
always in a divergent state and loses filtering function 
because the system equation is inaccurate. However, the 
LMKF and LMKF with exponential fading factor suppress 
filter divergence. Fig. 6 shows that LMKF must adopt 
classical Kalman filter before the measurement time reaches 
the memory length, and the error is relatively large. 
However, the LMKF with exponential fading factor has 
attenuated memory characteristic with the addition of 
exponential fading factor based on posteriori information, 
fluctuating within the interval of [-0.5 m, 0.5 m], centering 
on error 0 in the whole interval. In addition, the error 
brought by the inaccuracy of the system model is reduced. 
Fig. 6 also shows the long-term stability of LMKF with 
exponential fading factor. The positive error of classical 
Kalman filter diverges to approximately 150 m when the 
simulation time is 600 s, but LMKF with exponential fading 
factor is still basically within the interval [-0.5 m, 0.5 m], 
guaranteeing the unbiased estimated value. 

The simulation results obtained by the method in 
Simulation 2 in 3.2.2 are shown in Fig. 7 and 8. 

Fig. 7 is a comprehensive simulation diagram of the 
tracking of vector motion on a 2D plane using the LMKF 
method with exponential fading factor. Fig. 8 shows the 
tracking errors and standard deviations of the 2D planar 
motion. As shown in Fig. 7 and 8, the LMKF method with 
exponential fading factor has a favorable tracking effect on 
the dynamic target under high-speed maneuvering and can 
inhibit the influence of noise in the environment. Thus, the 
filter curve can be closer to the actual motion track. 
 

Table. 1. Coordinate values of actual track, odometer 
track, and filter track 

Real track Odometer track Filter track 
Coor
di-
nate 
point 

Coordi-
nate 
value 

Coord
i-nate 
point 

Coordi-
nate value 

Coor
di-
nate 
point 

Coordi-
nate value 

a 0, 0 a 0,0 a 0, 0 
b0 5.4, 0 b1 3.87,0.03 b2 4.17,0.04 
c0 7.2, 0 c1 5.34, 0.02 c3 6.54,0.02 
d0 9, 0 d1 6.42,-0.02 d2 8.58,-0.03 
e0 9, -1.2 e1 6.16,-0.99 e2 7.81,-1.25 
f0 3.6,-1.2 f1 2.08,-1.33 f2 1.96,-1.25 
g0 1.8,-1.2 g1 2.33,-1.27 g2 2.22,-1.21 
h0 0, -1.2 h1 -1.56,-1.2 h2 -1.52,-1.17 
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Fig. 5.  Filter curves under simulation time of 600 s and memory length of N=50 
 

 
Fig. 6.  Error curves under simulation time of 600 s and memory  length of N=50 
 

 
Fig.7. 2D planar motiontracking by the LMKF with exponential fading factor 
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 (a) Error curves for X and Y axes 
 

       
 

(b) Filter standard deviation curves for X and Y axes 
Fig. 8. Error and standard deviation curves for tracking 2D planar motion 
 
4.2 Result analysis of track test with multi-sensor 
information fusion 
Using the test method of 3.3.3, three track curves are 
obtained, as shown in Fig. 9. The red line track in Fig. 9 
shows that the segments a-b1, b1-c1, and g1-h1 are close to  
straight line with a high track reckoning accuracy when the 
track is a straight line. However, due to the sudden change of 
robot heading, the attitude angle detected by the acceleration 
sensor is affected, and a large deviation occurs between the 
reckoning and the actual coordinates, which is reflected in 
segments d1-e1 and e1-f1. Similar to the interference of the 
robot in an unknown environment, some electromagnetic 
disturbances in the experimental environment affect the 
measurement of the heading by the electronic compass. The 
heading measured by the electronic compass includes 
random noises, which are especially evident in the segment 
f1-g1. The error of the coded disc and odometer continues to 
accumulate. If the driving distance is further away, the 

divergence continues to increase, and the reference 
significance of DR localization is lost to a certain degree. 
The green line tracks in Fig. 9 show that the tracks reckoned 
by the LMKF method with exponential fading factor 
proposed in study have global reliability, and the error of 
segments d2-e2, e2-f2, and f2-g2 is smaller than that of the 
segments d1-e1, e1-f1, and f1-g1.  

The localization error curves obtained based on 
odometer dead reckoning and multi-sensor information 
fusion using the test method stated in 3.3.3 are shown in Fig. 
10. Fig. 10 shows that the maximum value of the 
localization error after the fusion of filtered information is 
reduced by 42.5% compared with the maximum error value 
based on odometer dead reckoning. The large random error 
generated by the electronic compass is filtered out, the 
cumulative errors of the gyroscope and the odometer are 
reduced, and the pose of the robot is accurately estimated. 

     
Fig. 9 Actual track and reckoning track curves                             Fig. 10.  Localization error curves based on DR and multi-sensor information fusion 
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5. Conclusions 
 
To reduce the cumulative error of the odometer, the self-
localization method of the mobile robot is explored based on 
multi-sensor information fusion, and the influence of the 
LMKF with exponential fading factor on dead reckoning is 
revealed. The self-localization system of mobile robot was 
established, the numerical simulation and experimental 
studies were combined to analyze the LMKF with 
exponential fading factor and the dead reckoning method 
based on this filter, and the following conclusions could be 
drawn:  
 

(1) The exponential fading factor is introduced to 
increase the weight of the measured value close to the 
current moment. Necessary correction to gain matrixes *

kK  
and *

kK  are guaranteed in each recurrence step. The LMKF 
with exponential fading factor has long-term stability and 
positively affects the tracking of high-speed maneuvering 
dynamic targets to better suppress the influence of noise in 
the environment and realize unbiased estimator.  

(2) The LMKF with exponential fading factor can filter 
out the random errors generated by the electronic compass, 
the cumulative errors of the gyroscope and the odometer are 

reduced, the minimum control to the odometer error is 
realized, and the robot pose is accurately estimated.  

 
Indoor experiment and theoretical study were combined, 

and a new LMKF method with exponential fading factor was 
proposed. Then, a dead reckoning algorithm of multi-sensor 
information fusion was obtained, which provids a certain 
reference for self-localization of the mobile robot. However, 
due to the lack of essential on-site monitoring means, this 
study did not consider dynamic noise monitoring data. For 
future study, dynamic noise monitoring data will be 
combined with this model and corrected which will be 
contributed to a more accurate recognition of the robot 
localization laws in a complicated environment. 
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