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Abstract 
 

Recently, central tower receiver (CTR) power plant has been received a considerable attention as a promising technology 
for large solar thermal plants compared to different concentrated solar power (CSP) technologies. The present work 
adopted a facile controllable scheme using an artificial neural network (ANN) technique for modelling and simulating 
CTR plant with thermal energy storage (TES). Three different ANN models such as radial basis function (RBF), 
generalized regression neural network (GRNN), and multi-layer perceptron (MLP) were applied to assess the 
performance of CTR plant model. Based on statistical error analysis, MLP model was the optimal model compared to 
RBF and GRNN models. It is found that MLP model displays the best values for the coefficient of determination (R2=1), 
root mean square error (RMSE=0.003) and mean absolute error (MAE=0.0023) during ANN testing process. While, the 
values of R2, RMSE, and MAE were 0.999, 0.4817, and 0.32, respectively for GRNN model. Similarly, for RBF model, 
the values of R2, RMSE, and MAE were 0.9985, 0.2846, and 0.0674, respectively. The MLP provides a precise control 
over the discharge rate of the heat transfer fluid (HTF). Therefore, the receiver outlet temperature remains constant at the 
desired value regardless of the variations in direct solar radiation and receiver inlet temperature. Also, in this work, the 
algorithm of electrical generation methodology was modified for regulating CTR/TES output according to the hot storage 
tank (HST) conditions. The adopted model performance for a 40 MWe CTR power plant is validated by comparing its 
results with the obtained simulation results by System Advisor Model (SAM) software. The simulation results exhibit 
that the adopted CTR-ANN model and SAM results are in good agreement with each other. The reasonable simplicity 
and minimum required input data of CTR-ANN model make it an adequate tool to predict and analyse the performance of 
CTR technology in a simple and fixable manner. 
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1. Introduction 
 
In the past few decades, solar energy systems (SES) have 
been received great attention as an important source of 
renewable energy. The advantages of solar energy (e.g., 
clean, abundant, a source with a free cost, and 
environmentally friendly energy solutions) make it one of 
the most promising technology in the world. Generally, 
renewable energy sources (RES) technologies are considered 
as a substitutional solution to reduce CO2 emission [1,2]. As 
well as, the environmental and finical problems of 
conventional plants led to an increase of the dependence of 
electric grid on SES. Nowadays, SES types (i.e., CSP and 
PV) constitute appropriate commercial options for small and 
large power plants [2]. The CSP/TES plays a vital role in 
power generation, especially during cloudy weather periods 
and after sunset. More significantly, the International Energy 
Agency (IEA) reported that the expected contribution of 
CSP technology will supply over 10-11.3% of electricity 
production in the world by 2050 [3-5].  

The CSP/TES exhibited advantageous characteristics 
over other energy resources such as [6,7]: (a) The inherent 

flexibility that provides the overall grid flexibility. (b) Close 
resemblance to traditional power plants (i.e., uses many of 
the same equipment and technologies). (c) At large scale of 
CSP plants, TES does not consider the major part of 
generation cost. This considers the prime merit of CSP/TES 
system compared to other technologies that use the electrical 
storage forms. Based on the method type of collecting and 
concentrating solar radiation, CSP technologies can be 
divided into four main categories [8-9]. These four main 
technologies are; central tower receiver (CTR), parabolic 
trough (PT), parabolic dish (PD) and linear Fresnel reflector 
(LFR). Recently, the CTR plant has drawn extensive 
attention as a suitable candidate for large solar thermal 
plants. Also, this technology displayed higher energy 
efficiencies than other CSP technologies because of its high 
operating temperature. For this reason, the thermal energy 
storage cost has reduced [10]. 

As mentioned above, the growing of integrated CSP 
systems in electric power network creates the need for 
comprising them in electrical grid reliability studies. There 
are two techniques for evaluating power system reliability 
[11]: (1) Analytical techniques; more efficient if the 
operating conditions are not complex. (2) Monte Carlo (MC) 
simulation approach; often preferable when the operating 
conditions are complex and the number of events is 
comparatively large. Furthermore, there are several accurate 
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models and software programs have been used to model and 
analyse the performance of CSP technologies as presented in 
[12-16]. However, they do not offer the desired simplicity. 
For example, one of the famous programs is the System 
Advisor Model (SAM) software, which was developed by 
NREL to simulate the output power of RES [17-118]. SAM 
software needs more than 90 input parameters to describe an 
individual CSP technology [19]. Therefore, SAM and other 
software may not be appropriate to assess the power system 
reliability by using MC method because of the increased 
uncertainty in simulation results. The increased uncertainty 
may arise from the following reasons: complex operating 
condition, several required input data, need more experience 
and knowledge, and long computational time [19].  

The solar power plants differ than conventional power 
plants due to the variable nature of the main energy source 
(i.e., direct solar radiation), which can't be manipulated. In 
addition, the direct beam radiation relies on the weather 
conditions such as humidity, clouds, and air transparency. 
Therefore, an effective control method is necessary to 
achieve the required operating conditions despite any 
variations in the input parameters of this plant kind. 
Different control methods were applied for controlling the 
outlet temperature of CSP technologies power plants. The 
control problem aspects, to fulfil an appropriate performance 
along the operating range, are summarised in [20,21]. 
However, the objective of the proposed control technique 
should be able to continuously regulate HTF outlet 
temperature. This can be done by adjusting the HTF mass 
flow rate over the operation cycle. 
Artificial neural network (ANN) is one of the most used soft 
computing tools in many different applications, especially, 
in the field of solar energy systems [22-24]. Compared to 
other traditional methods, ANN technique is an accurate tool 
to solve the complex and nonlinear problems and consume 
less time. In view of this, in the present study, three different 
models of ANN approach; RBF, GRNN, and MATLAB 
Simulink model of CTR plant MLP, were used for 
modelling and predicting the output power of the CTR plant. 
A total of 888 datasets were obtained by calculating the HTF 
discharge rate at different points of the receiver inlet 
temperature. The proposed model was applied to control the 
HTF mass flow rate from a cold storage tank (CST) and that 
passes through a tower receiver. Hence, the receiver outlet 
temperature is still constant at the desired value. The results 
show that MLP model with 40 neurons represented the 
optimal topology. The optimized model is selected based on 
the criteria of best performance (statistical evaluation). The 
accuracy of ANN model was satisfactory, so the integrated 
CTR-ANN model can overcome the obstacles of classical 
computational models and software programs. Further, the 
electrical generation strategy algorithm was modified to 
regulate CTR/TES output according to HST conditions as 
explained in section (6). The obtained results of the CTR-
ANN model are compared to those obtained from SAM 
software to confirm its validity. The proposed model results 
confirm that the model can be suitable for predicting the 
electrical output power of CTR plant. 

 
 

2. Description of CTR power plant  
 
The capacity of proposed CTR plant model is 40 MWe 
under Aswan climate, Egypt (latitude: 23.97 ºN and 
longitude: 32.78 ºE). The main three parts of CTR plant 
components are exhibited in Fig. 1(a) such as solar energy 

collection and concentration (i.e., heliostats field and tower 
receiver system), HTF and storage system (i.e., CST, HST 
and molten salt), and power block (PB) system (i.e., steam 
generator, turbine and electric generator) [25]. In this 
research, the mathematical model of this plant is 
implemented in MATLAB/Simulink as described in Fig. 
1(b). The main parameters for CTR modelling are described 
in Table 1. 

As shown in Fig. 1(a), the operation process of the 
CTR/TES plant is as follows: during daylight periods, the 
heliostats field collect sun rays and reflect them toward the 
tower receiver. In this moment, the HTF (molten salt) is 
pumped at 290º C from CST into the tower receiver to heat 
it up to 565º C. Then the hot HTF is stored in HST. When 
the electrical energy is required, the stored hot molten salt is 
pumped through a heat exchanger to produce the required 
superheated steam. After that, the classical power block 
(Rankine cycle turbine/generator system) is operated to 
generate the electricity.  

 
Table 1 Input parameters of CTR model 

Parameters Value 
L 23.97 ºN 
Lloc 32.78 ºE 
Lst 30º 
ρ 0.2 
Pgross 40 MW 
THTF, hot 565 ºC 
THTF, cold 290 ºC 
ηth 40 % 
ηgen 95 % 
DNI 950 W/m2 
Ahs 12.2 m x 12.2 m 
ηref 88 % 
Nhs  1480 

 
3. CTR mathematical modelling  

 
3.1. Solar position and radiation 
The first step of modelling CTR power plant is the 
calculation of the sun position considering heliostat and 
receiver position. In this research, the sun position is 
calculated for the location of Aswan city in Egypt. Solar 
altitude angle (αs) and azimuth angle (γs) are two important 
angles for finding the sun position, which can be calculated 
as follows [26,27]: 
 
𝛼! = 𝑠𝑖𝑛!! 𝑠𝑖𝑛𝛿! ∙ 𝑠𝑖𝑛𝐿 + 𝑐𝑜𝑠𝛿! ∙ 𝑐𝑜𝑠𝐿 ∙ 𝑐𝑜𝑠ℎ!              (1)  
  
𝛾! = 𝑠𝑖𝑛 (ℎ!) 𝑐𝑜𝑠!!

!"#$!!"#$!!"#!!
!"#$!!"#$

                              (2) 
  
 Calculation details of δs, hs, and θz are given in appendix-
A. The incidence beam angle (θ) is an important aspect for 
the solar energy system design; where the amount of solar 
thermal energy that could reach the tower receiver 
depending on this angle. The maximum amount of solar 
energy at the receiver is decreased by the cosine of this angle 
[28,29]. The incidence angle, in general form for fixed and 
tracking surfaces, is calculated as follows [30]: 
 
𝜃 = 𝑐𝑜𝑠!! 𝑐𝑜𝑠𝜃!𝑐𝑜𝑠𝛽 + 𝑠𝑖𝑛𝜃!𝑠𝑖𝑛𝛽𝑐𝑜𝑠 (𝛾! − 𝛾)             (3)  
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(a) 

 

 
(b) 
Fig. 1. (a) Schematic diagram of CTR plant components and (b) 
 
 
 The incidence angle for a plane rotated about a 
horizontal east-west axis with a single daily adjustment is 
determined as follows [29]: 
 
𝜃 = 𝑐𝑜𝑠!!(𝑠𝑖𝑛!𝛿! + 𝑐𝑜𝑠!𝛿𝑐𝑜𝑠ℎ!)                                    (4) 
 
 In this case, the surface slope (β) and surface azimuth (γ) 
are given by [29]: 
 
𝛽 = ∅ − 𝛿!                                                                         (5) 
 

𝛾 = 0         𝑖𝑓 𝐿 − 𝛿! > 0
180    𝑖𝑓 𝐿 − 𝛿! ≤ 0                                                   (6) 

 
 There are several attenuations in solar radiation to reach 
the earth’s surface. Only the direct and diffuse solar 
radiations reach the earth’s surface. There are many 
mathematical approaches for estimating the solar radiation. 
Daily Integration (DI) approach is one of the accurate 
methods that is used to calculate the hourly solar radiation. 
The total radiation, I, on a tilted surface is obtained from Eq. 
(7) [26]. 
 
𝐼 = 𝑟!𝐻! − 𝑟!𝐻!

!"#$
!"#!!

+ 𝑟!𝐻!𝑐𝑜𝑠!
!
!
+ 𝜌𝑟!𝐻!𝑠𝑖𝑛!

!
!
       (7) 

 

where rt and rd  parameters are given in appendix A, while 
Ĥh and Ĥd are obtained from NASA’s Applied Science 
Program [30].  
 
3.2. Receiver solar thermal power 
The solar thermal power (Pth,tr) reflected by the entire 
heliostat field into the tower receiver equals to the sum of 
the field efficiency of each heliostat (ηfild), heliostat area (Ahs) 
and the reflected solar radiation by each heliostat [19].   
 
𝑃!!,!" = 𝐼𝐴!!𝜂!"#$%                                                           (8)                                                                                                                              
 
 The field efficiency ηfield is obtained from Eq. (9) [31]. 
 
𝜂!"#$% = 𝜂!"#𝜂!""𝜂!"𝜂!"#                                                  (9) 
 
3.3. Power block and steam generator model  
 
The used power cycle in the plant PB is a conventional 
Rankine steam cycle. The hot molten salt (HTF) passes 
through a heat exchanger to produce a superheated steam. 
Shell and tube heat exchanger is the common type of the 
heat exchanger that is used in the solar power plants [32]. 
The heat exchanger is modelled for partial load conditions in 
order to accommodate the load demand nature and 
intermittent solar energy, especially during the periods of 
cloudy weather and after sunset. Therefore, the outlet steam 
flow rate depends on the required power from the heat 
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exchanger; thus, the HTF inlet mass flow rate is variable to 
maintain constant steam temperature through the operation 
cycle. The effectiveness-NTU method is the better method to 
calculate the actual heat transfer rate [33]. 
 
 𝜀 = !

!!"#
                                                                          (10) 

 
 For a shell and tube heat exchanger and in the case of 
partial load conditions, the actual heat transfer rate and the 
heat transfer unit (NTU) are simplified as in Eqs. (11) and 
(12) [34-36], respectively.   
 
𝑄 = 𝜀𝑄!"#                                                                                          
   = 1 − 𝑒!!"# 𝑚!"𝐶!"# 𝑇!"#,!" − 𝑇!"#$%,!"               (11) 
 

𝑁𝑇𝑈 = !!",!"#

!!"

!.!
𝑁𝑇𝑈!"#                                            (12) 

 
where CHTF is HTF specific heat, 𝑚!" is outlet mass flow 
rate from HST that equals to inlet mass flow rate to the heat 
exchanger, THTF,in is HTF inlet temperature to the heat 
exchanger, and Tsteam,in is steam inlet temperature to the heat 
exchanger, NTUref and ṁHT,ref are the heat transfer unit and 
HTF mass flow rate at the reference full-load condition, 
respectively. Furthermore, the steam flow rate and the 
electrical output power of CTR are introduced in Eqs. (13) 
and (14) [37]: 
 

𝑚!"#$% = !
∆!!"#

= !!!!!"# !!"(!!"#,!"!!!"#$%,!")
∆!!"#

            (13) 
  
𝑃!"! = 𝑊! ∙ 𝜂!"# = 𝑚!"#$%∆ℎ!"#𝜂!"#                 (14) 
 
where 𝑚!"#$% is the steam mass flow rate (kg/s), Δhtur is the 
difference between the inlet and outlet enthalpy of the 
turbine steam (J/kg), Wt is the total turbine work, ηgen is the 
generator efficiency and Pele is the electrical output power 
of CTR. 
 
 
4. Artificial neural network 
 
ANN is an efficient computing algorithm that emulates the 
biological neurons performance for the basic functions such 
as the human brain. These functions have an ability to 
determine the nonlinear relationship between the inputs and 
the outputs, where they perform the following processes [38]: 
receive the inputs from neurons or other sources, combine 
them and execute operations on the result to give the final 
output result. More details about ANN and how training it, 
to be ready for the application, were presented in these 
references [38-40]. After training, ANN model becomes 
ready to perform its function in a self-organized method 
such as the human brain in its functions. Fig. 2 describes the 
basic structure ANN technique and its training process via a 
comparison between output and target. Several types or 
models of ANN are categorised by their structures and 
abilities. In this work, radial basis function (RBF), 
generalized regression neural network (GRNN), and multi-
layer perceptron (MLP) were used. 
 
4.1. RBF neural network 
RBF is a functional approximation network which can be 
applied in control, memorization and identification. It is able 
to effectively learn system behaviours, therefore, it used for 
nonlinear systems identification [41]. As demonstrated in 

Fig. 3, RBF consists of three layers: input layer, hidden 
layer, and output layer. In this model, the signal is collected 
at the input layer and it is passed through the hidden layer. 
These signals are processed in the hidden layer until they are 
ready to be sent to the output layer, which generates the 
output data [42]. The RBF for jth node in the hidden layer is 
given by Gaussian exponential function as follows [23]: 
 

𝑏! 𝑥 = exp ! !!!!!
!

!!!!
                                                   (15) 

 
where σj is the width of jth neuron (spread factor), and Xi and 
µj are the input and centre of RBF unit, respectively. 
 

 
The network output Yk for the output layer is linear, 

which is given by Eq. (16) [23]. 
 

𝑌!(𝑥) = 𝑊!"𝑏! 𝑥!
!!! + 𝑏!                                           (16) 

 
where bk and Wkj are is the bias and weight connection 
between the hidden layer nodes and output layer node, 
respectively. 
 
4.2. MLP neural network 
As regard in Fig. 4, MLP model is similar to RBF 
construction, which consists of three layers: input layer, one 
or more hidden layers, and an output layer. MLP is a useful 
neural network in function approximation like RBF neural 
network and both of them are feed-forward neural network 
[41]. MLP with a single hidden layer can approximate any 
complex function. Each layer includes a certain number of 
neurons or nodes, which can determine the nonlinear 
relationship between the inputs and the outputs [43]. These 
neurons perform the following processes: receiving the 
inputs from neurons or other sources, combining them, and 
executing nonlinear operations on the result to give the final 
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output result. Each neuron output is a result of the inputs 
weighted set. The weighted inputs created by neurons are 
determined as follows [41]:  
 
𝑆 = 𝑊!"𝑋!!

!!! + 𝑏!                                                     (17) 
 

 
 
 Then, the sum of S passes through a transfer function 
(F), which produces an output as the following [41]:  
 
𝑌 = 𝐹 𝑆 = 𝐹 𝑊!"𝑋!!

!!! +  𝑏!                                  (18) 
 
where Xi, wij, and bj are inputs data, weights, and bias of 
neurons, respectively. 
 The network architecture (i.e., the hidden layer number 
and neuron number) influences on the network training and 
therefore the predicting performance. On the other hand, 
there is no systematic rule for giving the optimal neuron 
number in the hidden layer to get the best network 
performance.  Indeed, most of the researchers have adopted 
the methodology of trial and error for selecting the neuron 
numbers in the hidden layers [43]. 

 
4.3. GRNN neural network 
GRNN is also often utilized as function approximation and it 
is based on a probabilistic model. GRNN includes a radial 
basis layer and a special linear layer. Subsequently, it is 
similar to RBF network in its construction but has a slightly 
different second layer [41]. The GRNN model structure 
comprises four layers as follows: input layer, pattern layer, 
summation layer and an output layer as shown in Fig. 5.  

 
The information is collected by the input layer and 

transmitted to the pattern layer that performs clustering on 
the training process. Then it passes through the summation 
layer, which includes only two neurons: (a) S- Summation 
neuron and (b) D-Summation neuron [44]. 

 
𝑆 = 𝑊!𝑒𝑥𝑝 −𝐷(𝑋,𝑋!)!

!!!                                            (19) 
 
𝐷 = 𝑒𝑥𝑝 −𝐷(𝑋,𝑋!)!

!!!                                                 (20) 
 
 The fourth layer (output layer) executes the output 
normalization as given in Eq. (21) [44]. 
 
𝑌 𝑋 = !! !"# !! !,!!!

!!!
!"# !! !,!!!

!!!
                                               (21) 

 
where D(x, xi) is  the Gaussian function and is defined as 
[44]: 
 

𝐷 𝑋,𝑋! = !!!!!"
!!

!
!
!!!                                                (22) 

 
where p is the elements number of an input vector. The 
terms xj and xij represent the jth element of X and Xi, 
respectively.  
4.4. Criteria of optimal ANN model 
The performance of ANN models is evaluated by many 
different statistical parameters such as the coefficient of 
determination (R2), root mean square error (RMSE), and 
mean absolute error (MAE). The optimal ANN model is that 
achieves the lowest error (preferred to be 0 or close to 0) and 
gives the highest value of R2 (expected to reach 1 or close to 
1), which are given as [43]: 
 

𝑅𝑀𝑆𝐸 = !
!

(𝑋!"#$!%,! − 𝑋!"#$%&'#$,!)!!
!!!                      (23) 

 
𝑀𝐴𝐸 = !

!
𝑋!"#$!%,! − 𝑋!"#$%&'#$,!!

!!!                             (24) 
 

 𝑅! = 1 − !!"#$!%,!!!!"#$%&'#$,!
!!

!!!

!!"#$%&'#$,!
!!

!!!
                                  (25)  

 

𝐴𝑅𝐸 = !!"#$!%,!!!!"#$%&'#$,!
!!"#$!%,!

                                              (26)  

 
where Xactual, Xpredicted, and n are the actual value (target), 
predicted value by the ANN model, and the total number of 
samples, respectively. 
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5. Mass flows rate estimation based on ANN 
In this work, three ANN models such as MLP, RBF, and 
GRNN were used for estimating the HTF discharge rate 
from the cold tank. The discharge rate amount depends on 
two parameters as exemplified in Fig. 6. The first parameter 
is X1; the solar thermal power (Pth,tr) at the tower receiver. 
The second is X2; the receiver inlet temperature (Tin,tr) of the 
HTF mass flow rate. X1 and X2 are the inputs of ANN model 
and its output is Y (HTF discharge rate amount).  

 
The HTF mass flow rate from the cold storage (𝑚!") 

has been calculated by applying the energy balance equation 
at the tower receiver [34]. 

 
𝑚!" =

!!"#!!!,!"
!!"# !!",!"!!!",!"#

                                                   (27)  

 
where Ttr,in and Ttr,out are the inlet and outlet receiver 
temperature, respectively, and ηrec is the receiver thermal 
efficiency. 

The models of ANN approach were trained based on 
Eq.(27) in order to estimate the HTF discharge rate. The 
performance of ANN models were evaluated with a goal 
equals to 10-5. While the training results present the best 
performance (MSE= 7.2e-5) and highest value of correlation 
coefficient (R=1) as seen in (Fig. 7). This demonstrates that 
the ANN technique performs well and continuously adjusts 
HTF mass flow rate according to the inputs values as 
displayed in the testing result (Fig. 8). The receiver outlet 
temperature relies on the amount of mass flow rate, receiver 
inlet temperature, and solar intensity concentrated on the 
receiver. Consequently, the ANN technique precisely 
controls the receiver outlet temperature to remain constant at 
the desired value. As a result of the accuracy of ANN model 
that was satisfactory as explained above, it can be used in 
the modelling of CTR plant with a minimum required input 
data and knowledge. 

 
(a) 

 
(b) 

 
Fig. 7.  Training results of ANN model: (a) Model regression and (b) 
Model performance 
 
6. The algorithm strategy of electricity generation 

 
The operation strategy of CTR plant is an important aspect, 
which ensures the correct operation of each component of 
this plant under specified conditions. Fig. 9 describes a 
simplified diagram of the plant operation algorithm. The 
calculation details of this algorithm are given in section (3). 
In this model, a current implemented strategy for deciding 
plant operation modes depends on solar thermal power, 
conditions of storage systems, and HST outlet temperature. 
Most of studies and research in this field carried out a 
control logic of CTR plant based on the following strategy: 
firstly, PB is directly fed from SF. Secondly, HST begins 
discharging for feeding PB when the available SF power is 
less than the required power [45, 46]. However, in this work, 
SF power is directly stored in a HST. Then, PB is fed from 
the HST depending on its conditions (i.e., its temperature 
and amount of HTF mass within it). This strategy is used to 
regulate the generated power, which may be useful when a 
CTR plant is used to feed a certain demand (e.g., supplying 
loads in desert regions). However, for output power control, 
there are several advanced optimization and control schemes 
can be applied to maximize the total benefit and minimize 
the operating costs [16]. 

 
Fig. 8.  Comparison between calculated mass flow rate and estimated by 
ANN  
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Fig. 6. Block diagram of mass flow rate and temperature control 
using ANN 
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The general aspects of operation modes strategy are 
summarized in Fig. 9 as follows: 

 
• Initially, assumed that the state of CST and HST are full 

and empty, respectively.  
• When the solar thermal energy is more than the 

minimum value (Pmin) as in Eq. (28), the algorithm 
begins to discharge molten salt from CST that is heated 
through the receiver and stored in HST.   

• Similarly, HST starts to discharge when the mass within 
HST reaches a predetermined value (Mrun). While the 
discharge is stopped when the mass reaches a 
minimum value (Mst), which make the pump able to 
extract any molten salt from the tank.  

• Bypass state depends on HST outlet temperature (THT,out). 
Therefore, the bypass valve opens when THT,out falls 
below the temperature setting (Tst). In this case, the 
molten salt directly passes from HST to CST and PB 
does not produce electricity.  

• The minimum value of solar thermal energy (Pmin) is 
given by the following equation [19]: 

•  
𝑃!"# = 𝐼!"#𝐴!!𝜂!"#$%                                                      (28)  

 
7. Simulation results and discussion 

 
In the present work, RBF, MLP, and GRNN are three 
different types of ANN models, which were applied for 
estimating HTF mass flow rate. For training purpose, the 
three models were examined with an increased number of 
spread factor and neurons to determine the output accurately. 
As well as, the Levenberg-Marquardt (LM) training 
algorithm was selected for training MLP model. 
Additionally, several inputs and outputs of the model 
parameters have been simulated such as the hourly solar 
radiation, receiver solar thermal power, mass flow rate, 
receiver outlet temperature, and electrical output power. The 
performance of the adopted CTR-ANN model was analysed 
and implemented using MATLAB/Simulink as described in 
Fig. 1(b). The obtained results by SAM software were 
exported to MATLAB® to perform a comparison between 
the results of SAM and the adopted CTR-ANN model. All 
the simulation results have been carried out with solar 
multiple (SM) equals one. SM is the ratio between the actual 
SF size and its size required to supply the turbine at its 
nameplate capacity with maximum solar radiation. 

 
 

The performance of ANN models is studied based on 
the statistical analysis such as RMSE, MAE and R2. The 
optimal model is that achieves the lowest error values 
(should be 0 or close to 0) and the highest value of R2 
(preferred to be1 or close to 1). The testing results of the 
performance evaluation for GRNN, RBF, and MLP models 
are summarized in Tables 2, 3 and 4, respectively. 
Additionally, the comparison of the calculated and estimated 
discharge rate for three models of ANN technique are shown 

in Figs. 10, 11, and 12.  For GRNN model at a spread factor 
of 1.5 as shown in Table 2, the best value of R2 was 0.999 
and the lowest values of RMSE and MAE were 0.4817 and 
0.32, respectively. Similarly, RBF model presents its best 
performance at a spread factor of 4 as demonstrated in Table 
3; the best value of R2 was 0.9985 and the lowest values of 
RMSE and MAE were 0.2846 and 0.0674, respectively. 
While in the case of using MLP model as exhibited in Table 
4, it is found that the highest value of R2 was 1 at neurons 
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Fig. 9.  Schematic diagram of the operating modes decisions for CTR/TES plant 
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number of 40 and the lowest RMSE and MAE were 0.003 
and 0.0023, respectively. Furthermore, as presented in Figs. 
13, 14, and 15, it was seen that most of the absolute relative 
errors for GRNN, RBF, and MLP models are in between 0 – 
0.018, 0 – 0.0325, and 0 – 0.00015, respectively, which are 
acceptable. Among all, it can be concluded that MLP model 
with LM-40 is the optimal topology compared to GRNN and 
RBF models as clarified in Table 4 and Figs.12 and15.  
 

Table 2 Performance evaluation of GRNN model 
Spread  
factor 

RMSE 
 

MAE 
 

R2 

 
0.1 1.8346 0.8874 0.9850 
0.5 1.8332 0.8868 0.9850 
0.7 1.7567 0.8502 0.9862 
1 1.2242 0.6044 0.9931 

1.5 0.4817 0.32 0.9990 
1.8 0.6577 0.3521 0.9990 
2 0.8127 0.402 0.9989 

 
Table 3 Performance evaluation of RBF model 

Spread  
factor 

RMSE 
 

MAE 
 

R2 

 
1.2 62.4509 24.3655 0.1848 
1.7 7.8996 3.0197 0.9894 
2 2.6198 0.7555 0.9996 

2.3 2.3529 0.4298 0.9999 
2.5 2.2988 0.3994 0.9999 
3 1.2406 0.23184 1 

3.5 0.4539 0.0944 0.9829 
4 0.2846 0.0674 0.9985 

4.3 0.353 0.0616 1 
 
Table 4. Performance evaluation of MLP model 

Neurons 
number 

RMSE 
 

MAE 
 

R2 

 
LM-40 0.003 0.0023 1 
LM-35 0.0062 0.0056 1 
LM-30 0.0059 0.0049 1 
LM-25 0.0162 0.0125 1 
LM-20 0.0105 0.0082 1 
LM-15 0.0221 0.0171 0.9999 
LM-10 0.0174 0.0145 1 
LM-5 0.0313 0.0231 0.9998 
LM-3 0.991 0.7578 0.9592 

 

 
Fig. 10. Comparison between the calculated mass flow rate and the 
estimated by GRNN model  
 

 
Fig. 11. Comparison between the calculated mass flow rate and the 
estimated by RBF model		
	

	
Fig. 12. Comparison between the calculated mass flow rate and the 
estimated by MLP model  
 

 
Fig. 13. Relative error of GRNN model at all data samples 
 

	
Fig. 14. Relative error of RBF model at all data samples 
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Fig. 15. Relative error of MLP model at all data samples 
 
 Figure 16 shows the comparison between the calculated 
and simulated hourly solar radiation by using DI method and 
SAM software, respectively. It is found that a slight 
difference between the two methods particularly during 
summer season. DI method result is slightly larger than 
SAM result. This slight difference between the two methods 
is due to the meteorological data and solar resource in SAM 
weather file. Indeed, this file contains typical data for one 
year that may be obtained from satellite, ground 
measurements, or combination of the two. Similarly, thermal 
power of the adopted model and SAM are compared in Fig. 
17. In this simulation, the receiver efficiency of the adopted 
model was set at 90%. As well, thermal power of the 
adopted model is slightly larger than SAM result during 
summer season due to the calculated higher solar radiation 
by DI method as explained above in Fig. 16. 
 

 
(a) 

 
(b) 

Fig. 16.  Hourly solar radiation: (a) winter days (1-3 January) and (b) 
summer days (21-23 June) 
 

 
(a) 

 
(b) 

Fig. 17.  Receiver incident thermal power: (a) winter days (1-3 January) 
and (b) summer days (21-23 June) 

 
Mass flow rate, receiver outlet temperature, and 

electrical output power for the adopted model and SAM 
during winter and summer season are presented in Figs. 
18(a), (b), and (c) and 19(a), (b), and (c), respectively. An 
inconsiderable deviation between the results of the adopted 
model and SAM depends on an existence of a slight 
difference between the adopted and simulated thermal 
power, and different control strategy and operating 
conditions. Discharge rate from CST to tower receiver 
proportional to the available radiation during different 
seasons of the year as shown in Figs. 18(a) and 19(a). It is 
clear that the simulated mass flow rate by MLP neural 
network and SAM are identical. However, there is a small 
difference at the beginning of discharge owing to the 
difference in the minimum value of the thermal power of the 
two methods as explained in section (6).  It is also observed 
in Figs. 18(b) and 19(b) that the receiver outlet temperature 
is constant during the operation time because discharge from 
CST varies with thermal power at the receiver. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 18. Comparison between adopted model and SAM during winter 
days: (a) Discharge rate, (b) Receiver outlet temperature, and (c) CTR 
output power 
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(a) 

 
(b) 

 
(c) 

Fig. 19. Comparison between adopted model and SAM during summer 
days: (a) Discharge rate, (b) Receiver outlet temperature, and (c) CTR 
output power 

 
Fig. 20.  Comparison of adopted model and SAM power: (a) SM=2, (b) 
SM=3, (c) SM=4 

Generator output of the adopted model is compared to 
SAM output power during winter and summer days as 
described in Figs. 18(c) and 19(c), respectively.  SAM 
output power is not regular because its strategy depends on 
the conditions of both SF and TES. While in the present 
work, the power has been regulated by making the output 

directly relies on HST conditions as explained in section (6). 
However, if the area of the generated power curve is 
calculated, the energy is almost equal to the two methods. In 
addition, the output power for the two methods has been 
compared at different SM as described in Fig. 20. The 
adopted model output is reasonably close to the simulated 
power by SAM.  
 
 
8. Conclusion 
 
This paper addresses the modelling issue of a central tower 
receiver with thermal energy storage from a reasonably 
simplified model perspective. Where the simplified model of 
CTR plant is appropriate for the reliability study of the power 
system by using MC method. For model simplification, this 
study uses an ANN technique to control the receiver outlet 
temperature by adjusting the amount of HTF that passes 
through a tower receiver. The calculated mass flow rates were 
successfully investigated using three types of ANN models 
such as GRNN, RBF, and MLP. The performance of the 
ANN models was tested by different statistical parameters 
such as RMSE, MAE, and R2. Statistical results exhibited that 
MLP model with LM-40 was very satisfactory compared to 
GRNN and RBF models. Furthermore, in the testing process, 
MLP model based on LM-40 displayed the lowest values of 
RMSE (0.003) and MAE (0.0023) and the highest value of R2 
(1). These results demonstrate that ANN accuracy is 
satisfactory and it can be used to estimate HTF discharge rate. 
Therefore, the receiver outlet temperature remains constant at 
the design value over the operation time in spite of the 
changes in direct solar radiation and receiver inlet 
temperature. The simulation results were compared with 
those simulated by SAM software to verify the proposed 
model effectiveness. These comparisons showed that the 
adopted model results are in good agreement with SAM 
results. In addition, the proposed CTR-ANN model reduces 
the required input data and provides the desired simplicity for 
CTR modelling. It can be concluded that the adopted model 
holds potential as a general tool for modelling, predicting, and 
analysing the performance of the CTR power plant in a 
simple and fixable manner. For more accurate model, CTR 
plant losses will be taken into consideration in the future 
work. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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Appendix A  
Sun position Parameters 
Declination angle δs: 
𝛿! = 23.45𝑠 !"#(!"#!!)

!"#
                                                 (A1)                                                                                                                          

 
Solar hour angle hs: 
ℎ! = 15(𝑡! − 12)                                                             (A2)                                                                                                                                      
 
Solar time ts:                                                                                    
𝑡! = 𝑡 + 𝐸 + 4 𝐿! − 𝐿!"!                                                (A3) 

 
where t is the local time                                                                                                                           
 
Equation time E: 
 
𝐸 =
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229.2 0.000075 + 0.001868𝑐𝑜𝑠𝐵 − 0.032077𝑠𝑖𝑛𝐵 −
0.014615𝑐𝑜𝑠2𝐵 − 0.04089𝑠𝑖𝑛2𝐵                                 (A4)                                                                      
 
B is defined as: 
𝐵 = !"#

!"#
𝑁 − 1                                                                (A5)                                                                                                                                          

 
Solar zenith angle θz: 
𝜃! = 90 − 𝛼!                                                                    (A6)                                                                                                                                               
 
DI method Parameters 
 

𝑟! =
!
!"

!"#!!!!"#!!!
!"#!!!!

!
!"#!!!!"#!!!

                                               (A7)   

                                                                                                         

𝑟! = 𝑟!
!!! !!

!!
! !!! !!

!"
!

!!
! !!
!!

! !!!

! !!!

                                           (A8)  

 
The hour angles of sunset hss:   
 ℎ!! = 𝑐𝑜𝑠!! tan𝐿 ∙ tan𝛿!                                               (A9)                                                                                                                       
 
𝐴 ℎ!! = 𝑠𝑖𝑛ℎ!! − ℎ!!𝑐𝑜𝑠ℎ!!                                        (A10)                                                                                                                 
 
𝐵 ℎ!! = ℎ!! 0.5 + 𝑐𝑜𝑠!ℎ!! − 0.75sin (2ℎ!!)           (A11)                                                                                      
 
𝑞 = 𝑐𝑜𝑠𝐿 − 𝑐𝑜𝑠𝛿!                                                          (A12)                                                                                                                                  
 

(a2/a1) is the atmospheric extinction effect is given as 
follow: 
 
𝑎! = 0.4134𝐾! + 0.61197𝐾!! − 0.01886𝐾!𝑆! + 0.00759𝑆!                                                                      
(A13)  
 
𝑎! = 𝑀𝑎𝑥 0.054, 0.28116 + 2.2475𝐾! − 1.7611𝐾!! −
1.84535𝑠𝑖𝑛ℎ! + 1.681𝑠𝑖𝑛!ℎ!                                     (A14) 
 
The day length (in hours) is obtained as:  
𝑆! =

!"
!
ℎ!!                                                                     (A15)                                                                                                                                          

 
The daily average clearness index is given by:  
𝐾! =

!!
!!

                                                                          (A16)                                                                                                                                      
 
Ho is the daily-average extraterrestrial irradiation on a 
horizontal surface. 
𝐻! =

!"
!
ℎ!!𝑅𝐸!"𝑠𝑖𝑛ℎ!                                                   (A17)                                                                                                                        

 
where Esc is the solar constant; Esc =1367 W/m2 

𝑅 = 1.00011 + 0.034221 cos 𝐵 + 0.00128 sin 𝐵 +
0.000719 cos 2𝐵   + 0.0000sin (2𝐵)                        (A18)                                                                                                                                                           
 
The daily average solar elevation outside of the atmosphere 
is ho, defined by 
ℎ! = 𝑠𝑖𝑛!! !" !!!

!!!
                                                      (A19) 

 
 
Nomenclatures 
 
Ahs Heliostat area, m2 
CHTF Specific heat of the heat transfer fluid 
E Equation of time, min 
hs Solar hour angle  
𝐻!  Long-term average daily diffuse irradiation on 

horizontal surface, kWh/m2/day 
𝐻!  Long-term average daily total irradiation on 

horizontal surface kWh/m2/day 
I Total solar radiation 
L Latitude of the location 
Lloc Longitude of the location 
Lst Standard meridian for the local time zone 
𝑚!"  Hot tank outlet mass flow rate 
ṁHT,ref HTF mass flow rate at the reference full-load 

condition 
𝑚!"  Cold tank outlet mass flow rate 
MCT HTF mass within cold storage tank, ton 
MHT HTF mass within hot storage tank, ton 
NTUref   Heat transfer unit at the reference full-load 

condition 
N Day of the year 
Nhs Number of heliostats 
Pgross Gross electrical power MW 
Pth,tr Solar thermal power 
Q Actual heat transfer rate 
 𝑄!"#  Maximum heat transfer rate, MW 
R2 Coefficient of determination 
rd Hourly diffuse ratio to long-term average daily 

diffuse irradiation on a horizontal surface 
rt Ratio of hourly total to the long-term average 

daily total irradiation on a horizontal surface 
t Local time, hour 
ts Solar time, hour 
THTF, hot Receiver outlet temperature, ºC 

THTF, cold Receiver inlet temperature, ºC 
THTF,in HTF inlet temperature of the heat exchanger  
Tsteam,in steam inlet temperature of the heat exchanger, 
 
Greek Symbols 
 
ρ Ground reflectance factor 
ε Effectiveness of heat exchanger 
ηref Heliostat reflectivity factor 
ηth Thermal efficiency 
ηgen Generator efficiency 
ηrec Receiver thermal efficiency 
ηfild Heliostat field efficiency  
ηcos Cosine factor losses 
ηatt Atmospheric attenuation 
ηsb Shadowing and blocking factor losses 
𝛼𝑠 Solar altitude angle 
γs Azimuth angle  
γ Surface azimuth angle 
𝛿� Declination angle 
θz Solar zenith angle 
θ Incidence beam angle 
β Surface slope 
 
Abbreviations 
ANN  Artificial neural network 
CSP Concentrated solar power 
CTR 
CST 

Central tower receiver 
Cold storage tank 

CO2 Carbon dioxide 
DNI Direct normal beam 
GRNN 
HST 

Generalized regression neural network 
Hot storage tank 

HTF Heat transfer fluid 
IEA International Energy Agency 
LFR Linear Fresnel reflector 
MLP Multi-layer perceptron 
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MSE Mean square error 
MC 
MAE 

Monte Carlo method 
Mean absolute error 

NREL National Renewable Energy Laboratory 
PB Power Block 
PV Photovoltaic 
PT Parabolic trough 
PD Parabolic dish 

RMSE Root mean square error 
RBF Radial basis function 
RES 
SES 

Renewable energy sources 
Solar energy systems 

SAM 
SF 

System Advisor Model 
Solar field 

TES Thermal energy storage 

 
 
 


