

Journal of Engineering Science and Technology Review 11 (4) (2018) 48 - 51

Research Article

A Subtle Serial Key based Software Protection Scheme

Aderibigbe Israel Adekitan and Abidemi Orimogunje

Department of Electrical and Information Engineering, Covenant University, Ota, Ogun State, Nigeria

 Received 11 March 2018; Accepted 19 September 2018

Abstract

Software piracy is a modern day war between malicious software pirates and software developers. Annually, developers
lose billions of dollars in revenue to piracy, making it an industry bane that must be controlled by all means. The drive
for improved software protection systems has increased the complexity of both proposed and implemented schemes.
Some of the methods are cost intensive in terms of development, management and hardware requirement (smart card
tokens), while this may be justified for costly software applications, for low cost and basic applications by small scale
developers, implementing advanced protection schemes is often economically infeasible and largely and overkill. This
study presents a subtle software protection model using serial keys. The model implements a form of obfuscation by
using hidden codes, encrypted functions and uses a distraction technique by diverting the attention of potential hackers to
the serial key while trickily using coded strings for the actual user authentication.

Keywords: Application software protection, serial key authentication, function hiding, data and system security, unique signature,

encryption
__

1. Introduction

Software is vital for productivity virtually in all spheres of
life. Software are deployed for program driven machines in
industries, data processing applications and various
simulation tools in different operations and research fields.
Software development requires a lot of resources and man-
hours, and as such, a sizable budget must be available to
drive the software development project based on the project
scope. After a successful software design and
implementation, the developer needs to recoup on the
investment, and this is done via sales of various licences for
the use of the developed application, but this is often
challenged by software piracy. Annually, the software
industry loses billions of dollars to piracy [1], and this has
triggered efforts toward protecting software applications.
 A number of software applications are unprotected while
others have weak protection. Software protection is a
daunting task particularly with the ever growing army of
hackers, skilled at reverse engineering and windows data
recovery [2]. This has made it compulsory to keep evolving
improved strategy using both software and hardware
protection schemes, coupled with legal protection and
sanctions. At times illegal software use can also be in the
form of multiple installation of legally acquired single user
licence, and this may go unnoticed if not monitored.
 Software protection may be in the use of license keys
that are checked during installation. This requires that the
licence validation be embedded in the software creating an
opportunity for hackers. The use of hardware signatures is
also common and this entails extracting key information
from the hardware on which the application is installed and

using it to generate a key. This creates a problem for the user
if the user replaces his hardware with a new one. The study
by [3] proposes the use of function hiding techniques that
performs key checks without revealing the method applied,
but this is only limited to polynomial functions [1]. Code
obfuscation method is another method that tries to hide the
program behaviour making it hard for hackers to understand
and manipulate [4-6]. Some network based protections
schemes have also been deployed, and this performs license
checks each time the application is run, making it
challenging for users with irregular access to the internet [7].

Further research on software protection led to the
development of tamper proof [8] and anti-debugging
approaches, and the use of hardware for software protection.
According to [9], a perfect, only software based solution to
software protection is not realistic. The use of program
specific hardware tokens or dongles such as smart cards that
uses communication ports create card juggling issues for
different applications [1]. The study by [10], proposed the
use of smart cards and digital certificates using a license
management system. A robust protection scheme was
developed by [1] using smart cards and cryptographic
techniques.

Computer security and trust management is vital for
online services [6, 11], and ultimately software protection
has become so complex and costly in terms of skill
requirement and the use of hardware devices. For expensive
software applications, these advance schemes may be cost
effective but for small size applications, particularly for low
cost software and small scale software enterprises
developing basic applications in developing countries some
of these schemes are overkill due to the level of software
patronage and quality challenges [12, 13]. Hence, there is a
need to develop a functional but easy to implement, and cost
effective software protection scheme which does not require
an additional hardware token in the form of dongles and

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

*E-mail address: sde_kitan@yahoo.com
ISSN: 1791-2377 © 2018 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.

doi:10.25103/jestr.114.06

Aderibigbe Israel Adekitan and Abidemi Orimogunje/Journal of Engineering Science and Technology Review 11 (4) (2018) 48 - 51

 49

specialized smart cards thereby reducing implementation
cost and also eliminating the inconvenience for users to
carry a smart card per software creating the problem of card
juggling. Also, there is a possibility of hardware token
failure or for the user to misplace the hardware token.
Instances where codes were developed to bypass the card
verification have also been reported.

In this study, a tricky but effective serial key based
software protection model is proposed which can be easily
deployed, even on low cost software, and it does not require
sophisticated computers or specialized tamper proof
processors, and expensive computation using asymmetric
cryptosystem to deploy, but the user authentication process
is tricky, thereby limiting the chances of the software being
hacked and used illegally.

2. Methodology

To demonstrate the implementation of the subtle, serial key
based protection system; an interface was deployed using
Visual Basic for collecting vital information about the
software user. The submitted data is encrypted, saved on the
PC and also uploaded online to the developer’s data base
with a unique identification for each specific user. A user’s
email address can only be used for one registration, and
users suspected of attempting multiple registrations can be
automatically identified for further investigation when the
same name or telephone number is submitted for different
email addresses. Using function hiding, the collected data is
concatenated into strings and divided into multiple parts
based on pre-classified specific attributes of the collected
data, using an encrypted function, a rule based selection of
data segment from each divided data part is done and then
data coding is performed to transform the processed data
portions into three visually meaningless validation strings
which will eventually be used for user verification after a
trigger is activated by the developer during online payment.

At the developer’s end, a unique serial key is generated
for the user using the received encrypted user data. The
software developer then sends a link to the user to purchase
the unique serial key via online payment. After a successful
online payment, with the buyer’s attention drawn to the
displayed serial key, the subtle user verification process
which is independent of the serial key is automatically
activated.

3. The proposed subtle software protection scheme

This study presents a basic software protection system that
combines a form of obfuscation with online verification. It
attempts to direct attention at the serial key but with
subtlety, it actually uses a separate series of short strings for
actual post registration software validation. Microsoft serial
keys typically use an alphabet base of 24 characters which
most people are quite familiar with. In this model, a 46
character base is implemented which makes the serial key
generated quite different and unfamiliar. For a 20 character
serial key, 110.47 bits of data

(log2 4620) will be required.

The scheme is described in Figure 1.
Although, according to [1] there is no absolutely secure

solution in software protection; in this study an attempt is
made to make a simple software authentication process
tricky and difficult to hack by subtly misdirecting the focus
of potential hackers to the serial key why performing

continuous verification with alternative strings. The
feasibility of the proposed scheme was demonstrated using
windows form. After the protected software is installed, the
user data form will pop-up and the user must mandatorily fill
it to complete the installation process.

The data collected is encrypted, processed on the user
PC and also sent to the software developer for saving on the
database and for generating the user specific serial key.
Figure 1 shows the generation of a unique serial key by the
developer using the decrypted data received from the filled
user registration form. A link is sent to the user to complete
the transaction by making payment online to purchase a
unique serial key. Once the payment is successfully made
for the serial key, the software automatically picks the
unique serial key and displays it to the user who then clicks
FINISH to complete the transaction. By displaying the serial
key, the user’s attention is drawn to it, and, may consider
writing it for possible re-use on another system. Also, a
potential hacker’s attention will also be drawn to the serial
key and the hacker is being tricked to focus on how to re-use
or re-generate valid serial keys using the purchased one.

Unknown to any user attempting illegal tampering with
the serial key validation process, is the fact that the serial
key is only useful at the point of purchase. Once the
software purchase is successful and validated, the serial key
becomes a dummy variable, and the application initiates the
subtle user verification process at each run. During
installation on the PC the application uses code obfuscation
to develop three coded unique strings (String A, String B
and String C) for data validation. Figure 2 shows the three
strings generated by performing input filtering, text
concatenation and encoding. Each of the three strings will be
stored at different locations locally on the PC. The use of
online payment and activation directs the attention of
potential hackers to the online serial key activation and
validation process without being aware of the use of the
three strings for the actual user verification as detailed in the
flow chart in Figure 3.

Each time the application is opened, the application will
run normally for a random amount of minutes and then the
validity of string B is checked and if it is not valid the
application will keep running for further random minutes
and then suddenly crash with an ambiguous error message.
If the user restarts the application, the user will be
automatically taken to the registration page as a new user.
Also, if the initial post start-up check is successful; when the
user is now closing the application, before exiting, the
application will check the validity of String A and String C,
and if either of the two strings are invalid a flag is set such
that at the next opening of the application the user is also
automatically taken to the user registration form as a new
user. A user that changes hardware can be re-authenticated
after verification using the stored user data in the
developer’s central database. The operational model of the
subtle serial key is shown in Figure 3.

4. Results and Discussion

The model demonstration using windows form confirms
the feasibility of the implementation on a commercial
scale. Using sample user data, serial keys were generated
using the serial key generator to depict the developer’s end
of the process while the three verification strings were also
successfully generated from the user data and verified
during operation. When an attempt was made to use the

Aderibigbe Israel Adekitan and Abidemi Orimogunje/Journal of Engineering Science and Technology Review 11 (4) (2018) 48 - 51

 50

serial key for one user to validate the application form for
another user, an invalid serial key error was triggered
because the serial key supplied is not a coded equivalent
of the submitted user data. The non-use of the serial key
after payment, and the verification of String B few
minutes after startup, and String A and C when closing the
app creates a rear verification process that potential
hackers are not used to. Also, by performing the
verification checks only after running the application for a
random period of time at each run makes it difficult to
predict the operation, and it also prevents forming an easy
general conclusion of precisely saying that a tampered or
hacker modified installation keeps crashing after running
consistently for e.g. ten minutes which might make
targeted reverse code debugging easily possible.

Fig. 1. Generation of serial key by the software developer using the

user data

Fig. 2. The three strings generated for user validation

User	installs	
application

User	fills	mandatory	
Data	Form	and	

submits.	The	actual	
application	remains	
inaccessible	until	it	

is	activated

Three	(3)	sets	of	visually	
meaningless	data	strings	
(String	A,	B	&	C)		are	
generated	using	the	
submitted	data	by	an	
encrypted	function

The	data	strings	are	saved	on	
the	hard	drive	in	three	separate	

hidden	locations	using	
unobvious	codes	in	different	
sections	of	the	program

The	submitted	data	
is	locked,	encrypted	
and	saved	on	the	PC

The	encrypted	data	
is	also	sent	online	to	
the	developer’s	

database

The	developer	loads	
the	data	and	

generates	a	unique	
serial	key	that	has	a	
relationship	with	
the	3	data	strings

The	serial	key	is	
saved	with	user	

data	profile	on	the	
developer’s	
database

A	link	is	sent	via	
email	to	the	user	to	
purchase	the	serial	
key	for	automatic	
program	activation

After	online	
activation,		the	2nd	
part	of	the	tricky	

User	Authentication	
is	activated

At	each	startup	no	
check	is	performed.	

Some	random	
minutes	after	app	
startup,	STRING	B	is	
checked	for	validity.

is	validity	test	
OK?

The	app	works	for	
some	random	

minutes	more	and	
crashes	with	an	
ambigous	error	

message

On	start-up	again	
the	software	

activation	process	is	
restarted

The	program	keeps	
running	without	any	

issues

When	the	user	
closes	the	program,	
the	software	checks	

STRING	A	and	
STRING	C	for	validity	

is	validity	test	
OK?

A	flag	is	set	that	
allows	the	software	
to	start	normally	

next	time

At	next	app	startup	
the	software	
activation	is	
restarted	

No

Yes

No

Yes

Fig. 3. Flow chart of the proposed software protection scheme

Aderibigbe Israel Adekitan and Abidemi Orimogunje/Journal of Engineering Science and Technology Review 11 (4) (2018) 48 - 51

 51

5. Conclusion

In this study, a subtle easy to implement software
protection scheme was proposed and implemented using
windows form. The proposed model takes the use of serial
key as a means of protection, a step further by combining
online activation with subtle obfuscation strategy as a
distraction strategy that will make potential hackers spend
time effortlessly on breaking the serial key generation and
validation process without being aware that actual user

validation is performed using three hidden coded strings
which is activated when a matching serial key is supplied.

Acknowledgments
The Authors appreciate Covenant University Centre for
Research, Innovation and Discovery for supporting the
publication of this research study.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution Licence

References

1. Maña, A. and E. Pimentel. An Efficient Software Protection

Scheme. in Trusted Information. 2001. Boston, MA: Springer US.
2. Olajide, F. and S. Misra, Forensic investigation and analysis of user

input information in business application. Indian Journal of Science
and Technology, 2016. 9(25).

3. Sander, T. and C.F. Tschudin. On software protection via function
hiding. in International Workshop on Information Hiding. 1998.
Springer.

4. Jiutao, T. and L. Guoyuan. Research of software protection. in 2010
International Conference on Educational and Network Technology.
2010.

5. Wroblewski, G., General method of program code obfuscation
(draft). Citeseer, 2002.

6. Osemwegie, O., et al., On issues, strategies and solutions for
computer security and disaster recovery in online start-ups.
International Journal of Applied Engineering Research, 2017.
12(19): p. 8009-8015.

7. Carlsson, K., Developing an efficient software protection and
licensing scheme, in Department of Computer Science and
Engineering. 2014, Chalmers University of Technology.

8. Tan, G., Y. Chen, and M.H. Jakubowski. Delayed and controlled
failures in tamper-resistant software. in International Workshop on
Information Hiding. 2006. Springer.

9. Goldreich, O. Towards a theory of software protection. in
Conference on the Theory and Application of Cryptographic
Techniques. 1986. Springer.

10. Aura, T. and D. Gollmann. Software License Management with
Smart Cards. in Smartcard. 1999.

11. Govindaraj, P. and N. Jaisankar, A review on various trust models
in cloud environment. Journal of Engineering Science and
Technology Review, 2017. 10(2): p. 213-219.

12. Sowunmi, O.Y. and S. Misra. An empirical evaluation of software
quality assurance practices and challenges in a developing country.
in Proceedings - 15th IEEE International Conference on Computer
and Information Technology, CIT 2015, 14th IEEE International
Conference on Ubiquitous Computing and Communications, IUCC
2015, 13th IEEE International Conference on Dependable,
Autonomic and Secure Computing, DASC 2015 and 13th IEEE
International Conference on Pervasive Intelligence and Computing,
PICom 2015. 2015.

13. Sowunmi, O.Y., et al., An empirical evaluation of software quality
assurance practices and challenges in a developing country: A
comparison of Nigeria and Turkey. SpringerPlus, 2016. 5(1): p. 1-
13.

