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Abstract 
 

In recent times, real-time simulation has been used to validate the testing and design of protection, control, and 
communications systems prior to their commissioning in the field, which has improved the reliability and security of the 
commissioning processes for electrical systems. This paper reviews the state-of-the-art and future trends in protection, 
control, and communications testing of electrical grids using real-time simulation. In addition, a summary is presented in 
which all the works and technologies mentioned are listed with the purpose of identifying new challenges in the proposed 
topic. Finally, future trends related to the use of real-time simulation for evaluating protection, control, and 
communications schemes are presented. Real-time simulation is very useful due to the increasing complexity of modern 
electrical power systems, therefore, it is necessary to use this kind of tool to facilitate field testing, avoid unnecessary 
work, and reduce costs for clients. 
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1 Introduction  
 
Simulations have been used for many years for the planning 
and design of electrical networks [1], from the incorporation 
of transmission lines in power systems to the optimization of 
motor drives in the transportation sector. Simulations have 
performed a fundamental role in the development of a great 
many applications [2]. During the last decades, the evolution 
of simulation tools has been carried forward by the 
accelerated evolution of computational technologies. 
Because computational technologies have improved their 
performance, the capacity of the simulation tools for solving 
large and complex problems has also increased in a short 
time [3]. Additionally, the cost of digital simulators is 
decreasing constantly, making them available and accessible 
to a great number of users for many applications [4, 5]. 
 Real-time simulation is a process whose purpose is to 
reproduce, with the highest possible level of precision, the 
dynamics and response times of real systems through the use 
of computing hardware and software. This allows the 
evaluation of complete electrical systems with their 
respective protection, control, and communications schemes 
and makes it possible to observe their performance as though 
they were implemented in real systems [6]. 

Recent advances in computing have allowed the rapid 
development of real-time simulation in many applications, 
including the testing of protection, control, and 
communications equipment in electrical systems. 

On the other hand, the efficient operation of electrical 
grids is a great challenge for the electrical sector as they 
constitute highly complex systems. Such systems involve a 
large number of devices, where the integration of each one 
should maintain the equilibrium of the properly operating 
system [7, 8]. Thus, it is of great importance to carry out 
factory and on-site integral tests of different equipment and 
elements that make up an electrical grid in such a way that 
the correct operation of the system can be checked [9]. 

With the emergence of new fields of application, 
powerful real-time simulators, and novel procedures 
introduced by modern engineering, the optimization of 
traditional testing and commissioning processes of electrical 
schemes and equipment has been achieved [10]. Various 
reference institutions for the electrical sector have proposed 
to modernize, optimize, and include in the processes the 
participation of information and communication 
technologies as a means to integrate all system domains and 
a catalyst of the advantages that these technologies represent 
[11] in relation to reliability, quality, and efficiency 
improvements in the service. This has been evidenced in the 
works referenced below, where real-time simulators, 
information technologies, and telecommunications have 
been used to optimize the testing and commissioning 
processes [10], [12–21]. 

The incorporation of real-time technology prior to 
implementation provides relevant support to the protection 
and control tests of electrical grids. At the same time, it 
allows reducing the costs and maintenance time, avoiding 
unnecessary engineering, and increasing the reliability of the 
energy supply. The implementation of this technology will 
allow electricity companies to make fast and timely 
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decisions at the time of carrying out any kind of 
reconfiguration of electrical schemes and power system 
equipment. 

 
 

2 Protection, Control and Communications Testing 
Using Real-Time Simulation 
 
2.1 Protection systems 
In large transmission and distribution electrical grids, 
electrical substations are commonly monitored and 
controlled [22, 23]. However, when the start-up test of the 
different elements are performed, for example the ones 
corresponding to a substation, a group of inspections should 
be done at the time of manufacture, before energizing the 
elements and after putting them into service [24, 25]. 

Protection schemes vary from one electrical system to 
another, depending on the voltage levels, importance of the 
installation, and the energy company. Such schemes are 
classified according to the importance of the machines or 
equipment to be protected, such as generators, transformers, 
capacitor banks, buses, and lines [23, 26]. 

Advances in electrical grid protection have been 
considerable due to the recent integration with 
microprocessor technologies, which allows a single 
protection unit to include many different functions [27, 28]. 
Thus, the integration of functions is convenient when they 
complement each other to avoid power system faults. 

Nowadays, technology allows to integrate both protection 
and control functions, where it is possible to have equal and 
redundant units for each output and that seems to have 
economic appeal based on the fact that the time and number 
of operation contacts are not compromised [6, 23, 28]. 
 
2.2 Control and communications systems 
Currently, two control concepts prevail in electrical 
grids—traditional and automated—with the latter being the 
trend in modern electrical grids. The use of intelligent 
electronic devices (IEDs), which are autonomous 
apparatuses with integration and communication capacities, 
through standard protocols that make use of one or more 
microprocessors with the ability to send and receive 
information [6, 22, 27]. 

Some automatic maneuvering concepts in control 
systems are based fundamentally on available information 
inside the substation, where the action of the control devices 
may be sent or modified in a local or remote way. Some 
automated operations in electrical grids are relay automatic 
setup, automatic maneuvering of equipment, automatic 
reclosing, synchronized control of switches, transformer 
control, low-frequency automatic disconnection of load, 
automatic system restoration after a loss of power supply, 
sectionalization of the fault zone, automatic control of tap 
changers, and reactive power control as mentioned in [22, 23, 
27, 28]. 

 
2.3 Protection, control, and communications test 
In protection and control, each device and instrument must 
be completely assembled, set up, and tested in the factory, 
which is commonly known as Factory Acceptance Testing 
(FAT). Later, these devices must be subjected to tests to 
ensure reliable operation of all the components in the field, 
known as Site Acceptance Testing (SAT). 

FAT guarantees the security and quality of the equipment, 
device, or instrument before its delivery or final installation. 
It is necessary to be sure that equipment is operating 

properly and without anomalies that can affect the in-field 
functionality and installation. With these tests, it is possible 
to check that all specifications and previously established 
requirements have been met [24, 25, 29, 30]. 

SAT makes it possible to determine the electrical, 
mechanical, operational, and environmental characteristics 
of each electrical component under real operating conditions, 
with the aim of guaranteeing the fulfillment of the design 
specifications. The results obtained through this test are able 
to establish parameters that make it possible to determine the 
degree of degradation and allow early detection of 
malfunctions in the system or equipment during their normal 
operation and lifetime in the electrical grid [23, 31]. 

Fig. 1(a) displays a scheme representing the current 
method of protection, control, and communications tests 
performed on electrical grids. Traditional FAT is applied to 
each individual component, which entails manual and 
disjointed work, that is, it does not involve the integration of 
all the equipment making up the system to evaluate the 
performance and interactions among them. To develop 
traditional FAT, three-phase injection equipment is used, 
which makes it possible to obtain current and voltage 
magnitudes and other magnitudes with high precision, 
however, this technique incurs high costs in terms of 
equipment and availability. In addition, when performance 
tests are carried out through simulations, they are performed 
in a decoupled manner and not in real time, i.e., offline. 
Thus, there is no mathematical, functional, or precise model 
representation of the power environment that the system is 
going to face as it does not represent a real plant. 

In Fig. 1(a), it can be observed that to test the protection, 
control, and communications schemes in n bays, the use of n 
injection devices is indispensable. This is not efficient from 
an operational, logistical, or economic point of view due to 
factors that carry weight at the time of test execution such as 
the necessary staff coordination, time, and availability of the 
testing equipment. When commissioning tests are carried out 
in the traditional manner, the following questions are posed: 
To which bay are the tests applied? To which breakers are 
the tests applied? What happens to the other protection, 
control, and communications devices in the substation? Is 
there a model of the system? Finally, is there synchronism in 
test execution?  

The optimization of integral protection, control, and 
communications in electric grids using real-time simulation, 
information technologies, and telecommunications, as shown 
in Fig. 1(b), makes it possible to save time and achieve 
testing precision and optimal and efficient designs in view of 
demanding and modern power systems and electrical grids. 

In Fig. 1(b), the process of implementation of the 
necessary technologies to simulate an electrical grid in real 
time—in this case, as an example, a substation and its 
protection equipment—has been divided into three stages: 

 
• Stage 1: Base technologies for modeling and 

visualization. 
• Stage 2: Processing, data flow, and 

communications. 
• Stage 3: Integration schemes, signal acquisition, 

and performance monitoring. 
 
The first stage refers to the selection of the software 

platform and technologies for modeling and performance 
visualization of the system under analysis. In the current 
market, there are several companies that offer interesting 
solutions in real time. The second stage of implementation 
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encompasses the processing hardware components, data 
flow, and communications. In this stage, the necessary 
equipment and processing power to carry out the real-time 
computations, data flow to and from the simulation hardware, 
and finally the technologies and protocols of 
communications to connect the simulation workstations with 
external protection, control, and communications devices are 
established according to the test requirements. 

 

 
(a) 

 

(b) 
Fig. 1 Protection, control, and communications testing: a) Traditional 
way and b) Using RTS 
 
 

The third stage of implementation is related to the 
schemes and technologies that interact with the power 
equipment. This corresponds to signal amplification, data 
acquisition devices, monitoring technologies, and operation 
schemes to carry out a real-time simulation loop. 

These implementation stages promote the development 
and use of real-time simulation, information technologies, 
and telecommunications. This makes it possible to integrate 
the real functionality of protection, control, and 
communications equipment with a precise simulation of the 
real power system through effective interfaces for the 
respective data exchange in a quick, secure, and reliable 
way. 

 
2.4 Real-time simulation for protection, control, and 
communications schemes 
Different schemes that use real-time simulation for the 
commissioning of protection, control, and communications 
systems in electrical grids have been developed, currently, 

there are four main representative schemes into which the 
different techniques and methodologies to carry out 
real-time electrical performance tests can be grouped. These 
schemes are software in the loop (SIL) or model in the loop 
(MIL), rapid control prototyping (RCP) or controllers in the 
loop (CIL), hardware in the loop (HIL), and finally power 
hardware in the loop (PHIL). These schemes are widely used 
for the representation and modeling of electrical systems and 
protection, control, and communications schemes with the 
aim of obtaining a preview of what the real system 
performance could be. 
 
2.4.1 Software in the Loop (SIL) or model in the Loop 
(MIL) 
In an SIL scheme, both the controller and plant may be 
simulated in real time (Fig. 2) [32]. This is very useful when 
it is difficult to access protection, control, and 
communications systems. However, all the devices must 
have the validated models to obtain accurate results [33]. 

 

 
Fig. 1. SIL scheme 
 
 
2.4.2 Rapid Control Prototyping (RCP) 
In an RCP scheme or CIL (controllers in the loop) scheme, 
the plant is real and the controller is simulated. The plant is 
connected through an input/output interface to the virtual 
controller. The control implemented through a real-time 
simulator has the advantages of being faster, more flexible, 
and easy to program [34]. Due to these characteristics, it is 
very useful in the optimization of algorithms for the control, 
validation, and detection of errors (Fig. 3). 
 
2.4.3 Hardware in the Loop (HIL) 
An HIL scheme involves the simulation of a virtual plant [35] 
in such a way that its implementation with the real 
controllers is possible through an input/output interface (Fig. 
4). Some implementations based on this concept can be 
reviewed in [36–47]. Other references related to this scheme 
can be found in Table I. 
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Fig. 2. RCP scheme 
 

 

 
Fig. 3 HIL scheme 
 
 
2.4.4 Power Hardware in the Loop (PHIL) 
A PHIL scheme comprises a complete integration of a power 
system with its voltage and current signals equal to those in 
a real system (Fig. 5). The PHIL concept is essentially an 
extension of the HIL functionality and is based on the 
interaction of components or elements that require high 
power flows, and with an electric circuit or grid running on a 
simulator [48, 49]. Figs. 5 and 6 illustrate the operation and 
functionality of a PHIL scheme, where the conditions and 
topology of the grid, as well as the occurrence of faults, 
contingencies, and abnormal operation, are simulated 
through real-time simulation. The interface with the 
protection, control, and communications equipment, such as 
relays, is made through power amplifiers whose function is 
to amplify the small signals delivered by the real-time 

simulator to an adequate magnitude so that the relays can 
operate (secondary injection) as shown in [17, 19, 47, 
49–53]. Schemes similar to PHIL can be reviewed in [17, 47, 
49–51, 54], where their implementation and performance 
evaluation are described in great detail. Other references 
related to this scheme can be found in Table I. 

 

 
Fig. 4. PHIL scheme 
 
 

In relation to hardware and real-time simulation 
computing power, companies like OPAL-RT Technologies, 
RTDS, DSpace, Speedgoat, and National Instruments have 
an important place on the market due to the interesting range 
of solutions they offer. However, just a few of them have 
dedicated lines and technologies focused on real-time 
simulations of power systems or, importantly, on the 
implementation of solutions that allow the testing of system 
and protection devices through HIL and PHIL integration 
schemes. 

 
Fig. 5 Real-time simulation integration with real protection equipment 
(PHIL) 
 

 
In this way, OPAL-RT Technologies and RTDS are 

companies that currently lead the market in real-time 
simulators, offering hardware and software solutions to carry 
out modeling, simulation, and visualization of real-time 
performance of an electrical grid, following any of the 
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previous real-time schemes mentioned. 
On the other hand, Mathwork´s flagship software, 

MATLAB, does not fall behind in the incorporation of 
toolboxes and software solutions for real-time simulation in 
what is named MATLAB Real-Time Workshop. 
Experiences of using OPAL-RT Technologies can be 
reviewed in considerable detail in [41–47, 55, 56] while 
RTDS can be reviewed in [19, 53, 57–66] and MATLAB 
Real-Time Workshop can be reviewed in [37, 40, 59, 67, 68]. 
Other references related to this scheme can be found in 
Table I. 

Advances in ICT are playing a key role in the 
development of real-time simulation technologies. With the 
incorporation of standards and protocols of communication, 
data management, and control, such as IEC 61850 [17, 19, 
36, 49, 51, 69, 70], IEC 61970 [69, 71], and DNP3 [17, 38, 
47, 49, 60, 72, 73], applications that previously needed 
equipment and devices to be close to each other due to 
connectivity and data acquisition requirements are no longer 
subject to this limitation. Using Ethernet and WLAN 
networks through the protocols as mentioned, it is possible 
to integrate, simulate, and monitor in real time the 
performance and behavior of protection, control, and 
communications equipment and devices that comprise the 
real electrical grid. In this way, it is possible to obtain a 
precise reproduction of the system and to test it over 
different operating conditions established by engineers and 
all from centralized or unified workstations, called 
“WAMPAC” [36, 37, 40, 41, 49, 69] or “CPCS” [70, 
74–76]. 

The development of measurement and monitoring 
devices such as Phasor Measurement Units (PMUs) and 
intelligent electronic devices (IEDs) for control and 
management, which essentially allow the monitoring, 
control, and management of electrical grids, provides a step 
toward the goal of achieving real electrical systems behavior. 
Significant work is being conducted in regard to the 
functionality of these devices when integrated with real-time 
simulation with the aim of sampling and reproducing the 
performance of an electrical grid. Reports on development 
projects using these kinds of devices are available in [17, 43, 
47, 60, 77] and [19, 28, 36, 49, 69, 70, 72] in relation to 
PMUs and IEDs, respectively. 

Table I presents references related to real-time simulation 
implementation stages for protection, control, and 
communications testing. Additional references to journals 
and papers where the reader can find detailed information 
about the mentioned technologies are also cited in this table 
[55]. 

 
 

3 Real-time Simulation Challenges and New Trends for 
Protection, Control, And Communications Testing 
 
Computing technologies have improved dramatically in 
recent years in terms of execution and cost and time savings. 
Usually, offline simulations are insufficient to reproduce the 
behavior of closed-loop systems with the integrated control 
software and real hardware to reach the required precision, 
thus, there is a need for real-time simulation. 

Real-time simulation is the key to managing the 
complexity of modern electrical systems, as it allows to 
compensate the limitations of offline testing, while 
reproducing the complexity of protection, control, and 
communications schemes. This solution allows advantages 
such as flexibility, fast commissioning, easy data depuration, 

and wide range of tests. 
In relation to the electrical grid´s communications 

systems, there is substation automation based on the 
IEC61850 standard, which is in the process of being 
accepted around the world for the implementation of 
intelligent grids in energy transmission and distribution 
systems. The optimal design for the integration of primary 
and secondary systems undoubtedly improves the control 
performance of substations and reduces wiring and 
maintenance. 

Real-time simulation is used for closed loop testing of 
protection, control, and communications solutions. When 
conducting closed-loop testing, the simulator acts as the 
power system and interfaces to the test objects. For 
closed-loop operation protective relay testing, the simulator 
must provide real time data to the relay and sense trip and 
reclose status from the relay. Because the power system is 
being simulated, various faults can easily be applied under 
different network conditions to evaluate the performance of 
the protection, control, and communications. If the 
protection detects a fault, the trip signal will be sensed and 
the breaker in the simulation opened. On the other hand, 
with the real time simulation it is possible to try the 
interoperability between many different IEDs. 

In the fields of processing and computing, numeric 
instability is one of the challenges when simulations involve 
the modeling of elements that requires a high degree of 
synchronism, using discrete time steps, especially in 
interconnected multi-machine systems. The development 
and implementation methods and techniques to solve 
systems are of essential interest for the simultaneous 
progress of software and hardware for multi-core and 
parallel processing. 

Future trends include the development of interface 
models to deal with data loss and delay issues. The delay 
among simulators can be reduced through the 
implementation of a communications fitting model. 
Algorithms could also be developed for the optimization of 
computation times. Future works include the improvement 
of synchronization among workstations and the solution of 
issues related to an effective communication interface 
among simulators. In that way, the use of HIL and PHIL 
integration schemes is currently an option with high 
potential to carry out the necessary integration for protection 
and execution of control testing. 

On the other hand, the structuring of co-simulation 
schemes, where electrical and communications schemes are 
simulated simultaneously in real time, is another challenge 
in the field of simulation. This will provide the capability to 
preview the behavior of the system against not only 
electrical contingencies but also informatics such as 
cyber-attacks, saturation, and communications collapse. 
Approaches to the overall performance of electrical and 
communications systems are currently under development. 
Much study remains to be done to validate this kind of 
simulation and its field application.  

Challenges to overcome involve the modeling and 
implementation of unconventional equipment and 
instruments for measurement, protection, and control as well 
the search for the necessary means for their effective 
integration in real-time simulations. Fig 7 shows the stages 
of a project where the mistakes must be detected and 
corrected, being so important the design stage. Fig 8 shows 
that the less work leads to an increase of the cost, because 
correcting the mistakes at later stages could double the initial 
budget. 
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Fig. 7 Stages of the project and mistakes in percent [1]. 

 

 
Fig. 8 Stages of the project and costs in percent [1]. 

 
Table 1. Classification of Technologies Sorted by Implementation Stages of Real-Time Simulation for Protection, control, 
and communications Applications and Testing. 
Real-time simulation implementation stages for protection, control, and communications testing References 

Stage 1 Stage 2 Stage 3 
OPAL-RT technologies based on 
FPGA along with Matlab Simulink 
Toolboxes 

  [36], [38], [39], [42]–[47], [49]–[52], [56], 
[69], [70], [72], [77]–[84] 

QNX RT operating systems   [45], [50]–[52], [54], [77], [79], [83] 
GNU/Linux and open-source-based 
real-time simulation environments 
and software 

  [37], [44], [52]–[54], [67], [77], [85]–[89]  

State Space Nodal (SSN) solver     [18], [36], [38], [46], [49], [59], [60], [73], 
[90] 

 

Use of parallel and multi-core 
computing for high simulation 
performance and precision 
through OPAL-RT Technologies 
and others. 

 [38], [40], [44], [45], [49], [50], [52], [59], 
[60], [73], [74], [77], [87], [90]–[96] 

 
Data exchange through 
high-speed I/O modules and 
cards. 

 [41], [45], [46], [61]–[64], [67], [73], [75], 
[79], [85], [89], [97] 

 
Use of high-performance and 
speed network Internet2 for data 
transfer among simulators. 

 [66] 

 

Real-time communications 
through Giga Transceiver 
Network Communication Card 
(GTNET) 

 [19],[40],[52],[54],[88],[57], [58], [65], 
[66], [98] 

 

Interconnection of simulators 
using the Ethernet TCP/IP 
characteristic and inter-rack 
communications (IRC) 

 [3], [40],[52],[60], [57], [65], [66]  

  

Hardware in the loop 
(HIL) scheme using 
OPAL-RT technologies, 
RTDS, and others.  

[36]–[39], [43]–[46], [51]–[53], [56], [62], 
[63], [66], [69], [70], [72], [73], [78], 

[83]–[85], [87]–[89], [99], [100]–[116] 

  Use of power hardware in 
the loop (PHIL) scheme 

[17],[49],[36],[81],[52],[67],[91],[112], 
[114],[117]–[120]  

  

Use of Intelligent 
Electronic Devices 
(IEDs) for measurement, 
monitoring, and control. 

[19],[28],[49],[42],[43],[84],[54],[88],[61], 
[75], [97],[98],[101],[71], [121]–[123] 

  Use of power amplifiers 
to simulate power signals 

[17],[19],[49],[36],[81],[52],[89],[60],[75],
[97],[65],[57],[100],[117],[124]  

  
Time-synchronized 
injection tests using IEEE 
1588 precision protocols 

[17],[61],[112],[125] 

Real-time distributed and 
non-distributed simulation using 
RTDS technology 

 

 [19],[40], 
[41],[52],[54],[88],[85],[60],[90],[93],[75],
[97],[62]–[64], [65],[57], [58], [66],[98], 

[100], [101],[111],[112],[121], [126]–[135] 
Wide Area Monitoring, Protection, 
and Control systems   [36], [37], [40], [41], [49], [69],[115],[71], 

[122],[124],[136],[137] 
HVDC protection, control, and 
communications  systems through   [93] 
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Real-time simulation implementation stages for protection, control, and communications testing References 
Stage 1 Stage 2 Stage 3 

SYMADYN and NewLinkC 
platforms. 

  
Implementation of 
adaptive protection 
schemes. 

[49],[41],[43],[82],[101],[124],[138] 

  

Use of National 
Instruments technologies, 
modules, and accessories 
for signal acquisition and 
processing. 

[45],[79],[87],[90],[109],[113] 

Central Protection, control, and 
communications Systems (CPCS)   [54],[75],[97],[76] 

 
Real-time co-simulations to 
simulate the interaction between 
ICT and power systems 

 [49],[58],[71],[122] 

 
Communications under protocol 
IEC 61850 GOOSE and sample 
values 

 [17],[19],[49],[36],[42],[43],[52],[54],[88], 
[75],[97],[65],[57],[98],[71],[121],[123]  

 Interface unit (IU) for 
measurement and control   [75],[97] 

DSpace technologies   [79],[52],[54],[67],[53],[110],[113] 

 
IEC 61970 standard application 
for specification of automated 
testing. 

 [42],[71] 

 

Standards related to modeling, 
connectivity, control, automation, 
measurement, and management 
of interconnected power sources. 

 [139]–[150] 

  PMU and Synchrophasor 
Vector Processors (SVPs) 

[17], [36],[40],[61],[69], [71], [72], [115], 
[136],[137] 

  SIL [38] 
  CIL-CHIL [42],[81],[41]  

Power systems and ICT simulation 
environment (EPOCHS)   [49],[71]  

Real-Time Hybrid simulator   [124],[128],[151] 

Matlab Real-Time Workshop   [44],[45],[59],[90],[68] 

Real-Time extension of the Virtual 
Test Bed (VTB-RT)   [52],[67],[113],[114],[105] 

Speedgoat technology    [151] 

  
Network monitoring and 
control based on real-time 
wavelet transform. 

[47]  

 
Time division multi-access 
(TDMA) for precision in 
simulation of power converters. 

 [38] 

 

Communications using high-level 
data connection (HDLC) 
Gigabyte Ethernet and Aurora 
protocol. 

 [46],[38],[78] 

 Use of distributed network 
protocol 3 (DNP3)  [17],[49],[36],[40],[50],[84], 

[91],[61],[66], [58],[122] 
 
 

7. Conclusion 
 
This paper has conducted a review and analysis of the 
state-of-the-art and future trends of electrical grid protection, 
control, and communications testing using real-time 
simulation. The progress of technology in this matter and 
future implementations in the field of protection were 
presented to provide a better method to validate FAT–SAT 
commissioning for the protection, control, and 
communications of electrical substations. 

A consolidation of different technologies and concepts 
related to the implementation stages of real-time protection, 

control, and communications testing is presented, with 
contributions from different authors that will allow future 
implementations and developments in this proposed matter. 

This work presents a consolidated database with different 
solutions that allow the electrical grid protection, control, 
and communications testing to be optimized with the aim of 
reducing maintenance costs, unforeseen failures, inadequate 
coordination, incorrect designs, and demanding delivery 
times.  

These are reduced using real-time simulation because it is 
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a tool that makes it possible to test IEDs, control equipment, 
and pilot plants with the modeled system, offering a high 
guarantee in its subsequent field execution without 
inconvenience. 

Because unconventional renewable energy sources are 
increasingly being inserted in electrical power systems, 
protection coordination and system control are becoming 
more complex. Hence, it is necessary to use real-time 
simulation tools to analyze the performance of system 
components prior to their implementation in electrical grids. 
Therefore, this review work suggests that in modern 
electrical systems, real-time validation should always be 
done before field implementation with the aim of avoiding 
high costs due to inadequate planning. 

Simulation and validation tests in real-time simulation 
laboratories are recommended, as these allow to implement 
models, systems and technological solutions for protection, 
control, and communications. These procedures are 
implemented to have reliable, safe, and accurate results, 

adding value to the traditional procedures required for taking 
early decisions and improving the operation of the power 
system. Besides, real-time simulation is recommended for 
designing, planning, testing, and validation of new 
protection, control, and communications strategies that are 
difficult to perform in the field. 
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