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Abstract 
 

Bioinformatics is one of the many areas which apply feature selection techniques. In bioinformatics, genome wide 
association studies (GWAS) is an observational study aimed at determining whether a genetic variant is associated with a 
certain observed trait. Single nucleotide polymorphism (SNP) is the most popular genetic marker used to identify genetic 
polymorphisms. Here we propose the use of variable ranking methods to remove less important SNPs prior to SNP 
selection. We compared methods of SNP ranking by means of statistical approaches, i.e., correlation-adjusted marginal 
correlation score (CAR score) and influential score (I-score), and machine learning approach using random forest 
algorithm in an attempt to reduce the search space. The search in the reduced space was then conducted using sequential 
forward floating selection (SFFS) which wraps support vector regression (SVR), and the results obtained by two of multi-
purpose kernels—radial basis function (RBF) kernel and Bessel kernel—were compared for this high-dimensional linear 
regression problem, i.e., the search for the most appropriate combination of SNPs which have association with the 
phenotypes of interest. We propose the use of two optimality or selection criteria, the adjusted R! and the mean squared 
error, in the hope that the selected SNPs are those with both high statistical significance and strong predictive power. 
Testing was conducted using two simulated data sets with and without epistasis. Our results show that the intersection of 
the two selected subsets obtained by the two selection criteria can reduce the number of, or even eliminate, false 
positives. Furthermore, they suggest that the removal of less important SNPs prior to SNP selection improves the 
selection results. They also suggest that the proposed SNP selection method is better than the methods proposed by De 
Oliveira et al. (2014) and Kusuma et al. (2016).  
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1. Introduction 
 
Genome wide association studies (GWAS) seek to determine 
whether a polymorphism is associated with a certain trait, 
commonly referred to as a phenotype, observed in 
individuals. Polymorphism is defined as a genetic variant at 
a single locus, i.e., location within a gene. A genetic 
variation must be present in at least 1% of a population to be 
considered a polymorphism. Such a variable site is 
commonly referred to as a single nucleotide polymorphism 
(SNP) [1]. SNP is the most popular markers used to identify 
genetic polymorphisms since it allows generation of 
abundant information on genetic variability at DNA level. 
 The observed genetic sequence information is called a 
genotype. In a genotype, one may observe the so-called 
epistasis by which the effect of one mutated gene (locus) is 
dependent on the presence of one or more genes. Thus, 
epistatic mutations have different effects in combination 
than individually. Epistasis arises due to interactions, either 
between genes or within them, that lead to non-linear effects 
[2]. Genotype-phenotype association based on single locus 
association is not suitable for complex phenotypes with 

epistatic interactions among genes, while multi-locus 
association, classified as a combinatorial problem, is capable 
of explaining complex genetic polymorphisms. 
Nevertheless, the search space grows exponentially with the 
size of the data. 
 Association study is a feature selection problem [3]. In 
population-based association studies, SNP is considered as 
the fundamental unit of analysis, i.e., the feature. A SNP 
describes a single base pair change that is variable across the 
general population at a frequency of at least 1%. The SNPs 
are treated as the predictor variables or the independent 
variables and the phenotype as the response or the dependent 
variable. Typically, one wants to find a subset of SNPs 
which is associated with the observed trait. One may also 
want to predict whether a new individual has the trait by 
analyzing the individual’s selected SNPs [1]. 
 Feature selection has been widely used in studies in 
which data sets with a very large number of variables are 
found. The three objectives of feature selection are: (1) to 
improve the prediction performance of the predictors, (2) to 
provide faster and more cost-effective predictors, and (3) to 
provide a better understanding of the underlying process that 
generated the data [3][4]. Feature selection techniques can 
be classified into three categories, depending on how they 
combine the feature selection search with the construction of 
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the model: (1) filter methods, (2) wrapper methods, and (3) 
embedded methods [3]. 
 Cover and Van Capenhout (1977) showed that only an 
exhaustive search, in which one evaluates all possible 
subsets, can guarantee the best feature subset from the full 
set of features [5]. However, for high-dimensional feature 
selection problems, i.e, problems with a large number of 
independent variables in their data sets, it is computationally 
intensive. In the case of SNP selection, the complete search 
space of all combinations of SNPs is given by 2!, where 𝑛 is 
the number of SNPs [6]. Many non-exhaustive search 
algorithms have been proposed for feature selection. 
Zongker and Jain (1996) evaluated the quality of the feature 
subsets generated by various algorithms and compared their 
computational requirements. They showed that sequential 
forward floating selection (SFFS) proposed by Pudil et al. 
(1994) dominates the other algorithms tested [7].  
 Some of the feature selection algorithms were proposed 
specifically for SNP selection problem. De Oliveira et al. 
(2014) proposed a combination of statistical approach, 
genetic algorithm (GA), and support vector regression 
(SVR) with Pearson universal kernel (PUK) introduced by 
Üstün et al. (2006) for quantitative phenotypes. In the first 
selection of markers, Spearman’s rank correlation coefficient 
was used to construct the most significant groups of markers 
in order to reduce the search space. For each group defined 
after the first selection, a SVR model was constructed 
through the Pearson’s correlation coefficient in 10-fold 
cross-validation. In the second selection of markers, a 
wrapper based on binary GA with cross-validation mean 
squared error (MSE) as the fitness function is applied [6]. 
Kusuma et al. (2016) proposed a combination of a novel 
heuristic search named gravitational search algorithm (GSA) 
which was introduced by Rashedi et al. (2009, 2010) and a 
wrapper based on sequential forward selection (SFS) with 
Spearman’s rank correlation coefficient as selection criterion 
which was evaluated using SVR with Gaussian radial basis 
function (RBF) kernel. Their method consists of two steps: 
the first step is aimed at reducing the search space, i.e., 
removing redundant and irrelevant SNPs using GSA, and the 
second step is SNP selection using SFS (referred to as 
‘exhaustive search’ in their paper) [8]. Both methods were 
tested on the same two simulated data sets generated by the 
function simulateSNPglm of the ‘scrime’ package in R [9]. 
The first data set only has main effects without interaction 
among SNPs, while the second one has epistasis among 
SNPs [6][8]. Tab. 1 summarizes the results of both methods. 
Note that none of these two methods were able to 
completely capture all SNPs which are actually associated 
with the phenotypes, and both methods produced false 
positives. 
 
Table 1. SNPs selected from two simulated phenotypes 
using methods proposed by De Oliveira et al. (2014) and 
Kusuma et al. (2016). 

Method Selected SNPsa Spearman’s 
Correlationb 

De 
Oliveira 

et al. 

1, 10, 15, 20, 30, 60, 158, 177, 
269, 274, 391, 446, 516, 673, 
686, 693, 717, 725, 739, 825, 
930 

0.750 

3 0.950 

Kusuma 
et al. 

1, 10, 20, 30, 50, 60, 72 0.830 
3, 4, 8029 0.870 

aBold types denote SNPs which are actually associated with the 
corresponding phenotype. For each method, the first row is for the 
simulated phenotype without epistasis while the second row is for the 
simulated phenotype with epistasis. 
bSource: Kusuma et al. (2016). In their paper, De Oliveira et al. (2014) 
used MSE as the selection criterion. 
 Here we propose the use of variable ranking methods to 
remove less important SNPs prior to SNP selection, a high-
dimensional linear regression problem, in the hope that it 
can help to achieve better selection result and reduce the 
required computational time. We compared methods of SNP 
ranking by means of statistical approaches, i.e., correlation-
adjusted marginal correlation score (CAR score) introduced 
by Zuber and Strimmer (2011) and influential score (I-score) 
described by Lo et al. (2015), and a machine learning 
approach using random forest algorithm introduced by 
Breiman (2001) to be used for search space reduction. The 
search in the reduced space was then conducted using SFFS 
described by Pudil et al. (1994) which wraps SVR, and the 
selection results obtained using two of multi-purpose 
kernels—the RBF kernel and the Bessel kernel—were 
compared. In this work, we only consider continuous or 
quantitative phenotypes. We propose the use of two 
selection criteria, the adjusted 𝑅! and the mean squared 
error, in the hope that the selected SNPs are those with both 
high statistical significance and strong predictive power as a 
way to reduce the number of, or even eliminate, false 
positives. Testing was conducted using the same two 
simulated data sets as in De Oliveira et al. (2014) and 
Kusuma et al. (2016). 
 
 
2. Method 
 
2.1 Genotype representation 
SNPs are generally bi-allelic, i.e., there are two possible 
bases at the corresponding variable site within a gene. In 
other words, there are only two alleles in a single SNP: 
major allele and minor (or variant) allele. The minor allele 
frequency (MAF), also referred to as the variant allele 
frequency, refers to the frequency of the less common allele 
at a variable site. Here the term frequency refers to a 
population proportion. A variation in the nucleotide is 
considered a SNP if it has a MAF of at least 1%. MAF is 
widely used in population genetics studies since it can be 
used to distinguish between common and rare variants in the 
population [1]. 
 A diploid organism has two non-identical copies of each 
chromosome, i.e., each individual carries two bases, 
corresponding to each of two homologous chromosomes, 
usually one from the mother and one from the father. Each 
of these copies is referred to as haplotype and the data 
composed of the combination of two haplotypes is referred 
to as genotype. Haplotype refers to the specific combination 
of alleles that are in alignment on a single homolog, defined 
as one of the two homologous chromosomes. As shown in 
Fig. 1, while each haplotype represents allele information 
about certain adjacent SNPs on a given chromosome, each 
genotype represents combined allele information of SNPs on 
a certain pair of homologous chromosomes [10]. In its 
rawest form, the genotype is the pair of DNA bases adenine 
(A), thymine (T), guanine (G) and/or cytosine (C) which is 
observed at a location on the organism's genome. This 
pairing of homologous chromosomes that makes up an 
individual's genotype is different from that which makes up 
a DNA double helix. In the latter pairing, guanine always 
pairs with cytosine (G-C) and adenine always pairs with 
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thymine (A-T), while the former pairing is not thus restricted 
so that, for example, genotypes GT and AC can be observed 

[1]. 

 

 
(a)                                                         (b)                                                  (c) 

Fig. 1. (a) Haplotypes and (b) genotypes of four individuals constructed with five SNPs  and (c) numerical representation of genotypes. (Adapted 
from Ilhan et al. 2013) 

 Within a given genotype, a SNP is called homozygous if 
both its alleles are the same and is called heterozygous if its 
two alleles are different. The simulated data sets generated 
by the function simulateSNPglm of the ‘scrime’ package in 
R use the following encoding of the states of a genotype: 1 
for homozygous reference genotype (both alleles of SNP are 
major homozygous), 2 for heterozygous genotype (two 
alleles of SNP are heterozygous), and 3 for homozygous 
variant genotype (both alleles of SNP are minor 
homozygous) [9]. Thus, the genotype can be treated as a 
categorical variable. Subtracting 1 from these numbers gives 
the number of copies of the minor allele [11]. For this reason 
some researchers prefer to use the numbers 0, 1, and 2 for 
encoding the states of a genotype. 
 
2.2 Correlation-adjusted marginal correlation score 
In GWAS based on single locus analyses, each SNP is 
considered independently of all others and its association 
with the phenotype is computed using a univariate test 
statistic. While this approach is computationally 
inexpensive, it assumes complete independence of SNPs and 
thus ignores the correlation structure among SNPs, e.g., due 
to linkage or interaction among SNPs [12]. Zuber and 
Strimmer introduced two novel statistics, the correlation-
adjusted t-score (CAT score) and the correlation-adjusted 
marginal correlation score (CAR score) in 2009 and 2011, 
respectively. CAT score is used for binary (qualitative) 
phenotype while CAR score is used for continuous 
(quantitative) phenotype. These two measures are 
multivariate generalizations of the standard univariate test 
statistics that take the correlation among SNPs explicitly into 
account and lead to improved rankings of SNPs [12]. The 
CAR scores are the correlations between the response 
(phenotype) and the Mahalanobis-decorrelated predictors 
(SNPs) [13]. 
 Consider a linear regression model for a set of 𝑑 SNPs, 
𝑋 = 𝑋!,… ,𝑋! , and a continuous phenotype 𝑌. The 
correlation matrix among SNPs is a 𝑑×𝑑 square matrix 
which is denoted here by 𝚸. The vector of marginal 
correlations, 𝐏!" = 𝜌!!!,… , 𝜌!!!

!
, contains the 

correlations between a phenotype and each individual SNP. 
If there is no correlation among SNPs (𝐏 = 𝐈!) then the 
marginal correlations, 𝐏!", provide an optimal ranking of 
SNP, and the sum of the squared marginal correlations 
equals to the squared multiple correlation coefficient or 
coefficient of determination, 𝑅!. However, in the presence 
of correlation among SNPs, the squared marginal 

correlations do not sum up to 𝑅!, i.e., 𝐏!"𝐏!" ≠ 𝑅!. The 
CAR score is given by 

 
𝐏!"
!"# = 𝐏!! !𝐏!"                                                                        (1) 

 
 The squared CAR scores sum up to the squared multiple 
correlation coefficient, 

 
𝐏!"
!"# !

𝐏!"
!"# = 𝐏!"𝐏!!𝐏!" = 𝑅!                                             (2) 

 
also known as the coefficient of determination or the 
proportion of variance explained, even in the presence of 
correlation among SNPs. This decomposition property 
allows CAR scores to assign importance to groups of SNPs, 
not only to individual SNPs. Moreover, CAR score has a 
grouping property which gives similar scores for highly 
correlated SNPs. This property protects against antagonistic 
SNPs, i.e., if two SNPs are highly correlated and one has a 
protective and the other a risk effect, then both SNPs are 
assigned low scores [12]. In Zuber and Strimmer (2011) it is 
argued that squared CAR scores are a natural measure for 
variable importance and it is shown that variable selection 
based on CAR scores is highly efficient compared to 
competing approaches such as elastic net lasso, or boosting. 
This method of assigning variable importance falls into the 
class of filter techniques [3]. 
 
2.3 Influential score 
In GWAS, it has been observed that an increase in predictor 
found to be significantly correlated with a response does not 
necessarily lead to improvements in the predictive models. 
In other words, statistically significant predictor variables 
are not leading to good prediction [11]. Lo et al. (2015) 
suggest that higher statistical significance does not 
automatically imply stronger predictive power, while highly 
predictive variables do not necessarily appear as highly 
statistically significant. Motivated by this observation, Lo et 
al. (2015) further developed the so-called influential score, 
abbreviated to I-score, introduced by Chernoff et al. (2009). 
I-score is a measure that evaluates the amount of influence 
of a set of SNPs to quantify its association with a phenotype. 
 Consider 𝑛 observations on a phenotype 𝑌. In a so-called 
partition, which is a small subset of 𝑚 SNPs, there are 3! 
possible so-called cells since each SNP can be assigned a 
value of 1, 2, or 3. Each individual 𝑖 in a partition Π! is 
represented by a value 𝑌! of the dependent variable and one 
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of 3! possible cells into which the 𝑚 variables fall. The 
influential score for this partition is given by 

 

𝐼!! =
𝑛!
𝑛

𝑌! − 𝑌
!

𝑠! 𝑛!

!!

!!!

=
𝑛!! 𝑌! − 𝑌

!!!
!!!

𝑌! − 𝑌 !!
!!!

                       (3) 

 
where 𝑌! is the phenotype which corresponds to 𝑖-th 
individual, 𝑌 is the mean of all 𝑛 phenotypes, 𝑠 is the 
standard deviation of all 𝑛 phenotypes, 𝑌! is the mean of the 
phenotype values in cell 𝑗, 𝑛! is the number of individuals in 
cell 𝑗, and 𝑛 is the total number of individuals. Thus, the 
measure I-score is a statistic which can be calculated from 
the observed data, and does not involve knowing the 
underlying distributions [11]. The values of I-score 
substantially greater than unity signify possible influence 
[14]. 
 Lo et al. (2015) showed that I-score has the folowing 
desirable properties. First, it does not require specification of 
a model for the joint effect of the subset SNP!,… , SNP!  on 
the phenotype 𝑌 since it is designed to capture the 
discrepancy between the conditional means of 𝑌 given the 
values of SNP!,… , SNP!  and the overall mean of 𝑌. 
Second, the expected value of I-score does not 
monotonically increase as more predictor variables are 
added to the variable subset. Rather, given a variable set of 
size 𝑚 with 𝑚 − 1 truly influential variables, the I-score is 
typically higher under the influential 𝑚 − 1 variables than 
under all 𝑚 variables. If 𝑚 − 1 variables are influential in 
the sense that any smaller subset of variables is less 
influential, then the removal of a variable to size 𝑚 − 2 will 
decrease the I-score. Thus, the I-score has a natural tendency 
to “peak” at variable set(s) that lead to high predictive power 
in the face of noisy variables under the current sample size 
[15]. For high-dimensional variable selection problem, one 
way to thin out the candidates, i.e., to reduce the search 
space is to apply the I-score to one explanatory variable at a 
time, and to focus on those which indicate strong marginal 
observable effects [14]. 

 
2.4 Variable ranking by random forest 
Random forest algorithm which was developed by Breiman 
(2001) is an ensemble learning method for classification and 
regression that works by constructing a forest of random and 
uncorrelated decision trees at training time and outputting 
the class that is the mode of the classes (in classification 
problem) or the mean prediction of the individual trees (in 
regression problem). Random decision forests correct for 
decision trees’ habit of overfitting to their training set [16]. 
The algorithm uses out-of-bag (OOB) error as an estimate of 
the generalization error and measures variable importance. 
The OOB error is the mean prediction error on each training 
sample 𝑥!, using only the trees that did not have 𝑥! in their 
bootstrap sample. The variable importance measures 
produced by random forests can be used for model reduction 
(e.g., use the “important” variables to build simpler, more 
readily interpretable models) [17]. Feature selection 
techniques using decision trees such as random forest 
algorithm are classified as embedded techniques [3]. 
 The ‘randomForest’ package provides two variable 
importance measure, i.e., mean decrease in accuracy (MDA) 
and mean decrease in impurity (MDI). The first measure is 
computed from permuting out-of bag (OOB) data: For each 
tree, the prediction error (MSE for regression) on the out-of-
bag portion of the data is recorded. Then the same is done 
after permuting each predictor variable. The difference 

between the two are then averaged over all trees, and 
normalized by the standard deviation of the differences. In 
other words, the random forest algorithm estimates the 
importance of a variable by looking at how much prediction 
error increases when OOB data for that variable is permuted 
while all others are left unchanged. The necessary 
calculations are carried out tree by tree as the random forest 
is constructed [18]. The rationale of the original random 
forest permutation importance is as follows: By randomly 
permuting the predictor variable 𝑋!, its original association 
with the response 𝑌 is broken. When the permuted variable 
𝑋!, together with the remaining non-permuted predictor 
variables, is used to predict the response for the OOB 
observations, the prediction accuracy (i.e. the number of 
observations classified correctly) decreases substantially if 
the original variable 𝑋! was associated with the response 
[19]. Strobl et al. (2008) formalize this idea as follows: Let 
ℬ(!) be the OOB sample for a tree 𝑡 ∈ 1,… ,𝑁!  where 𝑁! is 
the number of decision trees. The variable importance of 
variable 𝑋! in tree 𝑡 is 

 

𝑉𝐼(!) 𝑋! =
𝐼 𝑌! = 𝑌!

(!)
!∈ℬ(!)

ℬ(!)

−
𝐼 𝑌! = 𝑌!,!!

!
!∈ℬ !

ℬ !                             (4) 

 
where 𝑌!

(!) and 𝑌!,!!
!  are the predicted value for observation 𝑖 

before and after permuting its value of variable 𝑋!, 𝐼 is the 
squared residual (for regression), and ℬ(!)  is the number of 
OOB samples for tree 𝑡. By definition, 𝑉𝐼(!) 𝑋! = 0 if 
variable 𝑋! is not in tree 𝑡. The raw variable importance 
score for variable 𝑋! is then computed as the mean 
importance over all trees, 
 

𝑉𝐼 𝑋! =
1
𝑁!

𝑉𝐼(!) 𝑋!

!!

!!!

                                                      (5) 

 
 In the ‘randomForest package, 𝑉𝐼 𝑋!  is normalized by 
dividing 𝑉𝐼 𝑋!  by the standard deviation of 𝑉𝐼 𝑋!  to 
obtain the so-called z-score, 

 

𝑧! = 𝑉𝐼 𝑋!
𝜎
𝑁!

                                                                (6) 

 
 If 𝜎 = 0 for a variable, the division is not done; 
nevertheless, 𝑉𝐼 𝑋!  is almost always equal to 0 in that case 
[18]. 
 The second measure is the total decrease in node 
impurities (or total increase in node purities) from splitting 
on the variable 𝑋!, averaged over all trees. Summarized from 
Louppe et al. (2013), internal nodes 𝜏 are labeled with a 
binary test (or split) 𝑠! dividing their subset in two subsets 
corresponding to their two children 𝜏! and 𝜏!, while the 
terminal nodes (or leaves) are labeled with a best guess 
value of the output variable. A tree is built from a learning 
sample of size 𝑁 which identifies the split 𝑠! for which the 
partition of the 𝑁! node samples into 𝜏! and 𝜏! maximizes 
the decrease 

 
Δ𝑖 𝑠!, 𝜏 = 𝑖 𝜏 − 𝑝!𝑖 𝜏! − 𝑝!𝑖 𝜏!                                     (7) 
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of some impurity measure 𝑖 𝜏 , and where 𝑝! = 𝑁!! 𝑁!, 
and 𝑝! = 𝑁!! 𝑁!. The importance of a variable 𝑋! for 
predicting 𝑌 is evaluated by adding up the weighted 
impurity decreases 𝑝 𝜏 Δ𝑖 𝑠!, 𝜏  for all nodes 𝜏 where 𝑋! is 
used in the split 𝑠!, averaged over all 𝑁! trees in the forest 𝑇, 

 

𝑉𝐼 𝑋! =
1
𝑁!

𝑝 𝜏 Δ𝑖 𝑠!, 𝜏
!∈!: ! !! !!!

!!

!!!

                           (8) 

 
where 𝑝 𝜏 = 𝑁! 𝑁 is the proportion of samples reaching 𝜏 
and 𝑣 𝑠!  is the variable used in split 𝑠! [20]. For regression, 
the node impurity is measured by residual sum of squares 
(RSS) [18]. 

 
2.5 Sequential forward floating selection 
Sequential feature selection methods are classified as 
wrapper techniques [3]. These algorithms search for the best 
set of features by adding to and/or removing a small number 
of features at a time from the current feature set until the 
required value of an optimality criterion is obtained. The 
starting point of the search can be either an empty set which 
is then successively built up or the starting point can be the 
complete set of features in which unnecessary features are 
successively removed. The former approach is referred to as 
the ‘bottom up’ search while the latter is referred to as the 
‘top down’ search. An example of the ‘top down’ search is 
the sequential backward selection (SBS) introduced by 
Marill and Green (1963) and the ‘bottom up’ search is the 
sequential forward selection (SFS) introduced by Whitney 
(1971). Both methods are generally suboptimal and suffer 
from the so-called ‘nesting effect’. The term ‘nesting effect’ 
here is used to describe, in the case of the ‘top down’ search, 
that the discarded features cannot be reselected while in the 
case of the ‘bottom up’ search, the features once selected 
cannot later be discarded. The floating search methods 
proposed by Pudil et al. (2014) are intended to overcome the 
problem of ‘nesting effect’ among other things. They 
showed their performance to be very good compared with 
other search methods. The search in the forward direction is 
referred to as the sequential forward floating selection 
(SFFS), while in the opposite direction is referred to as the 
sequential backward floating selection (SBFS) [21]. 
 Suppose that 𝑘 features have already been selected from 
the complete set of features, 𝑌 = 𝑦!|𝑗 = 1,2,… ,𝐷 , where 
𝐷 is the total number of features, to form the set 𝑋! with the 
corresponding criterion function 𝐽 𝑋! . Suppose also that 
the values of 𝐽 𝑋!  for all preceding subsets of size 
𝑖 = 1,2,… , 𝑘 − 1 have been computed and recorded. 
 
1. Step 1 (Inclusion). Using the basic SFS method, select 

feature 𝑥!!! from the set of available features, 𝑌 − 𝑋!, 
to form the set 𝑋!!!, i.e., the most significant feature 
𝑥!!! with respect to the set 𝑋! is added to 𝑋!. 
Therefore 

 
𝑋!!! = 𝑋! + 𝑥!!!  

 
2. Step 2 (Conditional exclusion). Find the least significant 

feature in the set 𝑋!!!. If 𝑥!!! is the least significant 
feature in the set 𝑋!!!, i.e. 

 
𝐽 𝑋!!! − 𝑥!!! ≥ 𝐽 𝑋!!! − 𝑥! ,     ∀𝑗 = 1,2,… , 𝑘 

 

then set 𝑘 = 𝑘 + 1 and return to Step 1, but if 𝑥!, 
1 ≤ 𝑟 ≤ 𝑘, is the least significant feature in the set 
𝑋!!!, i.e. 

 
𝐽 𝑋!!! − 𝑥! > 𝐽 𝑋! , 

 
then exclude 𝑥! from 𝑋!!! to form a new set 𝑋!! , i.e. 

 
𝑋!! = 𝑋!!! − 𝑥!. 

 
Note that 𝐽 𝑋!! > 𝐽 𝑋!  now. If 𝑘 = 2 then set 
𝑋! = 𝑋!!  and 𝐽 𝑋!! = 𝐽 𝑋!  and return to Step 1, else 
go to Step 3. 

3. Step 3 (Continuation of conditional exclusion). Find the 
least significant feature 𝑥! in the set 𝑋!! . If 𝐽 𝑋!! −
𝑥! ≤ 𝐽 𝑋!!!  then set 𝑋! = 𝑋!!  dan 𝐽 𝑋! = 𝐽 𝑋!!  
and return to Step 1. If 𝐽 𝑋!! − 𝑥! > 𝐽 𝑋!!!  then 
exclude 𝑥! from 𝑋!!  to form a reduced set 𝑋!!!! , i.e. 

 
𝑋!!!! = 𝑋!! − 𝑥!, 
 

Set 𝑘 = 𝑘 − 1. Now if 𝑘 = 2 then set 𝑋! = 𝑋!!  and 
𝐽 𝑋! = 𝐽 𝑋!!  and return to Step 1, else repeat Step 3. 

 
The algorithm is initialized by setting 𝑘 = 0 and 𝑋! = ∅, 
and the SFS method is applied until a feature set of 
cardinality 2 is obtained. Then the algorithm continues with 
Step 1. 
 
 
2.6 Support vector regression 
The first version of support vector machine (SVM) for 
regression, called support vector regression (SVR), was 
proposed by Drucker et al. (1997) [22]. Being a kernel-based 
learning method, it uses an implicit mapping of the input 
data into a high dimensional feature space defined by a 
kernel function, i.e., a function returning the inner product 
between the images of two data points (x, y) in the feature 
space. The learning then takes place in the feature space, 
provided the learning algorithm can be entirely be rewritten 
so that the data points only appear inside the dot products 
with other points. This is often referred to as the “kernel 
trick” [23]. When no further prior knowledge is available, 
the Gaussian radial basis function and the Bessel function of 
the first kind kernel are two of general purpose kernels 
typically used [24][25]. In the ‘kernlab’ package [26], these 
two kernels are given, respectively, by 

 
𝑘 𝐱, 𝐱′ = exp −𝜎 𝐱 − 𝐱′                                                   (9) 
 

𝑘 𝐱, 𝐱′ =
Bessel !!!

! 𝜎 𝐱 − 𝐱′
𝐱 − 𝐱′ !! !!!                                     (10) 

. 
 The scale, offset, degree, 𝜎 (sigma), 𝑛 (order), and 𝜈 
(degree) are the the kernel parameters, while 𝐱 and 𝐱′ are 
two arbitrary vectors in the feature space. Xiang et al. (2013) 
showed that Bessel kernel function of the first kind has 
higher prediction accuracy and stronger generalization 
ability in SVR, which provides references for the kernel 
functions selection of SVR [27]. 

 
2.7 Proposed selection method 
For the first simulated data set with 1000 SNPs, 2!""" 
possible combinations of SNPs constitute the complete 
search space, while for the second simulated data set with 10 
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000 SNPs, 2!" !!! possible combinations of SNPs constitute 
the complete search space. Thus, the search space has an 
exponential complexity 𝒪 2!  [6]. Prior to the SNP 
selection, the search space is reduced by assigning variable 
importance to all SNPs and remove less important SNPs. 
 

 
Fig. 2. Flowchart of the proposed selection method 
 
 After comparing the results of SNP ranking on two 
simulated data sets provided by two statistical approaches 
based on the CAR scores and the I-scores and one machine 
learning approach based on random forest algorithm, the 
best ranking method is selected. SNP ranking based on CAR 
scores is provided by the ‘care’ package [28], while SNP 
ranking based on I-scores is provided by our own code. SNP 
ranking by random forest is provided by the ‘randomForest’ 
package [18] utilizing parallel computing provided by the 
‘foreach’ package to reduce the time needed to build the 
forest [29]. 
 SNP selection is performed over the reduced search 
space using SFFS as described by Pudil et al. (1994). We 
wrote the code for SFFS by utilizing parallel computing 
provided by the ‘foreach’ package in order to reduce the 
search time. SNP subsets are evaluated using SVR provided 
by the ‘kernlab’ package and using, as selection or 
optimality criteria, the mean squared error, 

 

𝑀𝑆𝐸 =
1
𝑛 𝑌! − 𝑌!

!
!

!!!

                                                          (11) 

 
and the adjusted 𝑅! 

 

𝑅!"#! = 1 − 1 − 𝑅!
𝑛 − 1

𝑛 − 𝑘 − 1                                         (12) 
 

where 𝑛 is the number of samples, 𝑘 is the number of 
current predictors, and 𝑅! is the coefficient of determination 
given by the square of Pearson’s correlation coefficient of 
the actual response, 𝑌, and the predicted response, 𝑌, 

 

𝜌 =
cov 𝑌,𝑌
𝜎!𝜎!

                                                                         (13) 

 
where cov 𝑌,𝑌  is the covariance of 𝑌 and 𝑌, and 𝜎! and 𝜎! 
are standard deviations of 𝑌 and 𝑌, respectively. Adjusted 
𝑅! is chosen over the coefficient of determination, 𝑅!, 
which has the following drawback: 𝑅! increases with each 
addition of predictors to the model, and never decreases, 
so it is as if a better fit were obtained with the more terms 
added to the model, while in fact a model with too many 
terms will suffer from overfitting. But with the adjusted 𝑅!, 
the addition of more and more useless variables to a model 
will decrease the adjusted 𝑅!, and the addition of more 
useful variables will increase the adjusted 𝑅!. The adjusted 
𝑅! tells the percentage of variation explained only by the 
independent variables that actually affect the dependent 
variable [30]. 
 We propose that the intersection of two variable subsets 
selected using the two selection criteria be considered the 
final selection result. This is motivated by our observation 
that by using only one selection criterion on simulated data 
sets results in a number of false positives while their 
intersection helps to reduce or even eliminate false positives. 
The adjusted 𝑅! and MSE are chosen as the two selection 
criteria in the hope that the selected SNPs are those with 
both high statistical significance and strong predictive 
power. Fig. 2 shows the flowchart of the proposed method. 
 In SVR training, all independent and dependent variables 
are scaled to zero mean and unit variance. This is done so 
that no variables would dominate others. Furthermore, 10-
fold cross-validation is used on the training data to assess the 
quality of the models constructed by SVR and to avoid 
overfitting. The selection results obtained by the Gaussian 
RBF kernel and the Bessel kernel for simulated SNP data 
sets are compared. The ‘kernlab’ package provides linear, 
polynomial, Gaussian RBF, Laplace RBF, ANOVA RBF, 
Bessel function of the first kind, hyperbolic tangent, spline, 
and string kernels [26]. 
 For this work we used a PC with Intel Core i5 M 480 @ 
2.67 GHz, 4 GB RAM, and Windows 7 64-bit. We used R 
software version 3.4.1 using RStudio version 1.0.143 as the 
user interface [31]. 

 
3 Material 
To assess the performance of our method, we chose two 
simulated data sets which were used by De Oliveira et al. 
(2014) and Kusuma et al. (2016). The first data set only has 
main effects without interaction among SNPs, while the 
second one has epistasis among SNPs. The two data sets 
were generated by the function simulateSNPglm of the 
‘scrime’ package. The genotypes are categorical variables 
while the phenotypes are continuous variables. The states of 
a genotype is encoded as follows: 1 for homozygous 
reference genotype (both alleles of SNP are major 
homozygous), 2 for heterozygous genotype (two alleles of 
SNP are heterozygous), and 3 for homozygous variant 
genotype (both alleles of SNP are minor homozygous), 
where a minus sign before any of these numbers implies that 
the corresponding SNP does not affect the phenotype when 
it is of this genotype [9].  

 
3.1 Simulated phenotype without epistasis 
The linear regression model generated for simulated 
phenotype without epistasis is described by Eq. 14. 
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𝑌 = 𝛽! + 𝛽!𝐿!

!

!!!

+ error                                                     (14) 

 
where 𝑒𝑟𝑟𝑜𝑟 is a normal random variable with mean 0 and 
standard deviation 5, 𝐿! = (SNP1 == 2), 𝐿! = (SNP10 ==
1), 𝐿! = (SNP20 == 3), 𝐿! = (SNP30 == 3), 𝐿! =
(SNP40 == 3), 𝐿! = (SNP50 == 2), 𝐿! = (SNP60 ==
2), and 𝑌 is the simulated phenotype. The beta coefficients 
were set as 𝛽! = 0, 𝛽! = 𝛽! = 𝛽! = 200, 𝛽! = 900, 
𝛽! = 𝛽! = 𝛽! = 200. The notation 𝐿! = (SNP1 == 2) 
means that if SNP1 is of genotype 2 then 𝐿! = 1, and 𝐿! = 0 
otherwise. For this data set, 1000 markers were simulated for 
250 subjects, with a minor allelic frequency (MAF), 
simulated for each SNP, based on a uniform distribution 
with minimum and maximum limits, respectively, 0.10 and 
0.40 [6]. 

 
3.2 Simulated phenotype with epistasis 
The linear regression model generated for simulated 
phenotype with epistasis is described by Eq. 15. 

 

𝑌 = 𝛽! + 𝛽!𝐿!

!

!!!

+ error                                                    (15) 

 
where 𝑒𝑟𝑟𝑜𝑟 is a normal random variable with mean 0 and 
standard deviation 1, 𝐿! = SNP4 ! = 2  & (SNP3 ! = 1), 
𝐿! = (SNP5 == 3), 𝐿! = SNP12 ! = 1  & (SNP9 ! = 3) 
and 𝑌 is the simulated phenotype. The beta coefficients were 
set as 𝛽! = 0, 𝛽! = 𝛽! = 150, 𝛽! = 40. The notation 
𝐿! = SNP4 ! = 2  & (SNP3 ! = 1) means that if SNP4 is 
not of genotype 2 while at the same time SNP3 is not of 
genotype 1 then 𝐿! = 1. For this data set, 10 000 markers 
were simulated for 600 subjects, and MAF, simulated for 
each SNP, based on a uniform distribution with minimum 
and maximum limits as used on the simulated phenotype 
without epistasis [6]. 
 
 
4. Results and discussion 
 
4.1 SNP selection over complete search space 
First of all, we performed SNP selection over the complete 
search space of 1000 SNPs and 10 000 SNPs for simulated 
phenotype 1 and simulated phenotype 2, respectively, using 
a wrapper based on SFFS with MSE and adjusted 𝑅! as 
selection criteria which were evaluated using SVR. The 
intersection of the two SNP subsets obtained by using the 
two selection criteria was considered the final selection 
result. Based on our trial, we picked 10 as the value of the 
‘cost’ parameter in SVR. The ‘kernlab’ package provides 
automatic tuning only for the parameter of the Gaussian and 
Laplace RBF kernel, sigma, so the Gaussian RBF kernel was 
the only kernel optimized in this work. The package uses 
heuristics in the function sigest to calculate a good sigma 
value for the Gaussian or Laplace RBF kernel, from the data. 
The parameters of the Bessel kernel—sigma, order, and 
degree—used their default unit values [26]. Furthermore, 10-
fold cross-validation was used on the training data to assess 
the quality of the models constructed by SVR and to avoid 
overfitting. 

 
A. Simulated phenotype without epistasis (simulated 

phenotype 1) 

Tab. 2 shows the SNPs selected for simulated phenotype 1 
using Gaussian RBF kernel. The selection criterion MSE 
obtained a variable subset of 7 true positives (TPs) and 1 
false positive (FP), while the adjusted 𝑅! obtained a variable 
subset of 7 TPs and 2 FPs. The intersection of the two 
subsets was a subset of 7 TPs. Thus, all 3 FPs were 
discarded. 
 
Table 2. Selection result for simulated phenotype 1 using 

Gaussian RBF kernel. 
Selection 
Criterion 

Selected 
SNPs 

MSE Adjusted 
𝑹𝟐 

Time 
(minutes) 

MSE 

1, 10, 20, 
30, 40, 
50, 51, 
60 

0.00564 - - 

Adjusted 
𝑅! 

1, 10, 20, 
30, 40, 
50, 60, 
91, 987 

- 0.99578 - 

Intersection 
1, 10, 20, 
30, 40, 
50, 60 

0.00589 0.99538 38.8 

 
 Tab. 3 shows the SNPs selected for simulated phenotype 
1 using Bessel kernel. Both the selection criteria obtained 7 
TPs. It is evident that the Bessel kernel outperforms the 
Gaussian RBF kernel for this data set. Note that it took less 
computational time with the Gaussian RBF kernel. 
 
Table 3. Selection result for simulated phenotype 1 using 
Bessel kernel. 
Selection 
Criterion 

Selected 
SNPs 

MSE Adjusted 
𝑹𝟐 

Time 
(hour) 

MSE 1, 10, 20, 30, 
40, 50, 60 0.00633 - - 

Adjusted 
𝑅! 

1, 10, 20, 30, 
40, 50, 60 - 0.99350 - 

Intersection 1, 10, 20, 30, 
40, 50, 60 0.00633 0.99350 1 

 
B. Simulated phenotype with epistasis (simulated 

phenotype 2) 
Tab. 4 shows the SNPs selected for simulated phenotype 2 
using Gaussian RBF kernel. The selection criterion MSE 
obtained a variable subset of 4 TPs and 2 FPs, while the 
adjusted 𝑅! obtained a variable subset of 3 TPs and 4 FPs. 
The intersection of the two subsets was a subset of 3 TPs. 
Thus, all 6 FPs were discarded and 1 TP was, unfortunately, 
also discarded. 
 
Table 4. Selection result for simulated phenotype 2 using 

Gaussian RBF kernel. 
Selection 
Criterion 

Selected 
SNPs 

MSE Adjusted 
𝑹𝟐 

Time 
(hours) 

MSE 3, 4, 5, 9, 
9955, 1667 0.00524 - - 

Adjusted 
𝑅! 

3, 4, 5, 881, 
7048, 7404, 
2413 

- 0.99426 - 

Intersection 3, 4, 5 0.01039 0.99243 14.7 
 

 Tab. 5 shows the SNPs selected for simulated phenotype 
2 using Bessel kernel. The selection criterion MSE obtained 
a variable subset of 5 TPs, while the selection criterion 
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adjusted 𝑅! obtained a variable subset of 3 TPs and 2 FPs. 
The intersection of the two subsets was a subset of 3 TPs. 
Thus, all 2 FPs were discarded and 2 TPs were, 
unfortunately, also discarded. Nevertheless, it is evident that 
the Bessel kernel performed better than the Gaussian RBF 
kernel. 
 
Table 5. Selection result for simulated phenotype 2 using 
Bessel kernel. 
Selection 
Criterion 

Selected 
SNPs 

MSE Adjusted 
𝑹𝟐 

Time 
(hours) 

MSE 3, 4, 5, 9, 
12 0.00628 - - 

Adjusted 
𝑅! 

3, 4, 5, 
3115, 3719 - 0.99190 - 

Intersection 3, 4, 5 0.01204 0.98833 19.7 
 

 The use of the intersection of the two variable subsets 
obtained by two selection criteria helps to reduce or even 
eliminate false positives. However, it may also discard true 
positives. Evidently the selection result for the simulated 
phenotype with epistasis was not yet satisfactory. Moreover, 
even though we have utilized parallel computing, the 
computational time for high-dimensional data sets were still 
pretty high. We then attempted to address these issues by 
considering the use of variable ranking methods to remove 
less important features prior to variable selection in the hope 
that it can help to achieve better selection result and reduce 
the computational time. 

 
4.2 SNP ranking 
SNP ranking based on squared CAR score for simulated 
phenotype 1 was computed in 1 to 2 seconds and the LHS of 
Fig. 3 shows 20 top-ranked SNPs. SNP40 was rather poorly 
ranked even though it is associated with the phenotype, 
while the other six SNPs were among the top 20 SNPs. For 
the simulated phenotype 2, the ranking was computed in 40 
to 50 seconds and the RHS of Fig. 3 shows 20 top-ranked 
SNPs. SNP9 and SNP12 were poorly ranked even though 
both SNPs are associated with the phenotype, while the 
other three SNPs filled the top 4 positions. 

 
Fig. 3. SNP ranking for simulated phenotype 1 (left) and 2 (right) based 

on squared CAR score. 
 
 

 SNP ranking based on I-score for simulated phenotype 1 
was also computed in 1 to 2 seconds and the LHS of Fig. 4 
shows 20 top-ranked SNPs. SNP40 was poorly ranked and 
SNP30 was not among the top 20 SNPs, while the other five 
SNPs filled the top 5 positions. For the simulated phenotype 
2, the ranking was computed in 18 to 19 seconds and the 
RHS of Fig. 4 shows 20 top-ranked SNPs. SNP9 and SNP12 
were again poorly ranked even though both SNPs are 

associated with the phenotype, while the other three SNPs 
filled the top 3 positions. 
 

 
Fig. 4. SNP ranking for simulated phenotype 1 (left) and 2 (right) based 
on I- score 

 
 SNP ranking by random forest for simulated phenotype 1 
was computed in approximately half a minute. We used the 
default number of trees in the ‘randomForest’ package, 
which is 500 [18], for all data sets. As for the ‘mtry’ 
parameter, if one has a very large number of variables but 
expects only very few to be “important”, using larger ‘mtry’ 
may give better performance [17]. We observed that most of 
the time the ‘mtry’ parameter optimization gave 1000 as the 
optimum value which is exactly the number of SNPs in the 
data set. In the case of SNP40, ranking based on the percent 
increase in MSE (%IncMSE) resulted in it having a wide 
range of relatively poor rank in different computation, while 
ranking based on the decrease in RSS (IncNodePurity) 
placed it at the top 200 positions most of the time. Fig. 5 
shows an instance of the top 20 SNPs for this data set. 
 SNP ranking by random forest for simulated phenotype 2 
was computed in approximately 26 minutes. We observed 
that most of the time the ‘mtry’ parameter optimization gave 
10 000 as the optimum value which again is exactly the 
number of SNPs in the data set. Using either of the two 
measures, the ranking is highly favorable for search space 
reduction (Fig. 6). 

 
Fig. 5. SNP ranking for simulated phenotype 1 produced by random 

forest. 
 
 It is evident that random forest algorithm produced better 
SNP ranking for each of the two simulated phenotypes than 
either the CAR scores or I-scores, but with the longest 
computational time. Between the two measures of variable 
importance in random forest, IncNodePurity seems slightly 
more favorable for search space reduction. 
 
4.3 SNP selection over reduced search space 
Prior to SNP selection, all SNPs were ranked according to 
the total increase in node purities (IncNodePurity) from 
splitting on the variable, averaged over all trees. For 
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regression, the node impurity is measured by residual sum of 
squares (RSS). SNP selection over each of the two simulated 
data sets was then performed over the reduced search space 
of 200 highest-ranked SNPs. Note that we cannot yet offer a 
theoretical basis to determine the minimum number of top-
ranked SNPs that should be included in the search. However, 
it is natural that the more top-ranked SNPs are included, the 
more likely it is to find all the relevant SNPs but with longer 
search times. 
 

 
Fig. 6. SNP ranking for simulated phenotype 2 produced by random 

forest. 
 
 
A. Simulated phenotype without epistasis (simulated 

phenotype 1) 
Tab. 6 shows the final selection results for simulated 
phenotype 1. Both Gaussian RBF kernel and Bessel kernel 
gave perfect results with neither false positives nor false 
negatives. Note that it took less computational time with the 
search space reduction. 
 
Table 6. Selection results for simulated phenotype 1 using 
Gaussian RBF and Bessel kernel. 
Kernel Selected 

SNPs 
MSE Adjusted 

𝑹𝟐 
Time 

(minutes) 
RBF 
Gauss 

1, 10, 20, 30, 
40, 50, 60 0.00561 0.99539 6.8 

Bessel 1, 10, 20, 30, 
40, 50, 60 0.00633 0.99350 12.8 

 
B. Simulated phenotype with epistasis (simulated 

phenotype 2) 
Tab. 7 shows the final selection results for simulated 
phenotype 2 using Gaussian RBF kernel. We obtained three 
different selection results for different data sets generated at 
different times. 
 
Table 7. Three instances of selection results for simulated 
phenotype 2 using Gaussian RBF kernel. 
Result Selected 

SNPs 
MSE Adjusted 

𝑹𝟐 
Time 

(minutes) 
1 3, 4, 5 0.01026 0.99239 45.4 

2 3, 4, 5, 9, 
9955 0.00775 0.99270 49.4 

3 3, 4, 5, 9, 12, 
4660 0.00770 0.99270 49.0 

 
 Tab. 8 shows the final selection results for simulated 
phenotype 2 using Bessel kernel. We obtained the same 
good selectin results for different data sets generated at 
different times. This observation supports the assertion of 
Xiang et al. (2013) that the Bessel kernel function of the first 

kind has higher prediction accuracy and stronger 
generalization ability in SVR [27]. 
 
Table 8. Selection result for simulated phenotype 2 using 
Bessel kernel. 
Result Selected 

SNPs 
MSE Adjusted 

𝑹𝟐 
Time 

(minutes) 

1 3, 4, 5, 9, 12 0.00974 0.99103 56.6 

 
 During the search, we had an interesting observation in 
which the proposed method helped to overcome the ‘nesting 
effect’. At first, the selection criterion MSE gave a subset of 
5 TPs while the adjusted 𝑅! produced a nested FP SNP2256 
which the SFFS was unable to remove through backward 
elimination. The intersection of the two subsets—a subset 
with 4 TPs SNP5, SNP3, SNP4, and SNP9 as members—
was then used as a new starting point of the search. The final 
selection result with 5 TPs means that the corresponding 
‘nesting effect’ was dealt with the successful removal of 
SNP2256. 

 
 

5. Conclusions 
 
Feature selection SFFS with two selection criteria, adjusted 
𝑅! and mean squared error, was shown to give better results 
for the two simulated phenotypes than those given by the 
methods proposed by De Oliveira et al. (2014) and Kusuma 
et al. (2016). Using the two selection criteria in the hope that 
the selected SNPs are those with both high statistical 
significance and strong predictive power and considering the 
intersection of the two SNP subsets obtained by the two 
selection criteria as the selection result were shown to help 
in reducing or even eliminating false positives. However, it 
may also discard true positives and the selection result for 
the simulated phenotype with epistasis was not satisfactory. 
Moreover, even though we have utilized parallel computing, 
the computational time for the two high-dimensional data 
sets were still pretty high. 
 These issues were succesfully resolved by employing a 
variable ranking method to remove less important SNPs 
prior to SNP selection. Our comparison of variable ranking 
methods using the two simulated phenotypes suggested that 
random forest algorithm outperforms the two statistical 
approaches, i.e., the CAR score and the I-score. 
Nevertheless, we see the need to find or develop a better 
variable ranking method. The reduction of the search space 
with exponential complexity was shown to improve the 
selection result for the simulated phenotype with epistasis 
and greatly reduce the search time. Unfortunately, we cannot 
yet offer a theoretical basis to determine the minimum 
number of highest-ranked SNPs that should be included in 
the search. 
 Testing with the two simulated phenotypes suggests that 
SVR with the non-optimized Bessel kernel is more favorable 
for SNP selection than the optimized Gaussian RBF kernel 
although with longer search time. This observation supports 
the assertion of Xiang et al. (2013) that the Bessel kernel 
function of the first kind has higher prediction accuracy and 
stronger generalization ability in SVR. 
 The proposed method, however, does not tell the 
epistatic interaction, if any, between the selected SNPs. 
Further research may be devised to develop the proposed 
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selection method so as to be capable of inferring any 
epistatic interaction involved. 
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Competing interests 
The authors declare that they have no competing interests. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  

 
____________________________ 

References 
 
[1] A. S. Foulkes, Applied Statistical Genetics with R, Springer, New 

York (2009). 
[2] R. Rieger, A. Michaelis, and M. M. Green, A glossary of genetics 

and cytogenetics: Classical and molecular, New York: 
Springer-Verlag (1968). 

[3] Y. Saeys, I. Inza, and P. Larranaga, A review of feature selection 
techniques in bioinformatics, Bioinformatics vol. 23 no. 19 
pages 2507-2517 (2007). 

[4] I. Guyon and A. Elisseeff, An introduction to variable and feature 
selection, Journal of Machine Learning Research 3: 1157-1182 
(2003). 

[5] T. M. Cover and J. M. Van Capenhout, On the possible orderings in 
the measurement selection problem, IEEE Transactions on 
Systems, Man, and Cybernetics vol. SMC-7 no. 9 (1977). 

[6] F. C. De Oliveira, C. C. H. Borges, F. N. Almeida, F. F. e Silva, R. 
D. S. Verneque, M. V. G da Silva, and W. Arbex, SNPs 
selection using support vector regression and genetic 
algorithms in GWAS, BMC genomics 15 (2014). 

[7] D. Zongker and A. Jain, Algorithms for feature selection: an 
evaluation, Proceedings of the 13th International Conference 
on Pattern Recognition (1996). 

[8] W. A. Kusuma, L. S. Hasibuan, and M. A Istiadi, SNPs selection 
using gravitational search algorithm and exhaustive search for 
association mapping, IOP Conference Series Earth and 
Environmental Science, 31(1): 012015 (2016). 

[9] H. Schwender and A. Fritsch, Package ‘scrime’, CRAN Repository 
(2015). 

[10] I. Ilhan, Y. E. Goktepe, and S. Kahramanli, A genetic algorithm-
support vector machine method for selecting tag single 
nucleotide polymorphisms, International Journal of Innovative 
Computing, Information and Control vol. 9 no. 2 (2013). 

[11] A. Lo, H. Chernoff, T. Zheng, and S. H. Lo, Why significant 
variables aren’t automatically good predictors, Proceedings of 
the National Academy of Sciences 112(45): 13892-13897 
(2015). 

[12] V. Zuber, A. P. D. Silva, and K. Strimmer, A novel algorithm for 
simultaneous SNP selection in high-dimensional genome-wide 
association studies, BMC Bioinformatics 13:284 (2012). 

[13] V. Zuber and K. Strimmer K, High-dimensional regression and 
variable selection using CAR scores, Statistical Applications in 
Genetics and Molecular Biology 10: 34 (2011). 

[14] H. Chernoff, S. H. Lo, and T. Zheng, Discovering influential 
variables: a method of partitions, The Annals of Applied 
Statistics 3(4): 1335-1369 (2009). 

[15] A. Lo, H. Chernoff, T. Zheng, and S. H. Lo, Framework for making 
better predictions by directly estimating variables’ predictivity, 
Proceedings of the National Academy of Sciences (113)50: 
14277–14282 (2016). 

[16] L. Breiman, Random forests, Machine Learning 45(1): 5-32 (2001). 
[17] A. Liaw and M. Wiener, Classification and regression by 

randomForest, R News vol. 2/3 pp. 18-22 (2002). 
[18] A. Liaw and M. Wiener, Package ‘randomForest’ , CRAN 

Repository (2015). 
[19] C. Strobl, A. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, 

Conditional variable importance for random forests, BMC 
Bioinformatics 9:307 (2008). 

[20] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, Understanding 
variable importances in forests of randomized trees, Advances 
in Neural Information Processing Systems 26 vol. 1 page 431-
439 (2013). 

[21] P. Pudil, J. Novovičová, and J. Kittler, Floating search methods in 
feature selection, Pattern Recognition Letters 15: 1119-1125 
(1994). 

[22] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, 
Support vector regression machines, Advances in Neural 
Information Processing Systems 9:155-161 (1997). 

[23] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, 
Cambridge (2002). 

[24] A. Karatzoglou, A. Smola, and K. Hornik, Kernlab: an S4 package 
for kernel methods in R, Journal of Statistical Software 11(9): 
1-20 (2004). 

[25] A. Karatzoglou, D. Meyer, and K. Hornik, Support Vector 
Machines in R, Journal of Statistical Software vol. 15 issue 9 
(2006). 

[26] A. Karatzoglou, A. Smola, and K. Hornik, Package ‘kernlab’, 
CRAN Repository (2016). 

[27] L. Xiang, Z. Quanyin, and W. Liuyang, Research of bessel kernel 
function of the first kind for support vector regression, 
Information Technology Journal 12(14): 2673-2682 (2013). 

[28] V. Zuber and K. Strimmer, Package ‘care’, CRAN Repository 
(2015). 

[29] S. Weston, Using The foreach Package, CRAN Repository (2015). 
[30] J. Miles, R squared, adjusted R squared, Wiley StatsRef: Statistics 

Reference Online (2014). 
[31] R Core Team. R: A language and environment for statistical 

computing, R Foundation for Statistical Computing, Vienna, 
Austria (2017). 

 


