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Abstract 
 

The spectral resolution of images improves with the continuous development of imaging technology in remote sensing. 
Traditional image fusion technologies result in problems in hyperspectral image fusion, such as spectral distortion and 
unclear physical meaning. A fast model based on improved non-negative matrix factorization (INMF) for hyperspectral 
and panchromatic image fusion was proposed to optimize the results of image fusion. First, the hyperspectral image was 
decomposed into endmember and abundance matrices using the INMF algorithm. The panchromatic image was then used 
to sharpen the abundance matrix. The spectral and sparse constraints were imposed on the objective function of the model. 
Finally, the resultant fused image was obtained by reconstructing the resolved endmember and abundance matrices. 
Results show that the proposed method is superior to other methods in terms of subjective assessment and objective 
analysis. As far as the indices of information entropy, correlation coefficient, Q-average, and spectral divergence are 
concerned, the proposed method surpasses those of second-best methods (Ehler, classical NMF, Ehler and Ehler) by 
2.06%, 0.36%, 0.91%, and 56.31%, respectively, in the synthetic data experiment, and exceeds those of the second-best 
methods (Ehler, high-pass filtering, high-pass filtering and Ehler) by 0.13%, 10.05%, 3.89%, and 7.26%, respectively, in 
the real data experiment. Moreover, runtime is proportional to data size, and the proposed method takes the least time 
when image size is between 1 MB and 480 MB. This study provides theoretical reference for fast hyperspectral and 
panchromatic image fusion. 
 
Keywords: Hyperspectral image fusion, Spectral unmixing, Non-negative matrix factorization, Linear spectral mixture model 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Image fusion integrates high spectral resolution images 
(HSRI) with low geometric resolution and high geometric 
resolution images (HGRI) with low spectral resolution [1]. 
Given the physical limitations of the spectrometer, the 
spatial resolution of HSRI cannot satisfy the requirements 
for practical applications. However, HSRI and HGRI can be 
merged in the same scene into high spectral and geometric 
resolution images (HSGRI). 

Given the diversity of the earth’s surface, some pixels in 
HSRI contain a variety of materials, which are called mixed 
pixels. From the point of spectral preservation, the integrated 
HSGRI should have the same endmembers as the original 
HSRI. However, a number of methods in image analysis for 
remote sensing have failed to prove that mixture theory is 
reasonable. Many scholars observed that spectral unmixing 
is a good tool for solving this problem [2][3][4]. Hence, 
extracting endmember and abundance coefficients from 
hyperspectral image of remote sensing with widely mixed 
pixels and producing effectively fused image are important 
content of the quantitative analysis of image of remote sensing. 

Extensive studies were conducted in the field of image 
preprocessing, model building, and algorithm optimization 

of hyperspectral image fusion [5][6][7][8]. However, this 
fusion model, which has clear physical meaning and time-
efficient, cannot be easily optimized to enhance the spectral 
and spatial resolutions of the fused image. Therefore, the 
fusion method, algorithm optimization, and quantitative 
control of the spectral and spatial resolutions are crucial in 
the design of fusion model. 

The present study establishes a fusion model for 
hyperspectral image with spectral and sparse constraints by 
employing a fast approach based on spectral unmixing. The 
results of spectral unmixing, resolution enhancement, 
spectral preservation, and convergence of the objective 
function are analyzed and compared to prove its effectivity 
and practicability. 
 
 
2. State of the art 
 
A series of investigations were conducted on image fusion of 
remote sensing. Fusion methods with simple arithmetic 
structure obtain HSGRI by replacing a certain component of 
HSRI with the sharpened HGRI. However, given that HGRI 
and HSRI bands are quite different in spectral signature, 
these methods often lead to color distortion [9][10][11][12]. 
Other fusion methods transform the fusion process into the 
optimization of a specific function under a certain statistical 
model [13][14][15][16]. These methods are theoretically 
clear, but their framework is complex for estimation and the 
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occurrence of incomplete deconvolution may result in an 
inefficient model. Multiscale and multiresolution methods 
extract high-frequency parts from HGRI and inject them into 
HSRI by decomposing the source image in a specific domain 
[17][18][19][20][21]. However, this type of method is highly 
dependent on the spectral properties of sampling methods 
and fails to intensify the spatial resolution of all bands. 

Fusion algorithms based on the spectral unmixing model 
were also widely used. Halimi et al. proposed a bilinear 
model that introduced an additive interaction term. Given 
that certain specific a priori relative to the endmember is 
required in advance, the bilinear model hinders the 
application in dealing with multi-material mixed data [22]. 
Xu et al. investigated the orthogonal principal component 
analysis (PCA) method based on second-order decorrelation, 
singular value decomposition (SVD) method based on 
projection pursuit, and independent component analysis 
(ICA) approach, which relies on the statistical feature of 
high-order signal. Their findings show that methods based 
on PCA, SVD, or ICA share the same problem, wherein the 
extracted endmembers cannot be guaranteed to be non-
negative and the physical meaning of the estimated 
abundance is weakly correlated with the original data [23]. 
Kubokawa et al. considered each vertex of a simplex as an 
endmember under the theory of convex geometry. However, 
the recognition of convex hull under this method is 
computationally time-consuming and requires pure pixel 
assumption [24]. Hoyer presented a sparsely constrained 
non-negative matrix factorization (NMF) method, which 
quantitatively achieved any desired degree of sparseness by 
applying 1L - and 2L -norms; however, this method failed to 
explain how to set parameters adaptively [25]. Jia et al. 
introduced piecewise smooth and sparse constraints into 
NMF, which makes NMF robust to negative factors; 
however, the optional degree of sparseness may cause 
uncertainty in unmixing [26]. Yokoya et al. [27] defined a 
method based on coupled non-negative matrix factorization 
(CNMF), which is characterized as a dual-loop structure that 
comprises updating and unmixing operation to generate cost 
functions with respect to spectral and spatial degradation 
convergence. Nevertheless, the practical application of 
CNMF should be proven because of the difficulty of involving 
and implementing numerous influencing factors [28]. 

These problems mainly lie in color distortion, non-
negative result, assumption of pure pixels, and insufficient 
convergence. This study proposes an improved non-negative 
matrix factorization (INMF) algorithm, which has sparse and 
spectral constraints and is applicable to hyperspectral and 
panchromatic image fusion. The fusion model for 
hyperspectral and panchromatic images is established 
through the proposed algorithm. The cost function of the 
traditional NMF method is optimized and runtime is reduced 
on the basis of the analysis of the characteristics of the linear 
spectral mixture model (LSMM). The sparse constraint 
forced on the abundance matrix is discussed, as well as the 
term of the spectral angle that functions as a measure for 
estimating the spectral consistency of HSGRI and HSRI. 
Furthermore, the effect of the proposed model on spectral 
preservation and spatial enhancement is verified to provide 
helpful reference for the establishment of the hyperspectral 
fusion model. 

The remainder of this study is organized as follows. 
Section 3 introduces the LSMM, illustrates the workflow of 
the INMF algorithm, and describes the implementation of 
the proposed model. Section 4 visually and objectively 
compares the proposed method with typical methods and 

reports the computational efficiency of the proposed 
algorithm. Section 5 summarizes the conclusions. 
 
 
3. Methodology 

 
3.1 Linear spectral mixture model 
Linear spectral mixing is the most commonly used data 
model in image analysis for hyperspectral remote sensing. In 
this model, the observed value of any pixel is supposed to be 
the linear combination of the spectral signature and the 
abundance fraction of the relevant endmember. Given its 
rational physical significance, the LSMM is extensively used 
in hyperspectral image processing, which is formulated as 
follows: 
 
R MS E= + ,                                            (1) 
 
where R∈ is the image cube and L and N denote for the 
number of spectral bands and the number of pixels of the 
image, respectively. M ∈ is the matrix of the spectral 
signature, with each column vector 1{ }Pj jM = ∈  representing 
an endmember spectrum, and P is the number of 
endmembers in the image. S∈ is the abundance matrix. 
Each column vector 1{ }Nk kS = ∈  denotes the abundance 
fraction of endmembers for the kth pixel, and E∈  can 
be interpreted as noise. According to the physical 
significance of the LSMM, the spectral signatures and 
abundance fractions must be non-negative, the abundance of 
any endmember at any pixel must be constrained from 0 to 1, 
and all of the fractions for each pixel should sum to unity. 
These conditions can be formalized as follows: 
 

1
0,  1  and [0,1],  1,  1

P

lp np np
p

M l L S S n N
=

≥ ≤ ≤ ∈ = ≤ ≤∑ .       (2) 
 
3.2 Fast INMF algorithm 
NMF was first proposed by Paatero and Tapper [29]. NMF 
has drawn considerable attention and has been employed in 
widespread applications because of its simplicity and 
flexible interpretation. For a classical NMF problem, NMF 
searches two non-negative factors W ∈  and H ∈  
that provide a lower rank approximation of V given a non-
negative matrix V ∈  and an appropriate rank min( , )k m n<< , 
which satisfies the following condition: 
 

  s.t.  , 0V WH W H≈ ≥ .                        (3) 
 

Given that Formulas (3) and (1) have a similar 
mathematical form and are constrained by the same terms by 
applying the NMF solution to the issue of spectral unmixing 
is natural. In finding the desired factors W and H, the 
traditional NMF tries to transform Equation (3) into a 
reformulated form, as shown in Equation (4), which is called 
the Euclid distance function; ||�|| represents the Frobenius 
norm:  

2 2

2, 1

1 1min ( , ) , . . , 0
2 2

k

j j FW H j
f W H V WH V WH s t W H

=

= − = − ≥∑ .
  (4) 

 
Chen [30] proposed a NMF-based algorithm. Each 

entry of W and H is constrained to be no less than a 
minimum value of positive ε rather than 0 to make the 
quadratic coefficients of the objective function greater than 
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0 by fixing factors H and 1 2{ , , , } /r iW W W WL . In contrast to 
other methods, this kind of NMF has a faster convergence 
rate. However, the changes caused by ε affect the attributes 
of the results of decomposition. As a negative result, 
sparsity cannot be achieved, which impedes the application 
of the NMF algorithm in the analysis of hyperspectral 
remote sensing. Given the fact that only several kinds of 
endmembers often appear in the pixels of a specific 
hyperspectral image, the previously mentioned NMF 
algorithm, which remains non-negative with certain 
constraints, could be modified to achieve an INMF 
algorithm. 

In the non-negative model, Formula (4) can be cast into 
Formulas (5) and (6) by fixing (H, 1 2{ , , , } /r iW W W WL  ) and 
(W, 1 2{ , , , } /r jH H H HL ), respectively. Formulas (5) and (6) 
are expressed as follows: 
 

2

0 1,
min ( )
i

r

i k k i iW k k i F

f W V W H WH
≥

= ≠

= − −∑ ,                (5) 

 
2

0 1,
min ( )
j

r

j k k j jH k k j F

f H V W H W H
≥

= ≠

= − −∑ .
              (6) 

 
The terms that contain only ciW , which is expanded from 

Formula (5), are independent of variables as 
1 2{ , , , }/i i mi ciW W W WL  Thus, the objective function that 

consists of only ciW  could be simplified as follows: 
 

2

1, 2

2

1 1,

2

( )

          ( )

          ( ) 2

r

ci c ck k ci i
k k i

n r

cj ck kj ci ij
j k k i

T
ii ci ci ci

f W V W H W H

V W H W H

HH W W

= ≠

= = ≠

= − −

= − −

= − +

∑

∑ ∑

η γ ,

               (7) 

 

where 
1,

( ) ( )
r

T T
ci ci ck ki

k k i
VH W HH

= ≠

= − ∑η  and 
1
(

n

cj
j
V

=

= −∑γ  

2

1,
)

r

ck kj
k k i

W H
= ≠
∑  are constants that are entirely unrelated to 

ciW . Formula (7) shows that, for ( ) 0T
iiHH ≠ , if 0ciW ≥ , 

then max{ / ( ) ,0}T
ci ci iiW HH= η . For ( ) 0T

iiHH = , if 

0iH > , then ciW max{ / ( ) ,0}T
ci iiHH= η  ; else, if 0iH = , 

then ciW  could be valued as a random number from 0 to 1. 
Thus, functions from 1( )cf W  to ( )crf W  are uncorrelated. 
Thus, we derive the following expression when the 
minimum of ( )if W  is reached: 
 

max{ / ( ) ,0};  0

( ,1);  0

T
i ii i

i
i

HH H
W

rand m H

⎧ >⎪
= ⎨

=⎪⎩

η

,
              (8) 

 
where ( ,1)rand m  denotes a m-dimensional random column 
vector that takes a value between 0 and 1, and 

 

1 2
1,

( , , , ) ( ) ( )
r

T T T
i i i mi i k ki

k k i
VH W HH

= ≠

= = − ∑Lη η η η
.  

  (9) 

 
The following conclusions can be drawn based on the 

previously presented analysis. 
Formula (8) holds for any given {1,2, , }i r∈ L  by fixing 

H and 1 2{ , , , } /r iW W W WL  when ( )if W  is minimized to the 
limit value. Similarly, we derive the following expression 
fixing W and 1 2{ , , , } /r jH H H HL  when the minimum of 

( )jf H  is reached for any {1,2, , }j r∈ L : 
 

1

max{ / ( ) ,0};  0

0 ; 0

T
j jj j

j

n j

W W W
H

W×

⎧ >⎪
= ⎨

=⎪⎩

ξ

,
        (10) 

 

where 
1,

( ) ( )
r

T T
j j jk k

k k j
W V W W H

= ≠

= − ∑ξ . 

The procedure of the proposed INMF algorithm is 
summarized in Table 1. 

 
Table. 1. Procedure of the INMF algorithm. 
Step 1) Given V and r, initialize W(0) ≥ 0, H(0) ≥ 0 randomly, let k = 0. 
Step 2) Set D(k) = H(k) TH (k), Q(k) = V TH (k), E(k) = D(k). For i = 1, 
2, …, r, iiE (k) = 0, if iiD (k) > 0, then Ŵ = (  (k + 1) …  (k + 

1) …  (k) …  (k)),  (k + 1) = max{(  (k) − Ŵ )/ iiD  (k), 0}, 
else  (k + 1) = rand(m, 1). 
Step 3) Set C(k) = TW  (k + 1)W(k + 1), R(k) = TW (k + 1)V, F(k) = 
C(k). For j = 1, 2, …, r, jjF (k) = 0, if jjC (k) > 0, then Ĥ = (  (k + 

1) …  (k + 1) …  (k) …  (k)),  (k + 1) = max{(  (k) −  

(k))Ĥ/ jjC (k), 0}, else  (k + 1) = 10 n× . 

Step 4) k = k + 1, repeat steps 2 and 3 while k is less than the stopping 
condition. 

 
As discussed in this section, the optimization of the 

NMF can be transformed into a series of independent 
subproblems in vectorized form to obtain the minimum of 
the objective function. Furthermore, the function scale 
reduces rapidly because of the fact that the subproblems are 
independent and the terms that are unrelated with these 
subproblems are fixed. Thus, the proposed INMF algorithm 
achieves fast convergence under non-negative constraint. 
 
3.3 Fusion model based on INMF 
The original NMF problem of Equation (4) may suffer from 
the impossibility of acquiring the global optimal solution 
because of the nonconvexity of the cost function with 
respect to W and H. Some a priori should be imposed on the 
cost function according to the actual condition to make the 
solution more reasonable. Hence, sparseness is the first 
constraint that should be added in the case of HSRI 
unmixing. 

When the cost function (Equation (4)) is utilized to deal 
with hyperspectral image fusion, the mathematical notations 
can be defined as follows. V is the source HSRI with L 
bands and N pixels and column vector 1{ }Nj jV = ∈ denotes 
any given pixel with L color channels. Endmember matrix W 
is composed of a certain pure material spectrum, such as 
forest, soil, and water with each column standing for a 
specific spectrum. H is the abundance matrix written as 

1{ }Nj jH = ∈ , wherein each column denotes the fractional 
abundance corresponding to the specific endmember. P 
represents the number of endmembers. The abundance of 
any endmember is not always equally distributed. Thus, only 
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a small part of endmembers is necessary when 
reconstructing one pixel of V. Consequently, the L1-norm-
based constraint should be imposed on factor H to make it 
sparse, as shown in Formula (11): 

 
22

1, 1

1min ( , ) ,   s.t. , 0 
2

N

jFW H j
f W H V WH H W H

=

⎧ ⎫⎪ ⎪
= − + ≥⎨ ⎬

⎪ ⎪⎩ ⎭
∑β ,   (11) 

 

where 
2 2

1
1

P

j ij
i

H H
=

=∑  is the 1L -norm vector and β is a user-

defined parameter that balances the trade-off between the 
accuracy of the reconstruction and the sparseness. 
 

3.4 Fusion method 
According to descriptions of hyperspectral image fusion 
presented in Sections 3.1 and 3.2, the fusion method should 
meet at least two requirements to obtain an integrated 
HSGRI with little spectral distortion. Aside from the 
sharpening information, HGRI or high-frequency data must 
be injected into the low spatial resolution HSRI to ensure 
that HSGRI has more geometric information. Explicit 
measures must be implemented to ensure that any single 
pixel of HSGRI approximates that of HGRI as close as 
possible in the spectrum aspect. 
 

The Low Geometric 
Resolution HSRI

The Low Spectral 
Resolution HGRI

Sharpening

Unmixing

The Abundance 
Matrix

The Endmembers 
Matrix

The Sharpened 
Abundance Matrix

The Resultant HSGRI

 

……… Fusing

 
Fig. 1. Hyperspectral image fusion process. 
 
 

The original low geometric resolution HSRI can be 
decomposed into the endmember matrix W and the 
corresponding fractional abundance matrix H. H clearly 
contains the low geometric resolution information from V. 
Therefore, high geometric resolution HSRI can be 
reasonably generated by means of sharpening H with the 
high geometric resolution information from HGRI. Fig. 1 
illustrates the process of hyperspectral image fusion, which 
can be regarded as the optimization of Formula (11). Finally, 
the ultimate fused HSGRI is produced, denoted as fV  and 
expressed as follows: 
 

( (1 )HGSIs)fV W H= + −α α ,             (12) 
 
where HGRIs∈ , and the notation can be reformulated 
row by row as 1{HSRIs }Pj j= ∈ , which denotes the 
duplication of the HGRI. Parameter α is used to control the 
degree to which the abundance is preserved and the HSRI is 
sharpened. 

The spectral preservation of the original hyperspectral 
image should also be considered. Although the spatial 
information from the HGRI is injected into the HSGRI in 
this model, it does not mean that the spectral quality of the 
HSGRI is totally identical to that of the HSRI. Generally, the 
spectral information of the HSGRI differs from that of the 
HSRI in many cases. Thus, spectral distortion occurs. 
Consequently, we need to use spectral preservation terms to 
constrain the discrepancy between the spectra of HSRI and 
HSGRI to reduce the degree of distortion. 

As one of the measuring terms in remote sensing, 
spectral angle (SA) is widely used to assess the spectral 

similarity between HSRI and HSGRI, which is defined as 
follows: 
 

2 2arccos /
k k k

UV i i i i
i i i

SA u v u v
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ,        (13) 

 
where k denotes the number of pixels and iU  and iV  
represent the spectral vectors of image U and V at pixel k, 
respectively. The greater the value of UVSA , the smaller the 
similarity between U and V will be. However, SA is not 
always sensitive in discriminating image differences, 
particularly when these images are highly similar. SA is 
optimized to improve its sensitivity. This term is called 
enhanced SA (ESA) in this context, which is defined as 
follows: 
 

2 2arccos 2 /
k k k

UV i i i i
i i i

ESA u v u v⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ .

       (14) 

 
As shown in Formulas (13) and (14), aside from the 

different values of denominators and numerators, ESA is 
similar to SA in mathematical form. Index ESA, which deals 
with isolated pixels only and does not consider the 
relationship between neighboring pixels, is important for 
finding differences in structures and textures. Compared 
with SA, ESA is more sensitive to the differences between 
two images as the ESA equals 0 only when two images are 
identical, whereas the SA can be 0 when two images are 
similar. For example, when { }1 2, , , iU u u u= L , V =  
{ }1 2, , , iv v vL , and i iu v≠ , the value of SA is 1, but the value 
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of ESA is less than 1. Therefore, the ESA is more 
informative than the SA in measuring the degree of similarity 
quantitatively. 

For Formula (14), iu  can be replaced by ivf . We then 
derive Formula (15), where ivf  and iv  refer to the images 
after and before fusion, respectively. In this study, they 
denote the HSGRI and HSRI, respectively. 
 

2 2arccos 2 /
k k k

i i i i
i i i

ESA vf v vf v⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ .      (15) 

 
Given that Formula (15) is complex and difficult to 

implement, the anti-trigonometric function is removed. For 
simplicity, Formula (15) is transformed into the form of a 
function, as expressed in Formula (16): 
 

2 2( , ) (2 , / )
k

f i i i i
i

ESA V V vf v vf v= < > +∑ .     (16) 

 
Better spectral preservation results in smaller ESA. If fV  

and V  are absolutely the same, then spectral distortion will 
not occur. 

The function for spectral preservation, expressed in 
Formula (16), is added to the L1-norm-enforced Formula 
(11). Thus, the objective function is imposed by the sparse 
and spectral constraints, as shown in Formula (17): 
 

22

1, 1

1min ( , ) ( , ) ,
2

                         s.t. , 0

N

j fFW H j
C W H V WH H ESA V V

W H
=

⎧ ⎫⎪ ⎪
= − + +⎨ ⎬

⎪ ⎪⎩ ⎭
≥

∑β λ

,
   (17) 

 
where γ is a constant  used to balance the spectral and spatial 
qualities of the fused HSGRI. Thus, the proposed method 
not only improves the spatial resolution of HSGRI by 
extracting spatial information from HGRI, but also preserves 
the spectral features of the HSRI relying on the spectral 
constraint function ( , )fESA V V . 
 
3.5 Fusion implementation 
The objective function [Equation (17)] has three addends, 
with the latter two constrained. In fact, several existing 
studies add “penalty terms” to the NMF objective function to 
improve performance and derive the following normal form: 
 

22 2

1, 1
min ,   s.t. , 0jF FW H j

V WH W H W H
=

⎧ ⎫⎪ ⎪
= − + + ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑λ β . (18) 

 
Concretely speaking, an alternative algorithm is 

considered a general method to solve Formula (18). 
However, the matrix size of the original problem is 
amplified, which overburdens calculation. In the proposed 
INMF method, the objective function for ciW  is 

2
1( ) [( ) ]T

ci ii cif W HH W= +λ , where ci =η ( )T ciVH −
1,

r

k k i= ≠
∑  

( )Tck kiW HH , 1γ is a constant with respect to ciW , and ciW can 
be calculated as max{ / [( ) ]T

ci ci iiW HH= +η λ ,0} . For the 
objective function of jfH , 2

1( ) [( ) ]T
jf jj jff H W W H= + β  

22 jf jfH− +ξ γ , where 
1,

( ) [( ) ]
r

T T
jf jf jk kf

k k j
W V W W H

= ≠

= − +∑ξ β , 

2γ is a constant with respect to jfH , and jfH  can be 

calculated as max{ / [( ) ],0}T
jf jf jjH W W= +ξ β . Accordingly, 

the updating rules for the model are defined as follows: 
 
 max{ / [( ) ],0}

max{ / [( ) ],0}

T
i i ii

T
j j jj

W HH
H W W

= +

= +

η λ

ξ β .
                  (19) 

 
Formulas (17) and (18) have a similar mathematical 

form. Therefore, the ultimate fusion model can be achieved 
by replacing the variables in Formula (18) and updating 
rules in Formula (19) with the corresponding counterparts in 
Formula (17). 

 
 

4 Result analysis and discussion 
 

Two groups of hyperspectral images, i.e., synthetic and real 
data, are selected to conduct the experiments under the 
platform of MATLAB to verify the effect of the proposed 
algorithm. In this experiment, the performance of the 
proposed INMF algorithm is compared with that of high-
pass filtering (HPF), discrete wavelet transform (DWT), 
intensity hue saturation (IHS), Ehler, and classical NMF. 

The quality of the fusion image can be evaluated visually. 
However, the result of this method may differ because 
subjective evaluation depends on the physical condition, 
psychological status, and even mental states of the observers. 
Therefore, the objective criteria for HSGRI, original HSRI, 
and reference HSGRI should be considered in quantitative 
evaluation. The following criteria are used in this study: 
such as information entropy (IE), root mean square error 
(RMSE), expanded spectral angle mapper, correlation 
coefficient (CC), average gradient (AG), universal image 
quality index (UIQI or Q-average), spectral information 
divergence (SID), and relative dimensionless global error in 
synthesis (ERGAS). 

 
4.1 Evaluation criteria 
Information Entropy (IE) 
 The entropy of an image is defined as follows: 
 

1
log

N

i i
i

E P P
=

= −∑ ,                                (20) 

 
where i is the gray value of an image from 1 to N and iP  
denotes the probability of a specific i. IE is one of the most 
important indices for evaluation, whose value directly 
reflects the amount of information in the image. The higher 
the value of IE is, the higher the spatial resolution in a fused 
HSGRI. 
 

Average Gradient (AG) 
AG reflects the contrast and intelligibility of an image 

and is defined as follows: 
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− − ∑∑ ,
     (21) 

 
where M and N represent the rows and columns of the image, 
respectively, and x∇  and y∇  are the gradients along the x- 
and y-directions, respectively. Generally, the larger the value 
of AG is, the higher the definition of the image. 
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Correlation Coefficient (CC) 
The CC between HSGRI and original HSRI measures 

the similarity of the spectra and is defined as follows: 
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    (22) 

 
where ( , )H i j  and ( , )fH i j  represent the gray value of a 
pixel at ( , )i j  in the HSRI and HSGRI with the size of M × N, 
respectively, and H  and fH  denote the mean gray value of 
all pixels with respect to HSRI and HSGRI, respectively. 
The higher the value of CC is, the better the spectral quality 
of the fused HSGRI. CC close to 1 indicates that the two 
images are highly correlated. 
 

Universal Image Quality Index (Q-average) 
The metric Q-average (abbreviated as Q) is used to assess 

the quality of image sharpening and is defined as follows: 
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               (23) 

 
where x  , y  and xσ  , yσ  are the mean values and standard 
deviations of the images x and y, respectively. The index of 
Q reflects the combination of three factors, namely, loss of 
correlation, luminance distortion, and contrast distortion. 
The perfect value is 1. 
 

Average Expanded Spectral Angle (AESA) 
ESA is a particularly informative metric in terms of 

measuring how close the pixel values of the two images are. 
ESA is defined in Formula (14), where k denotes the number 
of pixels and iU  and iV  represent the spectral vectors of 
images U and V at pixel k, respectively. AESA is adopted as 
a holistic index for measuring the spectral differences 
between original HSRI and fused HSGRI. The higher the 
value of AESA is, the lesser the similarity of the two images 
will be. 
 

Spectral Information Divergence (SID) 
The index of SID can be used to describe the spectral 

correlation between two images. Given that the vectors 
1 2( , , , )Lx x x x= L  and 1 2( , , , )Ly y y y= L  are pixels taken 

from the fused HSGRI and original HSRI, we derive the 
following expression: 
 

( , ) ( || ) ( || )SID x y D x y D y x= + ,                   (24) 
 
where ( || )D x y , ( || )D y x  indicate the relative entropy of y 
and x with respect to x and y, which are defined as follows: 
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Root Mean Square Error (RMSE) 
The RMSE is commonly used to measure the error 

between two images by directly calculating the changes in 
pixel values and is defined as follows: 
 

2

1 1

1 ( ( , ) ( , ))
M N

f
i j

RMSE H x y H x y
MN = =

= −∑∑ ,
    (27) 

 
where ( , )H x y  and ( , )fH x y  denote the pixel value of the 
original HSRI and fused HSGRI, respectively, and M and N 
represent the rows and columns of the image, respectively. 
The fused HSGRI is closer to the original HSRI when the 
RMSE is small and ideally expected to be 0. 
 

Relative Dimensionless Global Error in Synthesis (ERGAS) 
The ERGAS reflects the overall quality of the HSGRI, 

indicates the difference between original HSRI and fused 
HSGRI and is defined as follows: 
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where h and l denote the resolutions of HGRI and HSRI, 
respectively, L is the number of bands, and kRMSE  and kX  
are the RMSE and mean values of the kth band, respectively. A 
small ERGAS indicates that a small spectral distortion occurs 
and the algorithm is more helpful in spectral preservation. 
 
4.2 Experimental results with synthetic datasets 
Hyperspectral data over Texas are obtained from the U.S. 
Army Geospatial Center [31]; these data are composed of 
210 bands with the spectral resolution of 10 nm and the size 
of 307 × 307 collected by the hyperspectral digital imagery 
collection sensor. The noisy bands of 105-109, 139-151, and 
207-210 are removed, and 80 bands from the rest of the data 
are randomly selected to constitute an image cube. From this 
cube, band 215 is selected and simulated as the 
panchromatic image and is taken as the HGRI in that this 
band has a higher spatial resolution and definition compared 
with the other bands. For the acquisition of simulated HSRI, 
the original hyperspectral data are low-pass filtered, 
downsampled by a factor of 4, and resized to its original size. 
Panchromatic and hyperspectral images are obtained through 
this method. Given that both images are taken from the same 
data source, they are naturally registered. 

As shown in Figs. 2(a) and 2(b), the holistic 
representation of the hyperspectral image is fuzzy and out of 
focus, whereas that of the panchromatic image is distinct. 
Hyperspectral image and all of the fused images displayed in 
Fig. 2 are composed of bands 50, 133, and 183 for the red, 
green, and blue colors respectively. Five comparative 
approaches plus the proposed INMF are applied to verify the 
fusion performance. Figs. 2(c) to 2(h) show the fused results. 
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                              (a)                                                       (b)                                                  (c)                                                      (d) 

                   
                              (e)                                                       (f)                                                  (g)                                                      (h) 
Fig. 2.  Comparison of the fusion methods of synthetic images: (a) hyperspectral image, (b) panchromatic image, and (c) to (h) fused images obtained 
using the HPF, DWT, IHS, Ehler, classical NMF, and proposed INMF. 
 

The fusion methods integrate the characteristics of both 
source images. As far as the spatial resolution is concerned, 
all fused images are spatially enhanced, i.e., the houses in 
the upper left, the cars parking on the ground, and the roads 
on the top and right of the images can be identified. As for 
the spectral resolution, Figs. 2(c), 2(f), and 2(g) show images 
with a low contrast. Thus, Figs. 2(c) and 2(g) are dim and 
Fig. 2(f) looks washed out. These instances can all be 

regarded as spectral (color) distortion. Figs. 2(d), 2(e), and 
2(h) have better spectral preservation effects, as these three 
images are similar to the original hyperspectral image in the 
overall hue presentation. However, Fig. 2(d) has a high 
intensity, which makes it unusual visually. The results of the 
objective criteria are listed in Table 2 to obtain a quantitative 
statistic.

 
Table. 2. Evaluation results of the simulated data. 
 HPF DWT IHS Ehler Classical NMF INMF Optimum 

value 
IE 7.3169 7.7111 7.2914 7.6217 6.5310 7.7785 7.7785 
AG 0.0628 0.1083 0.0632 0.0742 0.0376 0.0942 0.1083 
CC 0.8043 0.8041 0.8025 0.8078 0.8086 0.8115 1 
Q 0.8246 0.8546 0.8756 0.8993 0.8921 0.9075 1 
AESA 0.3347 0.4691 0.3822 0.3586 0.3987 0.3455 0 
SID 0.0618 0.0725 0.2253 0.0293 0.0345 0.0128 0 
RMSE 1.2326 0.9871 4.6179 6.4126 0.7158 0.5643 0 
ERGAS 13.5284 15.6512 18.0654 31.5871 22.4512 9.7324 0 

 
Table 2 summarizes the results of the assessment for the 

eight criteria. The last column shows the reference values 
and the best value in each criterion rendered in boldface. 
Notably, the proposed INMF achieves the best performance 
in six of eight metrics, and the classical NMF has the worst 
performance in IE, AG, and AESA, which is in accordance 
with its visual effect. For CC and SID, the proposed method 
achieves the best value, which is slightly larger than that of 
HPF in AESA, indicating that the INMF is superior to the 
other methods in spectral preservation. For spatial rendering, 
the proposed method has the best Q index and is at the 
second place in terms of AG when compared with that of 
DWT. In the RMSE and ERGAS indices, the proposed INMF 
also has the smallest value, but these two values are not 
close enough to 0 because the original hyperspectral image 
is downsampled and random errors are introduced. In 
columns 4 and 5, IHS is the worst in CC and SID, whereas 
Ehler is the worst in RMSE and ERGAS, which are closely 
related to the subtle spectral distortion shown in Fig. 2(e) 
and the unnatural artifacts shown in Fig. 2(f), respectively. 
In brief, the proposed INMF exhibits a better balance 
between spectral preservation and spatial enhancement in 
synthetic image fusion. 

4.3 Experimental results with real datasets 
Aside from synthetic image fusion, experiments on real 
images are also conducted. The images used in this part of 
the experiments show a view of airborne flight over the 
beach region of southern Greece with pixel response in 189 
bands from the 0.4 µm to the 2.4 µm region of the visible 
and infrared spectra downloaded from the Leica Geosystems 
Geographic Imaging website [32], where bands from 0.8 µm 
to 1.3 µm have been removed. The original hyperspectral 
image is 296 × 296 with the spatial resolution of 100 m, 
whereas the panchromatic image is 512 × 512 with the 
spatial resolution of 30 m. All fused and hyperspectral 
images shown in Fig. 3 are made using bands 15, 27, and 48 
for the red, green, and blue colors respectively. 

Similarly, the six fusion methods employed in synthetic 
data are also used to evaluate the performances of these 
algorithms. As shown in Figs. 3(a) and 3(b), the 
panchromatic image shows the well-defined coastal road, 
rugged hill ridges, clear outline of the houses, and a circular 
construction located at the middle bottom, whereas the 
hyperspectral image, with one third of the picture filled with 
seawater in dark blue, is foggy and fails to illustrate the 
previously mentioned details. These fused images produced 
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by these six methods look more distinct than the original 
hyperspectral image, and the previously mentioned objects 
can be identified. All fused images have abundant spectral 
information similar to the hyperspectral image does. Notably, 
the IHS has a different hue presentation and turns the dark 
blue water shown in Fig. 3(a) into dark green, as shown in 

Fig. 3(e), when compared with the other methods, which can 
be regarded as spectral distortion. As shown in Fig. 3(g), the 
houses opposite to the beach, the triangle area between the 
two highways, and the hills on middle left are all blurred, 
which makes the image visually unique. 

 

                   
                              (a)                                                       (b)                                                  (c)                                                      (d) 

                   
                              (e)                                                       (f)                                                  (g)                                                      (h) 
Fig. 3.  Comparison of the fusion methods of real images: (a) hyperspectral image, (b) panchromatic image, and (c) to (h) fused images obtained 
using HPF, DWT, IHS, Ehler, classical NMF, and proposed INMF. 

 
Table. 3. Evaluation results of real data. 
 HPF DWT IHS Ehler Classical NMF INMF Optimum 

value 
IE 8.3412 8.5086 8.2424 8.5569 8.2671 8.5681 8.5681 
AG 0.0952 0.1041 0.1015 0.0898 0.0923 0.1038 0.1041 
CC 0.8138 0.8105 0.8075 0.8125 0.8098 0.8956 1 
Q 0.9478 0.9445 0.9441 0.9373 0.9144 0.9847 1 
AESA 0.3915 0.3607 0.4012 0.3998 0.3976 0.3072 0 
SID 0.0654 0.0277 0.0428 0.0124 0.0368 0.0115 0 
 

Quantitative estimations are made and the results are 
listed in Table 3 to further verify the visual effect. The 
criteria for RMSE and ERGAS do not appear because the 
standard reference image is not available. The proposed 
algorithm achieves the first place in five criteria except the 
index AG. In terms of spectral preservation, the proposed 
INMF excesses that of HPF by 10.05% in CC, and as for 
AESA and SID, INMF is superior to that of DWT and Ehler 
by 17.41% and 7.82%, respectively. In spatial resolution 
enhancement, the proposed algorithm takes the first place in 
Q, and surpasses that of HPF by 3.89%. HPF, DWT, Ehler 
and the proposed algorithm have little difference in spectral 
preservation and spatial improvement, but IHS holds the 
final place as far as the amount of information and the ability 
to preserve spectrum are concerned. The classical NMF is 
the last one in AG and Q, which implies that it has the 
poorest performance in spatial presentation. 

 
4.4 Numerical experiment and analysis 
The runtime of the proposed algorithm is compared with that 
of wavelet and classical NMF under the platform of Athlon 
2.61 MHz, 2 GB RAM to analyze the advantage of 
application for hyperspectral data. The initial hyperspectral 
and panchromatic data are generated by cropping square 
matrices with the size of 64 × 64 similar to those in Figs. 3(a) 
and 3(b). First, the proposed INMF algorithm is 
implemented until it ends, and the time elapsed is recorded. 

Then, the classical NMF and wavelet are implemented under 
the same conditions, and the time elapsed is recorded. 
Subsequently, the number of pixels for the row and column 
of the initial 64 × 64 matrix are doubled gradually until the 
data volume reaches approximately 1,000 MB (32,768 × 
32,768). As shown in Fig. 4, the Y-axis represents the scale 
of the time consumed and the X-axis denotes the data size. 
Fig. 4 shows that the three algorithms are not time 
consuming in the early stage for data of small scale. 
However, when the number of pixels reaches 1,024, the 
differences of the runtime of these three methods can be 
recognized. The proposed algorithm takes the least time and 
the classical NMF algorithm needs the most time. When the 
number of pixels per line exceeds approximately 22,000 (the 
scale in the X-axis at the intersection), the time consumption 
of the proposed algorithm surpasses that of wavelet and 
tends to increase rapidly with the classical NMF. In other 
words, the two NMF algorithms converge fast under the 
condition of small data. However, when the size reaches the 
threshold of 480 MB at the intersection in this context, the 
convergence rate becomes slow because of the 
multiplication of the image size. In summary, two 
algorithms based on the NMF may converge to the minimum 
in 10 s when the data size is less than 16 MB (4,096 × 4,096), 
but are not fast enough for a large batch, massive data size, 
and real-time operation unless the hardware speed is 
considerably improved. 
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Fig. 4. Runtime comparison of the three fusion methods. 

 
5. Conclusions 
 
Spectral and sparse constraints were imposed on the cost 
function to preserve the spectral features and enhance the 
spatial resolution in hyperspectral image fusion. A model 
based on the INMF algorithm was developed to optimize the 
efficiency of the proposed method. Databases of the U.S. 
Army Geospatial Center and Leica Geosystems Geographic 
Imaging were used to evaluate the validity of the proposed 
method. The following conclusions could be drawn 

(1) The spatial resolution of the fused image is 
intensified by extracting details from the high spatial 
resolution image. Techniques of sparseness and sharpness 
control enable the proposed method to improve the spatial 
resolution of the fused image. 

(2) The function of spectral constraint, which quantifies 
the spectral similarity between original hyperspectral and 
fused images, is capable of preserving the spectral features 
of the original hyperspectral image. 

(3) The process of NMF optimization could be converted 
into several subproblems on the premise that non-negativity 
is ensured. The proposed INMF method achieves fast matrix 
decomposition under the condition of sparse and spectral 
constraints. When the image size is less than 480 MB, the 
proposed method could be applied as an effective fusion 
scheme for hyperspectral images. 

Theoretical research and experimental comparison are 
combined to propose a fast INMF algorithm. The proposed 
model based on spectral and sparse constraints with clear 
physical meaning and ease of implementation is highly 
applicable to the practice of hyperspectral image fusion. 
Compared with the traditional fusion methods, the proposed 
method produces equivalent or better images and consumes 
less time. However, the manner of random initialization, the 
diversity of endmembers, and the vast data scale have 
adverse effects on the model. Therefore, the algorithm must 
be optimized further to enable large-scale and real-time 
application to networks. 
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