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Abstract 

 
Multi-component non-stationary vibration signals produced at local gear fault can easily be covered by periodic harmonic 
signal and strong background noise, thus causing difficulty in selecting gear fault features and diagnosing fault state. To 
address this issue, a gear fault diagnosis method based on variational mode decomposition (VMD) and envelope 
spectrum was proposed in this study, which was then employed to select gear-fault features from multi-component 
vibration signals adaptively, extract fault characteristic frequency, and determine health conditions of the gear. Based on 
VMD of gear-fault vibration signals in complicated environments, the relationship between center frequency at 
decomposed intrinsic mode functions (IMFs) and the gear mesh frequency was discussed. The technique used to 
determine the number of decomposed modes and gear-fault characteristic component was also analyzed. On this basis, 
the gear fault state was disclosed. The proposed approach was validated by fault simulation and experimental data. 
Results demonstrate that the number of decomposed modes can influence VMD and the selection of fault characteristic 
component. The center frequency of IMFs obtained from VMD is compared with the gear mesh frequency. When the 
difference is lower than a certain threshold, the corresponding IMF is the gear-fault characteristic component, and the 
number of decomposed modes is simultaneously determined. The fault characteristic frequency is extracted from Hilbert 
envelope demodulation of characteristic component, which is used to determine the gear fault state. Conclusions obtained 
in this study can provide important references for the VMD method to facilitate effective selection of fault characteristic 
components during gear fault diagnosis and offer new insights into this type of diagnosis. 
 
Keywords: Variational mode decomposition, Envelope spectrum, Gear, Fault diagnosis 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Vehicle gearboxes operate under complicated conditions 
(e.g., variable loads) for a long time; thus, running fatigue 
and impact can easily result in gear fault. The running state 
of gear drive, which is a key component of the vehicle 
gearbox, can affect the service performance and driving 
safety of the entire vehicle. Real-time monitoring of gear 
state guarantees high-efficiency safety operation of vehicles. 
Gear engagement at fault may change the amplitude and 
phase of vibration signals. As vibration signals cover 
characteristic information of gear faults, collecting gearbox 
vibration signals is a major method in monitoring gear state 
[1]. Vibration signals collected on site often contain periodic 
harmonic signal and abundant noise interferences. These 
signals are generally nonlinear and non-stationary. Therefore, 
extracting gear fault characteristic components through the 
original vibration signal becomes the key of equipment 
monitoring. 

 Short-time Fourier transform and wavelet transform are 
traditional time-frequency analysis methods of vibration 
signals. As these approaches use fixed basis functions and 
lack adaptation to multi-component vibration signals, the 

results of signal decomposition without physical meaning 
cannot be used to sift fault characteristic components [2]. 
Based on analysis of multi-component vibration signals, 
adaptive time-frequency analysis methods, such as signal 
sparse representation, empirical mode decomposition (EMD), 
and variational mode decomposition, were developed. 
Techniques based on signal sparse representation must solve 
the problem of establishing overcomplete dictionaries. The 
establishment of overcomplete dictionaries can directly 
influence the decomposition effect of signals [3]. 
Decomposition based on EMD does not need to establish the 
overcomplete dictionaries and basis functions because it 
decomposes multi-component signals into single-component 
signals by adaptively selecting bandwidth according to 
characteristics of the analyzed signal. However, 
decomposition based on EMD has many disadvantages, such 
as lack of strict mathematical basis, modal aliasing, and end 
effect [4][5][6]. Dragomiretskiy [7] proposed non-recursion 
adaptive variational mode decomposition (VMD), which 
transformed the signal decomposition problem into a 
constraint optimization problem and decomposed the multi-
component signal into intrinsic mode functions (IMFs) of 
different frequencies. Although this method possesses a 
strict mathematical basis, VMD only performs complete 
decomposition of the signal; thus, determining the number 
of decomposed modes k and sifting the fault characteristic 
component are difficult. Therefore, rapidly selecting fault 
characteristic components from IMFs and determining the 
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gear fault state during VMD of multi-component vibration 
signals are problems that must be urgently solved. 

In this study, VMD of multi-component vibration signals 
of gear fault is conducted, and corresponding influencing 
factors are analyzed. The selection method of fault 
characteristic component is optimized to determine fault 
characteristic components adaptively at signal 
decomposition. On this basis, characteristic frequency of 
fault can be extracted. Research results provide references 
for real-time determination of gear state. 

 
 

2. State of the art 
 
Many studies on gear fault diagnosis have been published 
worldwide. Accurate extraction of fault characteristic 
components is one of the main problems in fault diagnosis. 
He et al. [8] eliminated resonant harmonic components and 
noises in the original vibration signals by resonance-based 
sparse signal decomposition. Additionally, they strengthened 
period pulse signals in low-resonance components through 
the maximum correlation kurtosis deconvolution method and 
extracted fault characteristic components of multi-
component vibration signals. However, this approach 
acquired fault characteristic components in two steps, 
thereby increasing the computation complexity. Wu et al. [9] 
implemented synchronous decomposition of multi-channel 
vibration signals by using multi-element EMD and 
reconstructed IMFs containing fault information according 
to the kurtosis criterion and correlation coefficient, 
respectively. Based on IMFs, their approach successfully 
obtained fault characteristic components of gear and rolling 
bearing and solved EMD mode mixing and the calibration 
problem of multi-channel signal modes. Although their 
method showed strong adaption, it required many 
acceleration sensors, thereby increasing the hardware cost 
and arrangement difficulty. VMD has been widely used in 
signal decomposition and reconstruction and fault diagnosis 
since it was proposed in 2014. VMD can decompose multi-
component signals into several IMFs from low to high 
frequency. The contrastive study on the effects of VMD and 
empirical mode decomposition method in multi-component 
vibration signals revealed that the IMFs obtained from VMD 
had a low degree of mode mixing and strong adaption to 
decomposition of strong noise signals [10][11]. However, 
VMD had to appoint the number of decomposed modes k in 
advance and failed to directly extract fault characteristic 
components. Jiang et al. [12] screened and reconstructed 
IMFs from VMD by using the correlation coefficient and 
utilized the reconstructed signal as data source for bearing 
fault diagnosis. This reconstructed signal was compared with 
that provided by denoising based on empirical mode 
decomposition, which proved the superiority of VMD. 
Nevertheless, correlation coefficients can only express linear 
relationships of variables but cannot reflect nonlinear 
relationships. Qian et al. [13] screened IMFs related to the 
original vibration signal for signal reconstruction via the 
mutual information method that can quantitatively express 
mutual dependence of two random variables. However, 
IMFs were screened to eliminate signal noise in the 
decomposition and reconstruction of the original vibration 
signal through VMD, which also had to cooperate with other 
methods to extract the fault characteristic components and 
determine the fault state. Influences of k on denoising effect 
were overlooked. Liu et al. [14] suggested the determination 
of k by detrended fluctuation analysis (DFA) during signal 

denoising via VMD. However, DFA was mainly applied to 
eliminate Gaussian white noise signals. Liu et al. [15] 
improved the condition for iteration termination of VMD 
based on mutual information method and adaptively 
determined k. However, this approach did not extract fault 
characteristic components at signal decomposition but 
implemented demodulation analysis on each IMF by using 
the Teager energy operator and determined fault state of 
rotor by combining rub-impact fault characteristics. Tang et 
al. [16] proposed the optimization of VMD influencing 
factors by using particle swarm optimization (PSO) 
algorithm. They decomposed the fault vibration signal into 
several IMFs, and the component with minimum envelope 
entropy was used as the optimal characteristic component. 
Bearing fault characteristic components were directly 
extracted during signal decomposition. However, influences 
prior to setting parameter values in the PSO algorithm on 
VMD results were neglected. 

The preceding studies mainly reconstruct signals by 
signal decomposition and then extract fault characteristic 
components and determine fault state by different methods. 
This approach increases the difficulty of extracting fault 
characteristic components. A few studies that determine 
fault characteristic component during signal decomposition 
are available. In the present study, the number of 
decomposed modes k and influences of signal noise on 
decomposition of multi-component vibration signals were 
discussed. Then, the selection method of gear fault 
characteristic component and the number of decomposed 
modes k were analyzed according to the relationship 
between gear mesh frequency and center frequency of 
decomposed IMFs. Hilbert envelope analysis on 
characteristic component of gear fault was conducted, and 
characteristic frequency of gear fault was proposed. This 
approach provided a new idea for gear fault diagnosis. In 
determining the fault characteristic component, each IMF 
and the original vibration signal were used to calculate the 
correlation coefficient, which was compared with the 
proposed technique in this study. 

The rest of this study is organized as follows. Section 3 
introduces algorithm steps of gear fault characteristic 
component selection and fault diagnosis based on the VMD 
algorithm and Hilbert envelope demodulation principle, 
respectively. Section 4 analyzes the simulation signal and 
experimental vibration signal of gear fault by using VMD. 
The characteristic component of gear fault is also 
determined, and the fault characteristic frequency is 
extracted to determine the gear fault state. Section 5 
provides conclusions. 
 
 
3. VMD and Hilbert envelope demodulation 
 
3.1 VMD 
The basic principle of VMD is to decompose multi-
component signal into the sum of limited IMFs. Based on 
this constraint, different IMFs are hypothesized to have 
limited bandwidth of different central frequencies. These 
IMFs are characteristic of sparsity, and the sum of estimated 
bandwidth of IMFs is the minimum. Signal decomposition 
based on EMD and VMD facilitates decomposition of 
complicated signals into different IMFs. Essentially, IMFs 
are amplitude–frequency demodulation signals expressed as 
follows:  
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uk t( ) = Ak t( )cos φk t( )( )                      (1) 

 
where

 
uk t( ) represents IMFs after decomposition. The 

envelope is 	 Ak t( ) ≥0 , and the instant frequency is 

	 ʹφk t( ) ≥0 . In addition, the variation of 
 
Ak t( )  and 

 
ʹφk t( )  is 

smoother than the phase position 
 
φk t( ) . In other words, 

IMFs can be used to express the pure harmonic signals 
comprising 

 
Ak t( )  and 

 
ʹφk t( ) . 

The VMD problem mainly involves establishing and 
solving the variation model. In establishing the variation 
model, the analytic signal of each IMF component 

 
uk t( )  is 

calculated through Hilbert transform, and the unilateral 
spectrum is calculated. Then, the adjustment term of  e

− jωkt  is 
multiplied by Hilbert transform results, and the frequency 
spectrum of each IMF is adjusted to its corresponding 
baseband spectrum. Third, bandwidths of different IMFs are 
estimated by the squared L2 norm of the gradient. The 
constructed constraint variation model is expressed in Eq. 
(2). In other words, each IMF component is solved under the 
constraint that the sum of each IMF component 

 
uk t( )  is 

equal to the original signal 
 
f t( ) . Simultaneously, the sum 

of all IMF estimated bandwidth is the minimum. 
 

	  

min
uk{ }, ωk{ }
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where   uk ,ωk  are the decomposed k IMFs and corresponding 
central frequencies ( 	   k =1,2!,K is the number of 
decomposed modes). 

 
δ t( )  is the Drac distribution, and ∗  

indicates convolution. 
Adaptive signal decomposition can be achieved by 

solving this constraint variation model. Here, the quadratic 
penalty term α  and Lagrangian multiplier λ  are used to 
assure the reconstruction accuracy and the strict enforcement 
of the constraint and introduce the augmented Lagrangian  L , 
respectively. The minimization problem in Eq. (2) is 
transformed into the unconstrained model, which can be 
expressed as follows: 
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       (3) 

 
Saddle point of the augmented Lagrangian can be 

determined by alternating direction method of multipliers, 
which is the solution used in Eq. (2). This method extracts 
IMFs and corresponding central frequencies by continuously 
updating 

 
uk t( )  and  ωk  and demodulates IMFs to the 

corresponding baseband spectra. The relevant solving 
process mainly covers minimization problems of 

 
uk t( )  and 

 ωk  [7]. 

When updating 
 
uk t( ) , Eq. (3) can be rewritten into the 

following minimization problem: 
 

	  

uk
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Based on the Parseval/Plancherel Fourier isometry under 

the 	 L2  norm, Eq. (4) can be solved by Eq. (5) in the 
frequency domain as follows: 
 

	  

ûk
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∑ûi ω( )+

λ̂ ω( )
2

2

2

 
  (5) 

 
The solution in the frequency domain can be obtained by 

solving Eq. (5), which is expressed by Eq. (6). Inverse 
Fourier transform of Eq. (6) is performed, and the real part is 
the IMF of time domain. 

 

	  
ûk

n+1 ω( ) =
f̂ ω( )−

i≠k∑ ûi ω( )+
λ̂ ω( )
2

1+2α ω −ωk( )2
       (6) 

 
Only the bandwidth prior is present; thus, no center 

frequency  ωk  is found in the reconstructed fidelity term, 

and the minimization of  ωk  can be rewritten as follows: 
 

	  
ωk
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 Similarly, the problem of center frequency in the 

frequency domain can be solved as follows: 
 

	  
ωk

n+1 = 0

∞  

∫ ω ûk ω( )
2

dω

0

∞  

∫ ûk ω( )
2

dω  
                  (8) 

 
According to the minimization problem solution of Eqs. 

(5) and (7) and the alternating direction method of 
multipliers, the complete VMD algorithm can be obtained. 
Specific steps are shown as follows: 

 
1) Initialize 	  ûk

1{ }, ωk
1{ },λ̂1,n←0 . 

2) Execute the main cycle: 	 n← n+1 . 
3) Execute the first cycle: for 	  k =1 : K , update   ûk  when 

	ω ≥0 . 
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ûk

n+1 ω( )←
f̂ ω( )−

i<k∑ ûi
n+1 ω( )−

i>k∑ ûi
n ω( )+

λ̂ n ω( )
2

1+2α ω −ωk
n( )
2  (9) 

 
 
Update  ωk  as follows: 
 

	  
ωk

n+1← 0

∞  

∫ ω ûk ω( )
2

dω

0

∞  

∫ ûk ω( )
2

dω  
               (10) 

 
End the cycle when  k = K . 

4) When 	ω ≥0 , update  λ̂  by dual ascent: 
 

	  
λ̂ n+1 ω( )← λ̂ n ω( )+τ f̂ ω( )− ûk

n+1 ω( )
k
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5) Repeat steps (2) to (4) until the convergence condition 

	  k=1

K

∑ ûk
n+1 − ûk

n

2

2
/ ûk

n

2

2
< ε  is met. 

 
3.2 Hilbert envelope demodulation 
Hilbert envelope demodulation is an effective approach to 
extract modulation information of fault signal. Based on 
Hilbert transform, the envelope demodulation of narrow-
band signal was conducted to solve the instantaneous 
frequency. Hilbert transform of real signal 

 
x t( )  is expressed 

as: 
 

	   
H x t( )⎡
⎣

⎤
⎦= !x t( ) = 1

π
−∞

∞

∫
s τ( )
t −τ

dτ              (12) 

 
where signals 

  
!x t( )  and 

 
x t( )  are phase spectrum difference, 

whereas the amplitude spectra are exactly the same. The two 
signals are orthogonal. Therefore, the new analytical signal 
can be rewritten as follows: 

 

  
z t( ) = x t( )+ j!x t( )                   (13) 

 
The envelope 

 
A t( )  of analytical signal is defined as 

 

	  A t( ) = x t( )2 + !x t( )2                (14) 

 
Hilbert envelope spectra are the spectrum analysis of the 

analytical signal envelope 
 
A t( ) . 

 
3.3 Steps of gear fault diagnosis 
When the gear on the fixed axis is operating normally, the 
vibration signals produced by gear engagement mainly 
include gear mesh frequency and its harmonic components. 
A fixed multiple relationship exists between gear mesh 
frequency and spindle speed. When gear fault occurs, the 
fault gear engages with the periodic rotation of the gear shaft. 
At this moment, the vibration signals of gear not only cover 
gear mesh frequency but also generate side band at the gear 
mesh frequency due to the modulation on rotating frequency 

of fault gear axis and gear mesh frequency and their 
frequency multiplication. Thus, multi-component amplitude 
and frequency modulation signals are generated [17]. This 
finding reflects that the key of gear fault feature extraction is 
to extract side band of gear mesh frequency from gear fault 
vibration signals. 

According to the analysis of simulated and experimental 
signals, the quadratic penalty term α  of VMD in this study 
used the sampling frequency [18]. Based on VMD of the 
original vibration signal, the relationship between center 
frequencies of decomposed IMFs and gear mesh frequency 
is analyzed. The fault characteristic component and k are 
determined by the adaptive method. Hilbert envelope 
demodulation analysis of the fault characteristic component 
is conducted through which fault characteristic frequency is 
obtained. On this basis, the gear fault state is determined. 
The gearbox fault diagnosis steps based on VMD and 
envelope spectra are as follows: 

 
(1) Gear mesh frequency  ωm is calculated by prior 

information.  
(2) Given the determined quadratic penalty term α , k is 

successively increased from 2 during VMD of the original 
vibration signal. The center frequencies  ωk of the 

decomposed IMFs and gear mesh frequency  ωm  are 
compared. When the frequency difference is less than a 
certain threshold, this IMF is chosen as the fault 
characteristic component and the iterative decomposition is 
terminated. At this moment, k is adaptively determined. 

(3) Envelope spectrum of fault characteristic component 
is obtained from Hilbert demodulation. If the rotating 
frequency of the gear shaft is observed, then this gear is in a 
faulty condition. 
 
 
4. Result analysis and discussion 
 
4.1 Simulation analysis 
In actual gear transmission, the amplitude modulation (AM) 
and frequency modulation (FM) produced by the rotating 
frequency of the shaft upon occurrence of gear fault exist 
simultaneously. The simulation signal 

 
y t( )  of the gear fault 

is expressed in Eq. (15) to verify the performance of the 
proposed method in gear fault diagnosis. This signal has AM 
signal 	 y0 t( ) , FM signal 	 y1 t( ) , and AM/FM signal 	 y2 t( ) . 

The signal 
 
n t( )  is Gaussian white noise. The rotating axis 

frequency lies in the simulated fault gear in 	 f t( ) =15  Hz. 

The total simulation signal at the gear fault is: 
 

	  

y0 t( ) = 1.2+cos(2π15t)( )∗cos 2π50t( )
y1 t( ) = cos(2π240t +cos(2π15t))

y2 t( ) = 1+0.8cos 2π15t( )( )*
cos 2π480t +0.7cos 2π15t( )( )

y t( ) = y0 t( )+ y1 t( )+ y2 t( )+ n t( )

        (15) 

 
The time-domain waveform of simulated signal y(t) 

without noise n(t) is shown in Fig. 1(a). VMD must 
determine the value of k in advance. In this study, a multi-
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component signal comprising three component signals is 
known; therefore, VMD starts from k = 3. The time-domain 
waveforms of IMFs of the simulation signal y(t) when k = 
3–4 under 	 n t( ) =0  are shown in Fig. 2. The time-domain 

waveforms of IMFs when k = 3 are shown in Fig. 2(a), 
where AM signal 	 y0 t( ) , FM signal 	 y1 t( ) , and AM/FM 

signal 	 y2 t( )  are effectively decomposed. The time-domain 

waveforms of IMFs when k = 4 are shown in Fig. 2(b). 
IMF3 and IMF4 are similar when k value is set high, 
indicating excessive decomposition. Center frequencies of 
IMFs decomposed by VMD when k = 3–6 are shown in 
Table 1. Signals can be sparsely decomposed when k = 3. 
The center frequency  ωk  of decomposed IMFs agrees well 
with the carrier frequencies (50, 240, and 460 Hz) of a given 
signal. High-frequency component introduces certain errors. 
When k is higher than the number of a given signal (3), 
high-frequency components in the center frequency of 
decomposed IMFs are relatively close to one another, 
indicating excessive decomposition. Therefore, k can 
considerably influence the performance of VMD. 

 

 
(a) Time-domain waveform without noise 

 
(b) Time-domain waveform with −3 db noise 

Fig. 1. Time-domain waveform of simulated signal 
 
y t( )  

 
 

 
 (a) Time-domain waveform of decomposed IMFs when k = 3 

 
   (b) Time-domain waveform of decomposed IMFs when k = 4 
Fig. 2. Time-domain waveform of different IMFs without noise 
 
Table 1. Center frequencies of IMFs without noise when k = 
3–6 
k Center frequencies  ωk (Hz) 

3 49.9 239.8 480.0    
4 49.9 239.8 477.3 495.7   
5 49.9 239.8 477.6 494.2 508.6  
6 49.9 239.7 448.1 480.0 496.4 464.6 
 

The time-domain waveforms of the simulated signal 

 
y t( )  with −3 db Gaussian white noise signal 

 
n t( )  are 

shown in Fig. 1(b). The time-domain waveforms of 
decomposed IMFs when k = 3–4 are shown in Fig. 3. Center 
frequencies  ωk  of decomposed IMFs when k = 3–5 are 
listed in Table 2. These frequencies are compared with the 
given carrier frequency. The simulated signal cannot be 
accurately decomposed when k = 3. When k = 4–5, the 
center frequency is higher than the given carrier frequency. 
According to the contrastive analysis decomposition results 
without noise, the high center frequency is due to influences 
of noise signal on the VMD performance. In this condition, 
the original multi-component signal can still be accurately 
decomposed. 

 
Table 2. Center frequencies of IMFs with −3 db noise and k 
= 3–4 
k Center frequencies  ωk (Hz) 

3 52.7 478.9 673.3   
4 49.5 244.7 481.9 843.5  
5 52.7 239.2 480.4 706.8 957.0 
 

In actual applications, the composition of multi-
component signal is often unknown, causing difficulty in 
determining k. No effective technique is available to 
determine k yet. The ultimate objective of this study is to 
extract the characteristic components of gear fault and 
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determine the gear fault state. According to the analysis of 
VMD of simulated signal, the selection method of 
characteristic components of the gear fault is introduced 
with consideration of prior structural information of the gear 
set. Additionally, the condition to terminate iteration is 
improved and k is simultaneously determined. Given the 
number of teeth and rotating speed of the gear shaft, the gear 
mesh vibration frequency can be calculated. When the center 
frequency of one IMF from VMD of the vibration signal is 
close to the gear mesh frequency, k is not increased for 
decomposition. IMF of this center frequency is used as the 
characteristic component of the gear fault for Hilbert 
envelope demodulation and determination of gear fault state. 
Table 2 shows that if the gear mesh frequency in the original 
synthesis signal is 50 Hz, then only the 50 Hz signal 
component is decomposed when k = 3, whereas 240 and 460 
Hz components are not decomposed. The Hilbert envelope 
demodulation of the IMF with 50 Hz of center frequency is 
shown in Fig. 4. The rotating frequency of the shaft where 
the fault gear is located can be tested by 15 Hz. Therefore, 
faults can be detected from this gear. 

 
(a) Time-domain waveforms of decomposed IMFs when k = 3 

 
(b) Time-domain waveforms of decomposed IMFs when k = 4 

Fig. 3. Time-domain waveforms of decomposed IMFs with −3 db noise 
 

 

 
Fig. 4. Hilbert envelope spectrum of signal at 50 Hz of center frequency 
 
4.2 Analysis of experimental signal 
Gear fault data are analyzed on the test table of rotating 
mechanical vibration to verify the validity of the proposed 
method based on VMD and envelope spectral analysis in 
actual gear fault diagnosis. The test table is equipped with 
speed variator transducer, motor of driving system, gearbox, 
revolution speed transducer, acceleration sensor, and 
magnetic powder brake. The gearbox has one group of teeth 
that engage into the single-level driving. The number of big 
and small teeth is 75 and 55, respectively, and gear modulus 
is 2. The revolution speed transducer measures the rotating 
speed of the small teeth, while the acceleration sensor 
measures the vibration signal of gearbox bearing block. The 
sampling frequency is 5120 Hz, and the sampling time is 1 s. 
When the actual rotating speed of the small gear is 840 r/min, 
vibration signal collected under one broken tooth of big gear 
is shown in Fig. 5(a). 

 

 
(a) Time-domain waveform of vibration signal 

 
(b) Frequency spectrum of vibration signal 
Fig. 5. Vibration signal of one broken tooth of big gear 

 
In this experiment, the mesh frequency of this gear set is 

calculated as 770 Hz. The rotating frequency of the shaft 
where the fault gear is located is 10 Hz. The frequency 
spectrum of the gear vibration signal is shown in Fig. 5(b). 
The frequency at maximum amplitude is 772 Hz, which is 
approximately equal to the gear mesh frequency (770 Hz). 
This finding is due to the maximum energy at gear 
engagement. 

VMD of the vibration signal at snaggletooth fault of gear 
is conducted. The center frequencies of IMFs in each group 
when k = 2–4 are listed in Table 3. 

 
Table 3. Center frequencies of IMFs when k = 2–4 
k Center frequencies  ωk (Hz) 

2 276 1337   
3 274 776.4 1339  
4 273.9 776.4 1337 1905 
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IMFs from VMD and the corresponding Hilbert 
envelope spectra when k = 2 are shown in Fig. 6. The 
frequencies of IMF1 and IMF2 are 276 and 1337 Hz, 
respectively. The envelope spectra of two IMFs in Fig. 6(b) 
are compared. The fault characteristic frequency of 10 Hz is 
not shown in the first image. Table 3 shows that the center 
frequency of IMF is 276 Hz, which is unrelated to the gear 
mesh and rotating frequency of the gear shaft. In the second 
image, the rotating frequency (10 Hz) of the shaft where the 
fault gear is located can be identified, but the fault 
characteristic frequency is insignificant. At this moment, the 
center frequency of IMF is 1337 Hz, which is approximately 
twice the gear mesh frequency. 

 
(a) IMFs 

 
(b) Hilbert envelope spectra 

Fig. 6. IMFs and corresponding Hilbert envelope spectra when k = 2 

 
(a) IMFs 

 
(b) Hilbert envelope spectra 

Fig. 7. IMFs and Hilbert envelope spectra when k = 3 
 

IMFs from VMD and the corresponding Hilbert 
envelope spectra when k = 3 are shown in Fig. 7. The 
frequencies of IMF1, IMF2, and IMF3 are 274, 776.4, and 
1339 Hz, respectively. In Fig. 7(b) and Table 3, the envelope 
spectrum when the center frequency is 776.4 Hz show that 
the rotating frequency of shaft where the fault gear is located 
is 10 Hz, indicating the existence of gear fault. The envelope 
spectrum when the center frequency is 1339 Hz is similar to 
second image in Fig. 6(b), indicating that the fault frequency 
is insignificant and misjudgment is possible. Therefore, 
VMD is terminated when the difference between center 
frequency of one IMF and the fault gear mesh frequency is 
lower than a certain threshold. This IMF is determined as the 
characteristic component of gear fault. This approach can 
adaptively determine fault characteristic component and k 
during VMD of the vibration signal, thus enabling the 
implementation of Hilbert envelope demodulation of fault 
characteristic component. In addition, the fault characteristic 
frequency of this component is extracted and compared with 
the prior rotating frequency of the gear shaft to determine 
the fault state of the gear. 
 

Table 4. Correlation coefficient between IMFs and 
original signal when k = 2–4 
k Correlation coefficient 
2 0.3807 0.5191   
3 0.3678 0.4307 0.5112  
4 0.3673 0.4298 0.5074 0.1725 

 
In this study, the correlation coefficients between IMFs 

from VMD and the original signal are also calculated (Table 
4). The third IMF shows the highest correlation coefficient 
when k = 3–4. In this case, the fault characteristic frequency 
of Hilbert envelope demodulation is insignificant. Therefore, 
the proposed means of selecting fault characteristic 
component is more effective than the correlation coefficient 
method. 

 
 

5. Conclusions 
 

This study analyzes VMD of the multi-component signal, 
selection of fault characteristic component, extraction of 
fault characteristic frequency, and determination of gear 
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fault state by combining VMD and envelope spectral theory. 
The study also aims to explore adaption and validity of 
VMD to decomposition of the multi-component gear fault 
signal and extraction of fault characteristic component and 
achieve automatic selection of fault characteristic 
component and diagnosis of gear fault state. The simulated 
multi-component signal is compared with the gear fault 
signal on the test bed. The following major conclusions can 
be drawn: 
 

(1) The number of decomposed modes (k) and signal 
noise influence extraction of IMFs are obtained from VMD 
and fault characteristic components, respectively. 

(2) For multi-component vibration signal, the iteration 
termination conditions of VMD are improved by comparing 
the gear mesh frequency and center frequency of IMFs. 
Additionally, the characteristic component of gear fault is 
adaptively extracted. 

(3) Hilbert envelope demodulation is conducted on fault 
characteristic components of simulated and experimental 
signals. The gear fault state is determined through 

comparison with the rotating frequency of shaft where the 
fault gear is located. 

(4) The proposed approach is more effective than the 
correlation coefficient method in determining the fault 
characteristic component. 

 
In this study, an adaptive selection technique of fault 

characteristic component is proposed by combining 
experimental and simulated signals. The termination 
conditions of VMD are improved, and the extraction of fault 
characteristic component is simplified. The research results 
provide new ideas for VMD applications in gear fault 
diagnosis. However, attention should be provided to gear 
fault diagnosis. Future studies can apply the proposed 
method in the diagnosis of gear and bearing composite fault. 

 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  

 
______________________________ 

References 
 
1. Meng, Z., Wang, Y. C., Hu, M., “Fault Feature Extraction Method of 

Gear Based on Improved Local Mean Decomposition and 
Instantaneous Energy Distribution-sample Entropy”. Journal of 
Mechanical Engineering, 52(5), 2016, pp. 169-176. 

2. Li, B. Q., “The Machinery Fault Diagnosis Method Based on 
Adaptive and Sparsest Time-Frequency Analysis”. Doctoral 
Dissertation of Hunan University, China, 2016, pp.1-8. 

3. He, G. L., Ding, K., Lin, H, B., “Matching Pursuit Method for 
Coupling Modulation Signal Separation of Gearbox Vibration”. 
Journal of Mechanical Engineering, 52(1), 2016, pp.102-108. 

4. Lei, Y., Kong, D., and Li, N.J.J.o.M.E., “Adaptive ensemble 
empirical mode decomposition and its application to fault detection 
of planetary gearboxes”. Journal of Mechanical Engineering, 50(3), 
2014, pp. 64-70. 

5. Tang, H. B., Wu, H. G., Hua, G. J., Ma, C. X., “Fault diagnosis of 
pump using EMD and envelope spectrum analysis”. Journal of 
Vibration and Shock, 31(9), 2012, pp.44-48. 

6. Zhang, C., Chen, J. J., “A fault diagnosis method of roller bearing 
based on EMD De-noising and spectral kurtosis”. Mechanical 
Science and Technology for Aerospace Engineering, 34(2), 2015, 
pp.44-48. 

7. Dragomiretskiy, K., Zosso, D., “Variational Mode Decomposition”. 
IEEE Transactions on Signal Processing, 62(3), 2014, pp.531-544 

8. He, Q., Guo, Y. G., Wang, X., Ren, Z. H., Li, J. M., “Gearbox Fault 
Diagnosis based on RB-SSD and MCKD”. China Mechanical 
Engineering, 28(13), 2017, pp. 1528-1534. 

 9. Wu, Z., Yang, S. P., Liu, Y. Q., “Rotating machinery early fault 
diagnosis method based on multivariate empirical mode 
decomposition”. Chinese Journal of Scientific Instrument, 37(2), 
2016, pp.241-248. 

10. Li, Z. N., Zhu, M., “Research on Mechanical Fault Diagnosis 
Method based on Variational Mode Decomposition”. Acta 
Armamentarii, 38(3), 2017, pp.593-599. 

11. Tang, G., Luo, G. G., Zhang, W. H., Yang, C. J., “Underdetermined 
Blind Source Separation with Variational Mode Decomposition for 
Compound Roller Bearing Fault Signals”. Sensors, 16 (6), 2016, 
pp.897. 

12. Jiang, W. L., Wang, H. N., Zhu, Y., Wang, Z. W., “Integrated VMD 
Denoising and KFCM Clustering Fault Identification method of 
rolling bearing”. China Mechanical Engineering, 28(10), 2017, pp. 
1215-1220.  

13. Qian, L., Kang, M., Fu, X. Q., Wang, X. S., “Application of 
adaptive morphology in bearing fault diagnosis based on VMD”. 
Journal of Vibration and Shock, 36(3), 2017, pp. 227-233. 

14. Liu, Y. Y., Yang, G. L., Li, M., Yin, H. L., “Variational mode 
decomposition denoising combined the detrended fluctuation 
analysis”. Signal Processing, 125(C), 2016, 349-364. 

15. Liu, S. K., Tang, G. J., Wang, X. L., “Time-frequency Analysis 
Method of Rotating Mechanical Fault based on Improved 
Variational Mode Decomposition”. Journal of Vibration 
Engineering, 29(6), 2016, 1119-1126. 

16. Tang, G. J., Wang, X. L., “Parameter optimized variational mode 
decomposition method with application to incipient fault diagnosis 
of rolling bearing”. Journal of Xi'an Jiaotong University, 49(5), 
2015, 73-81. 

17. Man, Z. H., Wang, W. Y., Khoo, S. Y., Yin, J. L., “Optimal 
sinusoidal modelling of gear mesh vibration signals for gear 
diagnosis and prognosis”. Mechanical Systems and Signal 
Processing, 33(2), 2012, 256-274. 

18. Lv, Z. L., “Research on Incipient Fault Diagnosis Methods for 
Rotating Machinery based on VMD and Optimized MSVM”. 
Doctoral Dissertation of Chongqing University, China, 2016, 
pp.81-83. 

 
 


